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A brief introduction

Conformal geometry is an important tool to study curvatures. The basic topic of
conformal geometry is the conformal deformation of curvature tensors.
Except the standard curvature tensors (Riemannian curvature tensor, Ricci curvature

tensor and scalar curvature tensor), we put forward twonew curvature tensors: Schouten
tensor andWeyl tensor. One the one hand, they naturally come from the decomposition
of Riemannian curvature tensor with respect to the trace operator and determine the
properties of curvatures. On the other hand, they have relatively better properties under
conformal transformations.
In conformal geometry we know the basic fact: a manifold is locally conformally �at

i� theWeyl tensor equals to zero (in dimension n > 3). We also classify the properties of
Schouten tensor and Weyl tensor and the study of locally conformal �at manifolds into
the category of conformal geometry.
We put forward two applications.

(1) First, we generalize the scalar curvature via Schouten tensor, and give the curvature
estimate on locally conformally �at manifolds.

(2) Second, based on the transformation laws of curvature tensors under conformal
transformations, we study the prescribed curvature problem via the theory of elliptic
partial di�erential equations.

In addition, we point out that due to space constraints, we only introduce the 2-
dimensional case in detail for the second application. In fact, Weyl tensor still plays
an important role in high-dimensional cases, which we do not introduce in detail.
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1. Preliminaries

A motivating problem (corollary 1.16):

Problem 1.1. Let (M, g) be a 3-dimensional Riemannian manifold. If g is an Einstein
metric, thenM has constant sectional curvatures.

1.A. Algebraic curvature tensors — trace operator, Kulkarni-Nomizu product.
To study the curvature tensors, we put forward the concept of algebraic curvature tensor
on V:

De�nition 1.2 (Algebraic curvature tensor). LetV be an n-dimensional real vector space.
Then we call T ∈ ⊗4(V∗) an algebraic curvature tensor on V if it satis�es:

(1) T(x, y, z, w) = −T(y, x, z, w) = −T(x, y, w, z) = T(z, w, x, y) for all x, y, z, w ∈ V;
(2) T(x, y, z, w) + T(y, z, x, w) + T(z, x, y, w) = 0 for all x, y, z, w ∈ V.

We denote the space of algebraic curvature tensors on V byℛ(V∗).

Remark 1.3. The Riemannian curvature tensors satisfy the di�erential property in
addition (see Bianchi second identify [Pet16, proposition 3.1.1]). Here we just use the
pointwise algebraic properties of Riemannian curvature tensors.

In the next we introduce some basic conclusions of linear algebra. First, we note that
ℛ(V∗) is a linear subspace of⊗4(V∗), and its dimension is computed as follows.

Proposition 1.4. Let V be an n-dimensional real vector space. Then

dimℛ(V∗) = n2(n2 − 1)
12

Proof. See [Lee18, proposition 7.21]. �

Second, we introduce the trace operator trg ∶ ℛ(V∗) → Σ2(V∗), and try to studyℛ(V∗)
via this linear map.
This is just like the process that we derive the Ricci curvature tensor via a Riemannian

curvature tensor. For any g ∈ Σ2(V∗) which is nondegenerate (not necessarily positive
de�nite), we de�ne a map

(1.1) trg ∶ ℛ(V∗) → Σ2(V∗), T ↦ gilTijkl.

Clearly this is well-de�ned. It is natural to wonder whether this operator is surjective
and what its kernel is,1 as a way of asking how much of information contained in the
Riemannian curvature tensor is captured by the Ricci tensor.
One way to try to answer the question is to attempt to construct a right inverse for

the trace operator.2 A natural right inverse operator is induced by the Kulkarni-Nomizu
product, which is a natural product operator that yields algebraic curvature operators.

1In other words, we want to decomposes T orthogonally into the traceless part and its orthogonal.
2I.e. a linear map G ∶ Σ2(V∗) → ℛ(V∗) such that trg◦G = id.
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De�nition 1.5 (Kulkarni-Nomizu product). Let V be a real vector space. For ℎ, k ∈
Σ2(V∗), we de�ne the Kulkarni-Nomizu product of ℎ and k by the following formula

(ℎ ? k) (v1, v2, v3, v4) = 1
2 (ℎ(v1, v4) ⋅ k(v2, v3) + ℎ(v2, v3) ⋅ k(v1, v4))

−12 (ℎ(v1, v3) ⋅ k(v2, v4) + ℎ(v2, v4) ⋅ k(v1, v3))

The factor 1∕2 is not used consistently in the literature, but is convenient when ℎ = k.

Proposition 1.6. Let V be an n-dimensional real vector space, and let g ∈ Σ2(V∗) be
nondegenerate. Then for ℎ, k ∈ Σ2(V∗), we know:

(1) ℎ ? k is an algebraic curvature tensor;
(2) ℎ ? k = k ? ℎ;
(3) 2trg (ℎ ? g) = (n − 2)ℎ +

(
trgℎ

)
g;

(4) trg (g ? g) = (n − 1)g;
(5) ⟨T, ℎ ? g⟩g = 2

⟨
trgT, ℎ

⟩
g
;

(6) In case g is positive de�nite, |g ? ℎ|2g = (n − 2)|ℎ|2g + (trgℎ)2.

Proof. Points (1) and (2) are trivial. Note that

2trg (ℎ ? g)jk = gil
(
ℎilgjk + ℎjkgil − ℎikgjl − ℎjlgik

)

= ℎi igjk + nℎjk − ℎjk − ℎjk = ℎi igjk + (n − 2)ℎjk.

Hence we get point (3). Point (4) follows from point (3) immediately. Also note that

2 ⟨T, ℎ ? g⟩g = Tijkl
(
ℎilgjk + ℎjkgil − ℎikgjl − ℎjlgik

)

= Tijklℎilgjk + Tijklℎjkgil − Tijklℎikgjl − Tijklℎjlgik
= Tjilkℎilgjk + Tijklℎjkgil + Tjiklℎikgjl + Tijlkℎjlgik = 4

⟨
trgT, ℎ

⟩
g
.

Hence we get point (5). Then it follows from the preceding points that

|g ? ℎ|2g = ⟨g ? ℎ, g ? ℎ⟩g = 2
⟨
trg(g ? ℎ), ℎ

⟩
g

=
⟨
(n − 2)ℎ +

(
trgℎ

)
g, ℎ

⟩
g
= (n − 2)|ℎ|2g + (trgℎ)2

where we use the fact that ⟨g, ℎ⟩g = trgℎ. �

Proposition 1.7. Let V be an n-dimensional real vector space with n ≥ 3, and let g ∈
Σ2(V∗) be nondegenerate. We de�ne a linear map

G ∶ Σ2(V∗) → ℛ(V∗), ℎ ↦ ( 2
n − 2ℎ −

trgℎ
(n − 1)(n − 2)

g) ? g.

Then G is a right inverse for trg. Moreover, we have

im (G) =
(
ker

(
trg

))⟂
.

Proof. The fact that trg◦G = id follows fromproposition 1.6 (3) (4), i.e. G is a right inverse
for trg. Via simple linear algebra, it follows that that

dim im (G) = dim
(
ker

(
trg

))⟂
.



4 Introduction to conformal geometry

On the other hand, proposition 1.6 (5) yields that

im (G) ⊂
(
ker

(
trg

))⟂
.

Therefore we get the conclusion by dimensionality. �

Remark 1.8. We hence get an orthogonal decomposition

ℛ(V∗) = ker
(
trg

)
⊕ im (G)

These results lead to some important simpli�cations in low dimensions.

Corollary 1.9. Let V be an n-dimensional real vector space, and let g ∈ Σ2(V∗) be
nondegenerate.

(1) If n = 0 or n = 1, thenℛ(V∗) = {0}.
(2) If n = 2, thenℛ(V∗) = span {g ? g}.
(3) If n = 3, then dimℛ(V∗) = 6, and G ∶ Σ2(V∗) → ℛ(V∗) is an isomorphism.

Proof. The dimensional results follow immediately from proposition 1.4.
In the case n = 2, proposition 1.6 (4) implies that trg (g ? g) = g ≠ 0. Therefore,

g ? g ≠ 0 and hence spans the 1-dimensional space ℛ(V∗).
In the case n = 3, proposition 1.7 implies that G is injective (using trg◦G = id).

Therefore, G is an isomorphism by dimensionality. �

Remark 1.10. Corollary 1.9 (3) implies that the Riemannian curvature tensor will be
determined by the Ricci tensor in dimension 3. In fact, in dimension 3, trg = G−1, and
hence

(1.2) R = G
(
trgR

)
= G (Ric) .

1.B. Weyl tensor and Schouten tensor. Now we apply the conclusions of subsection
1.A to (pseudo-)Riemannian manifolds. We focus on the case that ℎ = Ric.

De�nition 1.11 (Weyl tensor and Schouten tensor). Let g be a Riemannian or pseudo-
Riemannian metric. De�ne the Schouten tensor of g by

(1.3) P = 2
n − 2Ric −

scal
(n − 1)(n − 2)

⋅ g

and de�ne theWeyl tensor of g by

(1.4) W = R − P ? g = R − 2
n − 2Ric? g + scal

(n − 1)(n − 2)
⋅ g ? g.

Remark 1.12. Clearly, we have G(Ric) = P ? g.

Proposition 1.13. For every (pseudo-)Riemannian manifold (M, g) of dimension n ≥ 3,

(1.5) R = W + P ? g

is the orthogonal decomposition of R corresponding toℛ(T∗pM) = ker
(
trg

)
⊕

(
ker

(
trg

))⟂
.

(This implies that the trace of Weyl tensor is zero.)

Proof. It follows directly from proposition 1.7. �
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Proposition 1.14. On every (pseudo-)Riemannian manifold (M, g) of dimension 2, the
Riemannian and Ricci tensors are determined by the scalar curvature as follows:

R = scal
2 g ? g and Ric = scal

2 g.

Proof. By corollary 1.9 (2), there exists f ∈ C∞(M) such that R = fg ? g. Taking traces,
we get via proposition 1.6 (4) that Ric = fg, and then scal = tr(Ric) = 2f. Done. �

Proposition 1.15. On every (pseudo-)Riemannian manifold (M, g) of dimension 3, the
Weyl tensor is zero, and Riemannian curvature tensor is determined by the Ricci tensor via
the formula

R = P ? g = 2Ric? g − scal
2 g ? g.

Proof. Corollary 1.9 shows that G ∶ Σ2(V∗) → ℛ(V∗) is an isomorphism in dimension
3. Since trg◦G = id, we know trg = G−1 is also an isomorphism. Bacause trgW = 0 by
proposition 1.13, it follows thatW = 0. The second assertion follows from (1.2). �

Corollary 1.16. Let (M, g) be a 3-dimensional Riemannian manifold. If g is an Einstein
metric, thenM has constant sectional curvatures.

Proof. The conclusion follows from proposition 1.15 and Schur theorem 6.1. �

Moreover, using the traceless Ricci tensor, we can further decompose the Riemannian
curvature tensor.

Proposition 1.17. Let (M, g) be a (pseudo-)Riemannian manifold of dimension n ≥ 3.
Then the (0, 4)-curvature tensor of g has the following orthogonal decomposition:

R = W + 2
n − 2Ric

◦ ? g + scal
n(n − 1)

g ? g.

Therefore, in the Riemannian case,

|R|2g = |W|2g +
4

(n − 2)2
||||Ric

◦ ? g||||
2

g
+ scal2

n2(n − 1)2
|g ? g|2g

= |W|2g +
4

n − 2
||||Ric

◦||||
2

g
+ 2
n(n − 2)

scal2.

Proof. It follows from the de�nition and proposition 1.6. �

1.C. Curvatures of conformally related metrics. By formula (1.5), we can reduce
the analysis of Riemannian curvature R to the analysis of Weyl tensorW and Schouten
tensor P.
An important property of Weyl tensor W is its transformation law under conformal

changes of metric. Moreover, we can use W to judge whether the manifold is locally
conformally �at, which explains the geometric signi�cance of the Weyl tensor.

De�nition 1.18. Two Riemannian or pseudo-Riemannian metrics on the same manifold
are said to be conformal to each other if one is a positive function times the other.
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Proposition 1.19. Let (M, g) be a (pseudo-)Riemannian n-manifold (with or without
boundary), and let g̃ = e2fg be any metric conformal to g. If ∇ and ∇̃ denote the Levi-
Civita connections of g and g̃ respectively, then

(1.6) ∇̃XY = ∇XY + (Xf)Y + (Yf)X − ⟨X, Y⟩ ⋅ ∇f.

In any local coordinates, the Christo�el symbols of the two connections are related by

(1.7) Γ̃kij = Γkij + f;i�kj + f;j�ki − gklf;lgij.

Proof. Recall that

Γkij =
1
2g

kl ()igjl + )jgil − )lgij
)
.

Then we know

Γ̃kij = 1
2e

−2fgkl
(
)i

(
e2fgjl

)
+ )j

(
e2fgil

)
− )l

(
e2fgij

))

= 1
2e

−2fgkl
(
e2f)igjl + e2f)jgil − e2f)lgij

)

+12e
−2fgkl

(
2e2ff;igjl + 2e2ff;jgil − 2e2ff;lgij

)

= Γkij + f;igklgjl + f;jgklgil − f;lgklgij
= Γkij + f;i�kj + f;j�ki − gklf;lgij.

Hencewe get formula (1.7). Clearly, formula (1.6) is a straightforward computationusing
formula (1.7) in coordinates. We are done. �

Corollary 1.20 (Laplacian on functions). Let (M, g) be a (pseudo-)Riemannianmanifold
(with or without boundary), and let g̃ = e2fg be anymetric conformal to g. Then for smooth
function �, it holds that

∆̃� = e−2f
(
∆� − (n − 2) ⟨∇f,∇�⟩g

)
.

Proof. Note that the Laplacian on functions can be expressed as

∆� = gjk
)2�

)xj)xk
− gjkΓljk

)�
)xl

.

Then the conclusion easily follows from (1.7). �

Proposition 1.21. Let (M, g) be a (pseudo-)Riemannian n-manifold (with or without
boundary), and let g̃ = e2fg be any metric conformal to g. In the Riemannian case, the
curvature tensors of g̃ (represented with tildes) are related to those of g by the following
formulas:

(1.8) R̃ = e2f
(
R − 2Hess f ? g + 2 (df ⊗ df)? g − |∇f|2g ⋅ g ? g

)
,

(1.9) R̃ic = Ric − (n − 2)Hess f + (n − 2) (df ⊗ df) −
(
∆f + (n − 2)|∇f|2g

)
g,

(1.10) s̃cal = e−2f
(
scal − 2(n − 1)∆f − (n − 1)(n − 2)|∇f|2g

)
.

If in addition n ≥ 3, then

(1.11) P̃ = P − 2Hess f + 2df ⊗ df − |∇f|2g ⋅ g,
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(1.12) W̃ = e2fW.

In the pseudo-Riemannian case, the same formula hold with each occurrence of |∇f|2g
replaced by ⟨∇f,∇f⟩g.

Proof. Recall that

Rijkl = glm
(
)iΓmjk − )jΓmik + ΓrjkΓ

m
ir − ΓrikΓ

m
jr

)
.

Let (xi) be normal coordinates centered at p. Then at p we have3

f;i;j = )j)if,
Γ̃kij = f;i�kj + f;j�ki − gklf;lgij,

)mΓ̃kij = )mΓkij + f;i;m�kj + f;j;m�ki − gklf;l;mgij.

Then we have

R̃ijkl = g̃lm
(
)iΓ̃mjk − )jΓ̃mik + Γ̃rjkΓ̃

m
ir − Γ̃rikΓ̃

m
jr

)

= e2f
(
Rijkl −

(
f;i;lgjk + f;j;kgil − f;i;kgjl − f;j;lgik

)

+
(
f;if;lgjk + f;jf;kgil − f;if;kgjl − f;jf;lgik

)

−gmrf;mf;r
(
gilgjk − gikgjl

) )

which is the coordinates version of (1.8). Then the rest of this proposition follows from
proposition 1.6 and formulas (1.3) and (1.4). �

In the next we begins to explain the geometric signi�cance of the Weyl tensor.

De�nition 1.22. A Riemannian manifold is said to be locally conformally �at if every
point has a neighborhood that is conformally equivalent to an open subset of Euclidean
space.
Similarly, a pseudo-Riemannian manifold is said to be locally conformally �at if every

point has a neighborhood that is conformally equivalent to an open subset of pseudo-
Euclidean space.

Corollary 1.23. Suppose that (M, g) is a (pseudo-)Riemannian manifold of dimension
n ≥ 3. If g is locally conformally �at, then its Weyl tensor vanishes identically.

Proof. It follows from proposition 1.21 directly.4 �

In fact, in dimension n ≥ 4,W = 0 is also a su�cient condition. But in dimension 3,
as we showed in proposition 1.15, we always haveW = 0. So to understand that case,
we must introduce one more tensor �eld.

De�nition 1.24. On a (pseudo-)Riemannianmanifold, theCotton tensorC is de�ned by

2C = −DP i.e. 2Cijk = Pij;k − Pik;j
where D is the exterior covariant derivative, i.e.

(DT)(X, Y, Z) = −(∇ZT)(X, Y) + (∇YT)(X, Z) for any (0, 2)-tensor T.
3Covariant derivative and directional derivative aremixed in this calculation. It will be convenient to unify
them with normal coordinates.
4Note that for (pseudo-)Euclidean spaces R = W = 0 and P = 0.
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Proposition 1.25. Let (M, g) be a (pseudo-)Riemannian manifold of dimension n ≥ 3,
and letW and C denote its Weyl and Cotton tensors respectively. Then

C1,2(∇W) = (n − 3)C.

Proof. The equationW = R − P ? g yields that

2Wijkl = 2Rijkl − Pilgjk − Pjkgil + Pikgjl + Pjlgik,

and hence

2Wijkl
;i = 2Rijkl;i − Pil ;igjk − Pjk;igil + Pik;igjl + Pjl ;igik.

Note that the second Bianchi identify yields that

Rijkl;m + Rijlm;k + Rijmk;l = 0
⋅gim
⟹ Rijkl;i = Rjk;l − Rjl;k

⋅gjk
⟹ Ril ;i =

1
2scal;l.

Then by formula (1.3), we know

Pij =
2

n − 2Rij −
scal

(n − 1)(n − 2)
gij ⟹ Pil ;i =

scal;l
n − 1

It follows that

2Wijkl
;i = 2Rijkl;i − Pil ;igjk − Pjk;igil + Pik;igjl + Pjl ;igik

= 2Rjk;l − 2Rjl;k −
scal;l
n − 1gjk − Pjk;l +

scal;k
n − 1gjl + Pjl;k

= (n − 2)
(
Pjk;l − Pjl;k

)
− Pjk;l + Pjl;k = 2(n − 3)Cjkl.

Hence we get the conclusion. �

Remark 1.26. Basic idea of computation: we �rst reduce it to an equation about
curvature tensors R, P,W, and then use the special properties of curvature tensors.

Proposition 1.27. Let (M, g) be a (pseudo-)Riemannian manifold of dimension n ≥ 3,
and let g̃ = e2fg for some f ∈ C∞(M). If C and C̃ denote the Cotton tensors of g and g̃
respectively, then

C̃ = C + �∇fW i.e. C̃ijk = Cijk + f;lWlijk.

Proof. Formula (1.11) yields that

(1.13) P̃ij = Pij − 2f;i;j + 2f;if;j − f;mf;mgij,

and hence

P̃ij;k = Pij;k − 2f;i;j;k + 2f;i;kf;j + 2f;if;j;k − f;m;kf;mgij − f;mf;m;kgij
= Pij;k − 2f;i;j;k + 2f;i;kf;j + 2f;if;j;k − 2f;mf;m;kgij.

It follows that

(1.14)
P̃ij;k − P̃ik;j =

(
Pij;k − Pik;j

)
− 2

(
f;i;j;k − f;i;k;j

)

+ 2
(
f;i;kf;j − f;i;jf;k

)
− 2

(
f;mf;m;kgij − f;mf;m;jgik

)
.
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Moreover, by formula (1.7) we know

P̃ij;k̃ =
(
∇̃)k P̃

) (
)i, )j

)
= )kP̃ij − P̃

(
∇̃)k)i, )j

)
− P̃

(
)i, ∇̃)k)j

)

= )kP̃ij − P̃
(
Γ̃lki)l, )j

)
− P̃

(
)i, Γ̃lkj)l

)

= )kP̃ij − P̃
(
Γlki)l, )j

)
− P̃

(
)i, Γlkj)l

)

−
(
f;k�li + f;i�lk − glsf;sgki

)
P̃lj −

(
f;k�lj + f;j�lk − glsf;sgkj

)
P̃il

= P̃ij;k −
(
f;kP̃ij + f;iP̃kj − f;lgkiP̃lj + f;kP̃ij + f;jP̃ik − f;lgkjP̃il

)

and hence by the symmetry of P̃ and g we know

(1.15) P̃ij;k̃ − P̃ik;̃j = P̃ij;k − P̃ik;j − 2
(
P̃ ? g

)
sijk f

;s.

Hence by formulas (1.14) and (1.15) we know

C̃ijk = Cijk −
(
f;i;j;k − f;i;k;j

)
+

(
f;i;kf;j − f;i;jf;k

)

−
(
f;mf;m;kgij − f;mf;m;jgik

)
−

(
P̃ ? g

)
sijk f

;s.

In the next we kill the high-order terms of f.5 Speci�cally, by Ricci identity 6.15 we know

f;i;j;k − f;i;k;j = −Rkjisf;s
and by (1.13) we know

2f;i;j = Pij − P̃ij + 2f;if;j − f;sf;sgij ∀i, j.

It follows that

C̃ijk = Cijk −
(
f;i;j;k − f;i;k;j

)
+

(
f;i;kf;j − f;i;jf;k

)

−
(
f;mf;m;kgij − f;mf;m;jgik

)
−

(
P̃ ? g

)
sijk f

;s

= Cijk + Rkjisf;s −
(
P̃ ? g

)
sijk f

;s

+12
(
Pik − P̃ik + 2f;if;k − f;sf;sgik

)
f;j

−12
(
Pij − P̃ij + 2f;if;j − f;sf;sgij

)
f;k

−12f
;mgij

(
Pmk − P̃mk + 2f;mf;k − f;sf;sgmk

)

+12f
;mgik

(
Pmj − P̃mj + 2f;mf;j − f;sf;sgmj

)

= Cijk + Rsijkf;s −
(
P̃ ? g

)
sijk f

;s − (P ? g)sijk f;s +
(
P̃ ? g

)
sijk f

;s

= Cijk +Wsijkf;s

We are done. �

Remark 1.28. One can refer to [Gre, Conformal Transformation of the Cotton Tensor]
or [Gar, theorem 4.3.1] for new proofs.

Corollary 1.29. C is a conformally invariance in dimension 3.

5The basic idea for simpli�cation is to kill the high-order terms, and then reduce our problem to the
property of curvature tensors. Seeing from the result we also know that the high-order terms will cancel.
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Proof. In dimension 3, proposition 1.15 shows that W = 0, and hence the conclusion
follows from proposition 1.27. �

Corollary 1.30. If (M, g) is a locally conformally �at 3-manifold, then the Cotton tensor
of g vanishes identically.

Proof. Note that for (pseudo-)Euclidean spaces P = 0 (and R = W = 0). Then the
conclusion follows from proposition 1.27. �

The real signi�cance of the Weyl and Cotton tensors is explained by the following
important theorem.

Theorem 1.31 (Weyl-Schouten). Let (M, g) be a (pseudo-)Riemannian manifold of
dimension n ≥ 3.
(1) If n ≥ 4, then (M, g) is locally conformally �at i� its Weyl tensor is identically zero.
(2) If n = 3, then (M, g) is locally conformally �at i� its Cotton tensor is identically zero.

Proof. The necessity of each condition was proved in corollaries 1.23 and 1.30. To prove
su�ciency, suppose (M, g) satis�es the hypothesis appropriate to its dimension.
First, we note that W = 0 and C = 0 by propositions 1.15 and 1.25. Moreover, by

formula (1.12), every metric g̃ = e2fg conformal to g also has zero Weyl tensor, and
hence its curvature tensor is R̃ = P̃ ? g̃.
Second, we prove that in a neighborhood of each point, the function f can be chosen

to make P̃ = 0, which completes the proof by proposition 6.21. From formula (1.11), it
follows that P̃ = 0 i�

(1.16) P − 2Hess f + 2df ⊗ df − ⟨∇f,∇f⟩ ⋅ g = 0.

To locally solve the above second order PDEs (1.16), our idea is as follows:
(1) Find a solutionwith df substituted by!. (Then it’s reduced to a �rst order PDEs,

and we may be able to apply the Frobenius theorem (see section 7).)
(2) Show that d! = 0; then by Poincaré lemma we can �nd f locally.
Let A ∶ T∗M → ⊗2T∗M be a smooth map given by

A(!) = P
2 + ! ⊗ ! − 1

2 ⟨!, !⟩ ⋅ g ∀! ∈ Γ(M, T∗M).

By example 7.17, there exists a local solution ! to the following �rst order PDEs:

A(!)ij = !i;j
in a neighborhood of each point. Moreover, since A(!) is symmetric, we know6

)j!i = !i;j + Γsij!s = !j;i + Γsij!s = )i!j.

It follows that d! = 0. Then by Poincaré lemma [Lee18, theorem 17.14], in some
(possibly smaller) neighborhood of each point, there is a smooth functionfwith! = df;
this f is the function we seek. �

6Here we use formula (7.13).
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2. Curvature estimate and its applications

2.A. �k-scalar curvature. First, we generalize the concept of scalar curvature via
Schouten tensors.

De�nition 2.1 (�k-scalar curvature). Let (M, g) be a Riemannian manifold, and let P be
the Schouten tensor. Then the k-th scalar curvature ofM is trk(P), where trk(P) is de�ned
in de�nition 5.1.

Remark 2.2. Clearly, by de�nition 1.11 we know

tr1(P) = tr (P) = n − 2
(n − 1)(n − 2)

scal.

This explains why trk(P) is called �k-scalar curvature.

The ideas and tools to make curvature estimates are introduced in section 5. Roughly
speaking, we will add restrictions on trk(P) to derive estimates of Gmin(Ric) and Gn,p(P).
These estimates have the following basic applications:
(1) the estimates ofGmin(Ric)will give a lower bound of Ricci curvature (subsection 2.B);
(2) the estimates of Gn,p(P) will lead to the vanishing theorems (subsection 2.C).

Remark 2.3. Note that trk(P)’s determine the spectrum of P, which almost determine P
(corollary 4.3 shows that P is determined by the spectrum and eigenvectors of Pij.)
Therefore, whenM is conformally �at, these methods have great power, since in this

case R is determined by P (R = P ? g).

Speci�cally, the restriction is that gx ∈ Γ+k , gx ∈ Γ
+
k , g ∈ Γ+k , or g ∈ Γ+k

De�nition 2.4. Let (M, g) be a Riemannian manifold and x ∈ M. We say that gx ∈ Γ+k if

trj(P)(x) > 0 ∀1 ≤ j ≤ k,

and we say that gx ∈ Γ
+
k if

trj(P)(x) ≥ 0 ∀1 ≤ j ≤ k.

Moreover, we say that g ∈ Γ+k (resp. g ∈ Γ
+
k ) if gx ∈ Γ+k (resp. gx ∈ Γ

+
k ) for all x ∈ M.

2.B. Estimates of Ricci curvature — �rst geometric quantity.

Theorem 2.5. Let (M, g) be a Riemannian manifold and x ∈ M. Assume k > 1. If
gx ∈ Γ+k (resp. gx ∈ Γ

+
k ) for some k ≥ n∕2, this its Ricci curvature is positive (resp. non-

negative) at x. Moreover, if g ∈ Γ
+
k for some k > 1, then

Ric ≥ 2k − n
2n(k − 1)

scal ⋅ g.

In particular, if k ≥ n∕2, then

Ric ≥ (2k − n)(n − 1)
k − 1

(n
k
)− 1

k tr
1
k
k (P) ⋅ g.

Proof. It follows directly from the estimate of �rst geometric quantity (proposition 5.6).
�
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In case k ≥ n∕2, ifM is locally conformally �at in addition, these estimates will lead
to a more precisely result about classi�cation.

Corollary 2.6. Let (M, g) be a compact and locally conformally �at manifold. Assume
g ∈ Γ

+
k with k ≥ n∕2. Then (M, g) is conformally equivalent to either a space from or

a �nite quotient of Riemannian Sn−1(c) × S1 for some constant c > 0 and k = n∕2. In
particular, if g ∈ Γ+k , then (M, g) is conformally equivalent to a spherical space form.

Proof. One can refer to [GVW02, corollary 1]. �

2.C. Vanishing theorems — second geometric quantity. In the next we apply
the Bochner technique to di�erential forms on locally conformally �at manifolds. By
subsection 6.D and Hodge theorem 6.23, the key point is to show that

g (Ric(!), !) ≥ 0, ∀! ∈ ℋp(M)

where

ℋp(M) = {! ∈ Ωp(M) ∶ ∆H! = 0} .

In practice, we will show that the linear operator

Ric ∶ Ωp(M) → Ωp(M)

is non-negative (and in addition is positive at some point). Speci�cally, lemma 6.19
implies that

(1) if Ric ∶ Ωp(M) → Ωp(M) is non-negative, then each harmonic p-form ! is parallel;
(2) if in addition Ric is positive at some point, thenℋ = {0}.

Another key point is that the positivity of Ric is highly related to the second geometric
quantity of P (in caseM is locally conformally �at). Speci�cally,

Gn,p(P)(x) ≥ 0 ⟹ Ric ∶ ∧pT∗xM → ∧pT∗xM is non-negative
Gn,p(P)(x) > 0 ⟹ Ric ∶ ∧pT∗xM → ∧pT∗xM is positive

We will show this later.
First we simplify the Weitzenböch curvature operator Ric for di�erential forms.

Proposition 2.7. Let (Ei) be a local orthonormal frame of TM and let (Ei) be its dual. For
! ∈ Ω∗(M), we have

(2.1) Ric(!) =
∑

Ej ∧ i(El)R(El, Ej)!.

Proof. Suppose ! ∈ Ωs(M). By formulas (6.2) and (6.3) we know

∑
Ej ∧ i(El)R(El, Ej)! = 1

(s − 1)!

n∑

l,j=1

∑

�
(−1)|�|

(� (Ej ⊗ i(El)R(El, Ej)!
))
.

For each � ∈ Ps, we associate with it the following map

�� ∶ {1,⋯ , �̂(1),⋯ , s} → {1,⋯ , �̂(1),⋯ , s}, �(n) ↦ {
n − 1 if 2 ≤ n ≤ i
n if n > i
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then using that i(El)R(El, Ej)! and R(El, Xi)! are di�erential forms, we know
(∑

Ej ∧ i(El)R(El, Ej)!
)
(X1,⋯ ,Xs)

= 1
(s − 1)!

n∑

l,j=1

s∑

i=1

∑

�∈Ps
�(1)=i

(−1)|�|
(� (Ej ⊗ i(El)R(El, Ej)!

))
(X1,⋯ ,Xs)

= 1
(s − 1)!

n∑

l,j=1

s∑

i=1

∑

�∈Ps
�(1)=i

(−1)|�|Ej(Xi) ⋅
(
i(El)R(El, Ej)!

) (
X�(2),⋯ ,X�(s)

)

= 1
(s − 1)!

n∑

l,j=1

s∑

i=1

∑

�∈Ps
�(1)=i

(−1)|�|(−1)|��|Ej(Xi) ⋅
(
i(El)R(El, Ej)!

) (
X1,⋯ , X̂i,⋯ ,Xs

)

= 1
(s − 1)!

n∑

l,j=1

s∑

i=1

∑

�∈Ps
�(1)=i

(−1)i−1Ej(Xi) ⋅
(
i(El)R(El, Ej)!

) (
X1,⋯ , X̂i,⋯ ,Xs

)

=
n∑

l,j=1

s∑

i=1
(−1)i−1Ej(Xi) ⋅

(
i(El)R(El, Ej)!

) (
X1,⋯ , X̂i,⋯ ,Xs

)

=
n∑

l=1

s∑

i=1
(−1)i−1 (R(El, Xi)!)

(
El, X1,⋯ , X̂i,⋯ ,Xs

)

=
n∑

l=1

s∑

i=1
(R(El, Xi)!) (X1,⋯ , El,⋯ ,Xs) = Ric(!) (X1,⋯ ,Xs)

where we use the fact that (−1)|�|(−1)|��| = (−1)i−1.7 �

Remark 2.8. Clearly, we have

(2.2) Ric(f!) = fRic(!) ∀f ∈ C∞(M).

In the next we simplify Ric(!) furthermore on locally conformally �at manifolds. This
is natural, since for a conformally �at manifoldM, we have

R = P ? g, where P is the Schouten tensor.

which shows that the curvature tensor is easy to understand via P.

Proposition 2.9. Let (M, g) be a locally conformally �atmanifold. We regard the Schouten
tensor P as a symmetric (1, 1)-tensor Pij. Then for each x ∈ M, by corollary 4.3, there exists
an orthogonal basis (ei) of TxM such that

P(ei) = �iei for some �i ∈ ℝ.

7We extend �� to �̃� ∈ Ps by setting �̃� (�(1)) = �(1). Then (−1)|��| = (−1)|�̃�|, and clearly we have

(−1)|�|(−1)|��| = (−1)|�|(−1)|�̃�| = (−1)|�̃�◦�| = (−1)i−1.
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WLOG we consider ! = e1 ∧⋯ ∧ ep; then

(2.3) 2Ric(!) =
⎛
⎜
⎝
(n − p)

p∑

i=1
�i + p

n∑

i=p+1
�i
⎞
⎟
⎠
!.

Remark 2.10. In fact, by formula (2.2), formula (2.3) shows how to compute Ric(!) in
the general sense.

Proof. As in subsection 6.B, we regard R(el, ej) as a derivation determined by itself as a
(1, 1)-tensor. Speci�cally, note that

2R(el, ej)(X, !) = 2(P ? g)
(
el, ej, X, !♯

)

= P(el, !♯)g(ej, X) + P(ej, X)g(el, !♯) − P(el, X)g(ej, !♯) − P(ej, !♯)g(el, X)
=

⟨
�lel, !♯

⟩ ⟨
ej, X

⟩
+

⟨
�ej, X

⟩ ⟨
el, !♯

⟩
− ⟨�lel, X⟩

⟨
ej, !♯

⟩
−

⟨
�jej, !♯

⟩
⟨el, X⟩

= (�l + �j)
(⟨
el, !♯

⟩ ⟨
ej, X

⟩
− ⟨el, X⟩

⟨
ej, !♯

⟩)

and hence

2R(El, Ej) = (�l + �j)
(
ej(∙)el − el(∙)ej

)
= (�l + �j)

(
ej ⊗ el − el ⊗ ej

)
.

Recall that if ei1 ∧⋯ ∧ eis ≠ 0 then we have

i(ei)
(
ei1 ∧⋯ ∧ eis

)
= {

0 i ∉ {i1,⋯ , is}
(−1)k−1ei1 ∧⋯ ∧ êik ∧⋯ ∧ eis i = ik

then it follows from proposition 6.7 and formulas (6.4) (2.1) that

2Ric(!) =
∑

ej ∧ i(el)2R(el, ej)(e1 ∧⋯ ∧ ep)

=
n∑

j,l=1

p∑

k=1
ej ∧ i(el)

(
e1 ∧⋯ ∧

(
2R(el, ej)ek

)
∧⋯ ∧ ep

)

=
n∑

j,l=1

p∑

k=1
(�l + �j)ej ∧ i(el)

(
e1 ∧⋯ ∧

(
�kj e

l − �kl e
j
)
∧⋯ ∧ ep

)

=
n∑

l=1

p∑

k=1
(�l + �k)ek ∧ i(el)

(
e1 ∧⋯ ∧ ek−1 ∧ el ∧ ek+1 ∧⋯ ∧ ep

)

−
n∑

j=1

p∑

k=1
(�k + �j)ej ∧ i(ek)

(
e1 ∧⋯ ∧ ek−1 ∧ ej ∧ ek+1 ∧⋯ ∧ ep

)

=
n∑

l=p+1

p∑

k=1
(�l + �k)ek ∧ i(el)

(
e1 ∧⋯ ∧ ek−1 ∧ el ∧ ek+1 ∧⋯ ∧ ep

)

=
n∑

l=p+1

p∑

k=1
(�l + �k)! =

⎛
⎜
⎝
(n − p)

p∑

i=1
�i + p

n∑

i=p+1
�i
⎞
⎟
⎠
!.

We are done. �

Now, it’s clear that

if the second geometric quantity Gn,p(P) > 0, then vanishing theorems follow
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where the second geometric quantity is introduced in subsection 5.A. In the next we use
subsection 5.B, the estimates of geometric quantities, to derive vanishing theorems.

Remark 2.11. For the sake of convenience, let bq denote the q-th Betti number, let Sn−p
denote the standard sphere of sectional curvature 1, and letHp denote a hyperbolic plane
of sectional curvature −1.

Proposition 2.12. Let (M, g) be a compact, locally conformally �at manifold and let 2 ≤
k ≤ n∕2 and 1 ≤ p ≤ n∕2. Suppose g ∈ Γ

+
k and tr1(P) is not identical to zero inM.

(1) If En,p ∈ Γ+k−1 and En,p ∉ Γ+k , then

bq = 0 for p ≤ q ≤ n − p.

(2) Suppose En,p ∈ Γ
+
k , �k(En,p) = 0 and trk(P) > 0 at some point inM, then

bq = 0 for p ≤ q ≤ n − p.

(3) Suppose En,p ∈ Γ
+
k , �k(En,p) = 0, then bp ≠ 0 i� (M, g) is a quotient of Sn−p × Hp.

Proof. Under the conditions given in (1) and (2), the estimate of second geometric
quantity (proposition 5.10) implies that

Ric ∶ Ωp(M) → Ωp(M)

is a non-negative operator and positive at some point. Therefore, by Bochner technique
(lemma 6.19) and Hodge theorem 6.23, we know bq = 0 for p ≤ q ≤ n − p.
In the next we prove point (3). By Hodge theorem 6.23, there exists a non-zero

harmonic p-from!. Again, the estimate of second geometric quantity (proposition 5.10)
implies that

Ric ∶ Ωp(M) → Ωp(M)

is a non-negative operator. Therefore, by Bochner technique (lemma 6.19), ! is parallel.
After showing the existence of such parallel and non-zero harmonic p-from !,

[GLW05] claims that the conclusion follows form a technique of holonomy group. �

Theorem 2.13. Let (M, g) be a compact, locally conformally �atmanifold with tr1(P) > 0.

(1) If g ∈ Γ
+
k for some 2 ≤ k < n∕2, then

bq = 0 for [n + 1
2 ] + 1 − k ≤ q ≤ n − ([n + 1

2 ] + 1 − k) .

(2) Suppose g ∈ Γ+2 , then

bq = 0 for [
n −

√
n

2 ] ≤ q ≤ [
n +

√
n

2 ] .

If g ∈ Γ
+
2 and bp ≠ 0 where p = n−

√
n

2
, then (M, g) is a quotient of Sn−p × Hp.

(3) If g ∈ Γ+k for some k ≥ n−
√
n

2
, then

bq = 0 for 2 ≤ q ≤ n − 2.

If g ∈ Γ
+
k and b2 ≠ 0 where k = n−

√
n

2
, then (M, g) is a quotient of Sn−2 × H2.
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Proof. It follows from proposition 2.12 and proposition 5.11. �
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3. Conformal deformation of scalar curvatures

3.A. Introduction. The core problem is as follows:

Problem 3.1. Let (M, g) be a closed Riemannian manifold with dimension n ≥ 2, and let

Cg = {�g ∶ � ∈ C∞(M), � > 0} .

Given ℎ ∈ C∞(M). Does there exist g̃ ∈ Cg such that s̃cal = ℎ?

By formula (1.10), we know

s̃cal = e−2f
(
scal − 2(n − 1)∆f − (n − 1)(n − 2)|∇f|2

)

for g̃ = e2fg. Therefore,
(1) If n = 2, for g̃ = e2ug we have

(3.1) s̃cal = e−2u (scal − 2∆u) .

(2) If n ≥ 3, for g̃ = u
4

n−2g we have

(3.2) s̃cal = u−
n+2
n−2 (scal ⋅ u − 4(n − 1)

n − 2 ∆u) .

Remark 3.2. For the case that n ≥ 3, we set f = �(u) to kill the gradient term, where �
is to be determined. Namely, since

∆�(u) = �̇(u) + �̈(u)|∇u|2 and |∇�(u)|2 = �̇(u)2|∇u|2,

we need to �nd � with

2�̈ + (n − 2)�̇2 = 0.

Then we set � = 2

n−2
log u.

If ℎ is constant, then problem 3.1 becomes the Yamabe problem. In dimension n = 2,
Yamabe problem follows from the uniformization theorem. In dimensionn ≥ 3, Yamabe
problem is solved by Yamabe (1960), Trüdinger (1968), Aubin (1976), and Schoen (1984).

Theorem 3.3 (Yamabe, Trüdinger, Aubin). The Yamabe problem can be solved on any
closed manifoldM with �(M) < �(Sn), where Sn is the sphere with its standard metric and

�(M) = inf
g̃∈Cg

Q(g̃), where Q(g̃) =
∫M s̃cal dvolg̃
(
∫M dvolg̃

)1− 2
n

.

Theorem 3.4 (Aubin). IfM has dimension n > 6 and is not locally conformally �at then
�(M) < �(Sn).

Theorem 3.5 (Schoen). IfM has dimension 3, 4, or 5, or ifM is locally conformally �at,
then �(M) < �(Sn) unlessM is conformal to the standard sphere.

Yamabe put forward his problem in order to prove the Poincaré conjecture. By
corollary 1.16, to prove the Poincaré conjecture, it su�ces to show that any simply
connected 3-dimension manifold admits an Einstein metric. Clearly, Yamabe problem
is our �rst step.
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Moreover, letℳ be the colletion of all Riemannian metrics onM, and we set

�(M, g) = inf
g̃∈Cg

Q(g̃), and Λ(M) = sup
g∈ℳ

inf
g̃∈Cg

Q(g̃).

Then we have:

(1) If g̃ ∈ Cg withQ(g̃) = �(M, g), then g̃ has constant scalar curvature; [Euler-Lagrange
equation]

(2) If g ∈ ℳ with Q(g) = �(M, g) = Λ(M), then g is Einstein.
We say that g achieves Λ(M) if Q(g) = �(M, g) = Λ(M). Then the standard metric g1

on Sn with n ≥ 3 achieves Λ(Sn), and the standard metric g0 on Tn achieves Λ(Sn).8
It’s still unknown that whether the Poincaré metric g−1 achieves Λ(ℍn).

3.B. The two dimensional cases. First we consider the case that s̃cal is constant (in
dimension 2). As we said before, we can solve (3.1) by the uniformization theorem.

Theorem 3.6 (Uniformization theorem). Every simply connected Riemann surface is
biholomorphic to one of three Riemann surfaces: the open unit disk, the complex plane,
or the Riemann sphere.

Proof. One can refer to [Cha]. �

Corollary 3.7. LetM be an orientable closed 2-dimensional Riemannian manifold. Then
M admits a conformally equivalent metric of constant curvature.

Proof. It’s well-known that a Riemann surface with a complex structure corresponds to
a 2-dimensional oriented manifold with orientation-preserving isothermal coordinate
charts, and that biholomorphic maps correspond to conformal transformations.
By this correspondence and theorem 3.6, each such is conformally equivalent to a

unique closed 2-manifold of constant curvature, so a quotient of one of the following
by a free action of a discrete subgroup of an isometry group:

(1) the sphere (curvature +1);
(2) the Euclidean plane (curvature 0);
(3) the hyperbolic plane (curvature −1).
Hence we get the conclusion by the classi�cation of closed orientable Riemannian 2-
manifolds. �

In the next we consider problem 3.1 for general s̃cal (in dimension 2). Our equation
(3.1) becomes

(3.3) ∆u − K + K̃e2u = 0

where K is the Gaussian curvature, and K̃ is a given function.
First we note that Gauss-Bonnet formula yields that

∫
M
K dvolg = 2��(M).

8There are no metrics on Tn with positive scalar curvature. See [Li] and [GL83].
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If u solves (3.3), then we have

(3.4) ∫
M
K̃e2u dvolg = 2��(M).

This is just theGauss-Bonnet formula for (M, g̃), since dvolg̃ = e2u dvolg9 and K̃ is exactly
the Gaussian curvature for g̃.
Clearly, in cases where �(M) has di�erent signs the given function K̃ should satisfy

di�erent kinds of conditions. Hence, we separate our discussions into three cases
according to whether �(M) is negative, zero, or positive.

Case 1: �(M) < 0. In this case, although the existence problem of (3.3) has not been
completely resolved, we have a relatively good understanding for the problem. For
this case it seems reasonable to solve (3.3) by the so-called principle of “sup- and sub-
solutions”. The following is a simple case of this principle.

Proposition 3.8. Let (M, g) be a smooth, compact, Riemannian manifold. Consider the
semi-linear elliptic equation

(3.5) ∆u + f(x, u) = 0

where f ∈ C∞(M × ℝ). Suppose that there exist �,  ∈ C2(M) satisfying

(3.6)
∆� + f(x, �) ≥ 0,
∆ + f(x,  ) ≤ 0,

(such� and are called respectively a sub-solution anda sup-solution for (3.5)), and� ≤  .
Then (3.5) has a solution u ∈ C∞(M) such that � ≤ u ≤  .

Proof. The idea is as follows: we use the linearized operator to derive an approximation
sequence, and then use elliptic theory to show the regularity.
Find a constant A with −A ≤ � ≤  ≤ A, and �nd a su�ciently large c such that

(3.7) F(x, t) = ct + f(x, t) is increasing in t ∈ [−A,A] for any �xed x ∈ M.

Since c ≥ 0, the linearized elliptic operator (where 0 < � < 1)

Lu = −∆u + cu ∶ C2,�(M) → C0,�(M)

is invertible (see theorem 10.16). Moreover, by the maximum principle, L is a positive
operator, i.e.

(3.8) Lv1 ≥ Lv2 ⟹ v1 ≥ v2.

Now we de�ne inductivey

(3.9)
�0 = �, �k = L−1 (F(x, �k−1)), k ≥ 1;
 0 =  ,  k = L−1 (F(x,  k−1)), k ≥ 1.

Then

(3.6)(3.7)(3.9) ⟹ L� ≤ L�1 = F(x, �) ≤ F(x,  ) = L 1 ≤ L 

9This claims easily follows from vol =
√
det(gij)dx1 ∧⋯ ∧ dxn.
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and hence by positivity (3.8) we know

� ≤ �1 ≤  1 ≤  .

Similarly, by induction we know

� ≤ �k−1 ≤ �k ≤  k ≤  k−1 ≤  , ∀k ≥ 1.

Then pointwisely, �k → u and  k → u with � ≤ u ≤ u ≤  .
(1) By lemma 8.9, the pointwise convergence is in fact a convergence in Lp(M) for all

1 ≤ p < ∞;
(2) By Lp estimate 10.15, the convergence in Lp(M) is in fact a convergence in Lp2 (M).
(3) Taking a su�ciently large p, then Sobolev embedding theorem 10.13 implies that the

convergence in Lp2 (M) is in fact a convergence in C0,�(M).
(4) By formula (3.9) and Schauder estimate 10.16, the convergence in C0,�(M) is in fact

a convergence in C∞(M).
Therefore, taking limit we get

Lv = F(x, v)

where v = u or u and v ∈ C∞(M). Then we get the conclusion. �

Now we come back to our equation (3.3).

Proposition 3.9. Suppose �(M) < 0. Then a su�cient condition for the existence of a
solution of (3.3) is that there exists a sup-solution  ∈ C2(M) for (3.3).

Proof. By proposition 3.8, it su�ces to �nd a sub-solution � for (3.3) such that � ≤  .
Note that

K0 ∶=
∫M K dvol
∫M dvol

⟹ ∫
M
(K − K0) dvol = 0.

By corollary 6.24, K − K0 = ∆f for some f ∈ C∞(M). Setting � = f − c for su�ciently
large c, then � ≤  . Note that

∆� − K + K̃e2� = −K0 + K̃e2f−2c

and that

�(M) < 0 ⟹ K0 < 0 (Gauss-Bonnet).

Therefore, pick a su�ciently large c, we get a sub-solution as desired. We are done. �

Corollary 3.10 (Kazdan-Warner). If �(M) < 0, K̃ ≤ 0 but K̃ is not identically zero. Then
(3.3) has a solution u ∈ C∞(M).

Proof. By proposition 3.9, it su�ces to �nd a sup-solution. By corollary 6.24, there exists
f ∈ C∞(M) solves

∆f = K̃0 − K̃

where K̃0 is the mean value of K̃. We set  = af+b where a and b are to be determined.
By condition, K̃0 < 0. Pick su�ciently large a and b such that

aK̃0 < K(x), ∀x ∈ M and eaf+b − a > 0.
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Then

∆ − K + K̃e = aK̃0 − K +
(
eaf+b − a

)
K̃ < 0,

which shows that  is a sup-solution. We are done. �

Note that condition (3.4) indicates that, in the case �(M) < 0, for (3.3) to have a
solution it is necessary that K̃ takes negative values somewhere. However, if K̃ changes
sign it may happen that (3.3) has no solutions. In such a case, we do not know the
necessary and su�cient conditions for the solvability of (3.3).

Case 2: �(M) = 0. This case has been completely solved.

Theorem 3.11. Assume �(M) = 0. Then (3.3) has a smooth solution i� either
(1) K̃ ≡ 0, or
(2) K̃ changes sign and satis�es

(3.10) ∫
M
K̃e2f dvol < 0,

where f is a solution to ∆f = K.

Proof. Necessity. Note that

�(M) = 0 ⟹ ∫
M
K dvol = 0 (Gauss-Bonnet),

⟹ ∃f ∈ C∞(M) with K = ∆f (corollary 6.24).

If u is a solution to (3.3), then setting v = u − f, we get

(3.11) ∆v + K̃e2v+2f = 0.

Therefore,

∫
M
K̃e2f dvol = −∫

M
e−2v∆v dvol = ∫

M

[⟨
∇(e−2v), ∇v

⟩
− div(e−2v∇v)

]
dvol

= −2 ∫
M
e−2v|∇v|2 dvol ≤ 0.

If this integration equals to zero, clearly v is constant, and hence (3.11) implies that K̃ ≡
0. Therefore, if K̃ ≢ 0, then (3.10) holds, and clearly K̃ changes sign.
Su�ciency. If K̃ ≡ 0, then f is the solution. In the next we assume that K̃ ≢ 0.
It su�ces to �nd v = u − f that satis�es (3.11). The idea is to apply the method of

Lagrange multiplier 8.2 and the variational method, which transfers the equation to a
minimizer problem.
Speci�cally, set

A = {� ∈ L21(M) ∶ ∫
M
� dvol = ∫

M
K̃e2�+2f dvol = 0}

and

J ∶ L21(M) → ℝ, � ↦ 1
2 ∫M

|∇�|2.

We consider the problem infA J.
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(1) First we prove that there exists v ∈ A such that J(v) = infA J.
Suppose (�i) is a sequence in A such that

J(�i) → inf
A
J.

Clearly, Poincaré inequality 10.23 implies that (�i) is bounded in L21(M). Since L21(M)
is re�exive, by [Xio, theorem 3.41], there exists a subsequence, which we relabel as
(�i), satisfying

�k ⇀ v in L21(M)

for some v ∈ L21(M). Since J is weakly lower semi-continuous (see remark 10.22),

J(v) ≤ lim inf
i→∞

J(�i) = inf
A
J.

The Sobolev embedding theorem 10.13 implies that �k → v in Lp(M) for any p ≥ 1,
and hence

∫
M
v dvol = lim

i→∞
∫
M
�i dvol = 0.

Moreover, by the subsequent technique lemma (corollary 3.15), we know

∫
M
K̃e2v+2f dvol= lim

i→∞
∫
M
K̃e2�i+2f dvol = 0.

Therefore v ∈ A. Hence we �nd a minimizer.
(2) Thenwe show that theminimizer v (up to a constant di�erence) is a solution to (3.11)

in the sense of L21(M)-weak solution.
Applying the method of Lagrange multipliers 8.2,10 there exists �, � ∈ ℝ such that v
is a critical point of

J̃ ∶ L21(M) → ℝ, � ↦ 1
2 ∫M

|∇�|2 dvol − � ∫
M
� dvol − � ∫

M
K̃e2�+2f dvol.

Note that for any � ∈ L21(M), we have

0 = d
dt

|||||t=0J̃(v + t�)

= ∫
M

(
⟨∇v,∇�⟩ − �� − 2�K̃e2v+2f�

)
dvol

= −∫
M

(
∆v + � + 2�K̃e2v+2f

)
� dvol

Therefore, in the sense of L21(M)-weak solution, v satis�es

∆v + � + 2�K̃e2v+2f = 0.

10Set f = J ∶ L21(M) → ℝ and de�ne g ∶ L21(M) → ℝ2 by

g(�) = (∫
M
� dvol, ∫

M
K̃e2�+2f dvol) .

Then apply the method of Lagrange multipliers 8.2 to f and g.
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Taking integration we know � = 0 (since v ∈ A). Also note that11

� ∫
M
K̃e2f dvol = −12 ∫M

e−2v∆v dvol = 1
2 ∫M

⟨
∇(e−2v), ∇v

⟩
− div(e−2v∇v) dvol

= −∫
M
e−2v|∇v|2 dvol < 0

where the last inequality is strict since if v is contant then clear K̃ ≡ 0. Then the
condition 3.10 implies � > 0. Therefore, setting

v0 = v + 1
2 log �

then v0 is a solution to (3.11) in the sense of L21(M)-weak solution.
(3) Finally we show that the solution is smooth.

By the subsequent lemma 3.14, since v0 ∈ L21(M), we have ev0 ∈ Lp(M) for any p ≥ 1.
Then remark 10.17 (or theorem 9.24) implies that v0 ∈ C∞. Then u = v0 + f is the
desired smooth solution.

We are done. �

Lemma 3.12 (Trüdinger inequality). Let (M, g) be a closed 2-dimensional Riemannian
manifold. Then there exist positive constants � and C such that

∫
M
e�u2 dvol ≤ C ∀u ∈ {u ∈ L21(M) ∶ ∫

M
u dvol = 0, ∫

M
|∇u|2 dvol ≤ 1} .

Proof. Let (�i)ki=1 be a partition of unity subordinate to an open cover (Ui)ki=1 ofM, where
each (Ui, �i) is a unit coordinate ball, i.e. each �i(Ui) is the unit disk in ℝ2. The idea is
to show the generalization of Poincaré inequality:

(3.12) ‖u‖Lp(M) ⪯
√
p‖∇u‖L2(M), ∀p ≥ 2

and then the conclusion will follow from Taylor expansion.
(1) First we prove the generalization of Poincaré inequality

‖v‖Lp(D) ⪯
√
p‖∇0v‖L2(D) ∀v ∈ W1,2

0 (D) ∀p ≥ 2

on the unit open disk D ⊂ ℝ2.12

For each x ∈ D we set

�x ∶ ℝ2 → ℝ, y ↦ 1
2� log (|x − y|) .

It’s well-known that

∆�x = �(x) in S′(ℝ2)

and hence

v(x) = ∫
D
(v∆0�x)(y) dy ∀v ∈ C1

0(D).

11The following integration may seem a little unreasonable, but we can apply the method of step (3) to
show that v is in fact a smooth solution, and then this integration becomes natural.
12In this point, let∇0 denote the standard gradient onℝ2, let∆0 denote the standard Laplacian onℝ2, and
let div0 denote the standard divergence on ℝ2.
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Therefore, via integration by parts we know for any v ∈ C1
0(D) we have

v(x) = 1
2� ∫

D
(∇0v)(y) ⋅

x − y
|x − y|2 dy

≤ 1
2� ∫

D

|||∇0v(y)||| ⋅ |x − y|−1 dy.

The idea is to apply the Hölder inequality to kill the term |x−y|−1, and the key point
is that we need to eliminate the term |x − y|−1 gradually through two integrations.13

Namely, setting

A(y) = |||∇0v(y)|||
2 and B(x, y) = |x − y|−q where q =

2p
p + 2 ∈ [1, 2)

we know that

∫
D
B(x, y) dy ≤ ∫

|y|<2
|y|−q dy = 2� ∫

2

0
r1−q dr = 21−q�(p + 2) ≤ C1p

and that
|||∇0v(y)||| ⋅ |x − y|−1 = (A(y)B(x, y))1∕p ⋅ B(x, y)1∕2 ⋅ A(y)1∕2−1∕p.

Therefore, for any v ∈ C1
0(D) and p ≥ 2 we have

|v(x)| ≤ 1
2� (∫

D
A(y)B(x, y) dy)

1∕p

(∫
D
B(x, y) dy)

1∕2

(∫
D
A(y) dy)

1∕2−1∕p

≤ C2
√
p
(
‖∇0v‖L2(D)

)1−2∕p
⋅ (∫

D
A(y)B(x, y) dy)

1∕p

and hence for any v ∈ C1
0(D) and p ≥ 2 we have

‖v‖Lp(D) ≤ C2
√
p
(
‖∇0v‖L2(D)

)1−2∕p
⋅ (∫

D
∫
D
A(y)B(x, y) dy dx)

1∕p

= C2
√
p
(
‖∇0v‖L2(D)

)1−2∕p
⋅ (∫

D
A(y) dy ∫

D
B(x, y) dx)

1∕p

≤ C2
√
p
(
‖∇0v‖L2(D)

)1−2∕p
⋅ (C1p ∫

D
A(y) dy)

1∕p

≤ C3
√
p ‖∇0v‖L2(D) .

Since C1
0(D) is dense inW

1,2
0 (D), we know

‖v‖Lp(D) ≤ C3
√
p‖∇0v‖L2(D) ∀v ∈ W1,2

0 (D) ∀p ≥ 2

for some constant C3.
(2) Then we show the generalization of Poincaré inequality

‖u‖Lp(M) ⪯
√
p‖∇u‖L2(M) ∀u ∈ L21(M) ∀p ≥ 2

13Since ∫D |x − y|−2 dy is not under controll, we can’t eliminate the term |x − y|−1 directly by just one
integration via Hölder inequality.
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on a closed manifoldM.
Setting ui = �iu, then by compactness and point (1) there exists constant C4 with

‖ui‖Lp(M) ≤ C4
√
p ‖∇ui‖L2(M) ∀1 ≤ i ≤ k ∀p ≥ 2.

It follows that

‖u‖Lp(M) ≤
k∑

i=1
‖ui‖Lp(M) ≤ C4

√
p

k∑

i=1
‖∇ui‖L2(M)

Note that

‖∇ui‖L2(M) = ‖∇(�iu)‖L2(M) = ‖u ⋅ ∇�i‖L2(M) + ‖�i ⋅ ∇u‖L2(M) .

Then by �niteness and compactness there exists constant C5 with

‖∇ui‖L2(M) ≤ C5 ‖u‖L2(M) + ‖∇u‖L2(M) ∀1 ≤ i ≤ k

and hence by the standard Poincaré inequality 10.23 we know (since ∫M u dvol = 0)

‖u‖Lp(M) ≤ C6
√
p ‖∇u‖L2(M) .

(3) Finally we prove the conclusion via Taylor expansion.
Now it follows from ‖∇u‖L2(M) ≤ 1 that

∫
M

N∑

k=0

1
k!

(
�|u|2

)k
dvol =

N∑

k=0

�k

k!
∫ |u|2k dvol ≤

N∑

k=0

kk
k!

(
2C2

6�
)k

Since Stirling’s approximation yields that

kk
k!

(
2C2

6�
)k
=

(
2C2

6e�
)k

√
2�k

(1 + O (1k)) .

we know

� < 1
2C2

6e
⟹

∞∑

k=0

kk
k!

(
2C2

6�
)k
< ∞.

Then the conclusion follows from Taylor expansion and the monotone convergence
theorem [Xio, theorem 9.10].

We are done. �

Remark 3.13. For the best constant in Trüdinger inequality, one can refer to [Mos71].

Lemma 3.14. Let (M, g) be a closed 2-dimensional manifold. There exist constants C, � >
0 such that

(3.13) ∫
M
eu dvol ≤ C exp (�‖∇u‖2L2(M) +

1
V ∫

M
u dvol)

where V = ∫M dvol is the volume ofM. Moreover, eu ∈ Lp(M) for any p ≥ 1.

Proof. WLOG we assume ‖∇u‖L2(M) ≠ 0; otherwise u is constant and the conclusion is
trivial. Setting

u0 = u − 1
V ∫

M
u dvol and � =

u0
‖∇u‖L2(M)
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then by Trüdinger inequality 3.12, there exist positive constants � and C such that

(3.14) ∫ e��2 dvol ≤ C.

Since

u0 ≤ � (
u0

‖∇u‖L2(M)
)
2

+ ‖∇u‖2L2(M)∕4�

we have

∫ eu dvol = exp ( 1V ∫
M
u dvol) ⋅ ∫ eu0 dvol

≤ exp ( 1V ∫
M
u dvol + ‖∇u‖2L2(M)∕4�) ⋅ ∫ e��2 dvol

which implies (3.13) togetherwith Trüdinger inequality (3.14). The last assertion follows
by replacing u with pu. �

Corollary 3.15. Let (M, g) be a closed 2-dimensional manifold. Consider the map

I ∶ L21(M) → ℝ, u ↦ ∫
M
feu dvol

where f ∈ C∞(M). Then I is continuous with respect to the weak topology of L21(M).

Proof. Suppose ui ⇀ u in L21(M). Then by Sobolev embedding theorem 10.13, ui → u in
Lp(M) for any p ≥ 1. Therefore, by Fubini theorem [Xio, theorem 9.28] we know

∫
M
f(eui − eu) dvol = ∫

M
∫

1

0
feu+t(ui−u)(ui − u) dt dvol

= ∫
1

0
∫
M
feu+t(ui−u)(ui − u) dvol dt.

Then by Hölder inequality and lemma 3.14, we know I(ui) → I(u). We are done. �

Case 3: �(M) > 0. In this case, M = S2 or ℝℙ2. First we consider the case (M, g) =
(S2, g0)where g0 is the standardmetric. Then it hasGaussian curvatureK ≡ 1. Moreover,
equation (3.3) becomes

(3.15) ∆u − 1 + K̃e2u = 0

and condition (3.4) becomes

(3.16) ∫
S2
K̃e2u dvol = 4�.

This requires that K̃ must take positive values somewhere. However, even if K̃ > 0,
(3.15) sitll may have no solutions.

Proposition 3.16 (Kazdan-Warner). Let � be a �rst eigenfunction on standard sphere:

(3.17) ∆� + 2� = 0.
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Suppose u ∈ C∞(S2) is a solution to (3.15). Then

(3.18) ∫
S2

⟨
∇K̃, ∇�

⟩
e2u dvol = 0

Remark 3.17. By [Li12, theorem 5.1], the �rst (positive) eigenvalue of Sn is n.

Remark 3.18. Considering K̃ = 1 + "� for su�ciently small ", then K̃ > 0. But (3.18)
indicates that (3.15) doesn’t have a solution for this K̃.

Proof. Let (Ei) be any local orthonormal frame. By the proof of [Li12, theorem 5.1], we
know that � satis�es

(3.19) �;i;j = −��ij.

Multiplying equation (3.15) by ⟨∇u,∇�⟩ and then integrating over S2 we get

∫
S2

⟨∇u,∇�⟩∆u dvol − ∫
S2

⟨∇u,∇�⟩ dvol + ∫
S2

⟨∇u,∇�⟩ K̃e2u dvol = 0.

It follows from (3.19) that

∫
S2

⟨∇u,∇�⟩∆u dvol = −∫
S2

⟨∇ ⟨∇u,∇�⟩ , ∇u⟩ dvol

= −∫
S2

(
u;1;1u;1�;1 − u;1u;1� + u;2;1u;1�;2 + u;1;2u;2�;1 − u;2u;2� + u;2;2u;1�;2

)
dvol

= −12 ∫S2
⟨
∇

(
|∇u|2

)
, ∇�

⟩
dvol + ∫

S2
|∇u|2� dvol

= 1
2 ∫S2

|∇u|2 (∆� + 2�) dvol = 0.

Note that

∫
S2

⟨∇u,∇�⟩ dvol = −∫
S2
�∆u dvol = ∫

S2
�
(
K̃e2u − 1

)
dvol = ∫

S2
�K̃e2u dvol

and that

∫
S2

⟨∇u,∇�⟩ K̃e2u dvol = 1
2 ∫S2

⟨
K̃∇e2u, ∇�

⟩
dvol = 1

2 ∫S2
⟨
∇

(
K̃e2u

)
− e2u∇K̃,∇�

⟩
dvol

= −12 ∫S2
K̃e2u∆� dvol − 1

2 ∫M

⟨
∇K̃, ∇�

⟩
e2u dvol

= ∫
S2
�K̃e2u dvol − 1

2 ∫M

⟨
∇K̃, ∇�

⟩
e2u dvol.

Then the conclusion follows. �

Remark 3.19. Generally, on (Sn, g0) we have similar conclusions like formula (3.18).
Namely, via a similar process one can prove that

∫
S2

⟨
∇�,∇s̃cal

⟩
u

2n
n−2 dvol = 0

where � is the �rst eigenfunction on Sn (i.e. ∆� + n� = 0) and g̃ = u
4

n−2g0.
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Moreover, we know that the gradient vector �eld X = ∇� of a �rst eigenfunction
on Sn is a conformal vector �eld, i.e. X generates a 1-parameter family of conformal
transformations of Sn. One can use conformal vector �elds to derive certain identities
for some special di�erential equations. Such a fact was �rst discovered by Pohožaev S. I.
[Poh65], whomade use ofX = r )

)r
onℝn. Later, RichardM. Schoen proved the following

general result [Sch88].

In the next we introduce a su�cient condition for the solvability of (3.15).

Theorem 3.20 (Moser, 1973). Let g0 be the standard metric on S2. Suppose that K̃ ∈
C∞(S2) satisfying K̃(−x) = K̃(x) for all x ∈ S2, and thatmaxS2 K̃ > 0. Then (3.15) has a
solution u ∈ C∞(S2) with u(−x) = u(x) for all x ∈ S2.

Proof. The idea is to apply the method of Lagrange multiplier 8.2 and the variational
method, which transfers the equation to a minimizer problem.
Speci�cally, we set

A = {� ∈ L21(S2) ∶ ∫
M
� dvol = 0 and �(−x) = �(x) a.e.}

A∗ = {� ∈ A ∶ ∫
S2
K̃e2� dvol > 0}

wheremaxS2 K̃ > 0 implies A∗ is non-empty, and set

J ∶ A∗ → ℝ, � ↦ 1
2‖∇�‖

2
2 − 2� log ∫

S2
K̃e2� dvol.

We consider the problem infA∗
J.

(1) First we prove that there exists v ∈ A such that J(v) = infA∗
J.

Since [SY94, section 5.1] claims that the constant � in (3.13) can be choosen as 1∕32�
for symmetric functions on (S2, g0),14 we know

∫
S2
e2� dvol ≤ C exp ( 1

8�‖∇�‖2) ∀� ∈ A,

and hence for any � ∈ A∗ we have

(3.20)
J(�) ≥ 1

2‖∇�‖
2
2 − 2� ( 1

8�‖∇�‖22 + logC + log(max
S2

K̃))

≥ 1
4‖∇�‖

2
2 − 2� (logC + log(max

S2
K̃)) > −∞.

Then we suppose (�i) is a sequence in A∗ such that

J(�i) → inf
A∗
J.

Note that formula (3.20) implies that (‖∇�i‖2) is bounded. Then Poincaré inequality
10.23 implies that (�i) is bounded inL21(M). SinceL21(M) is re�exive, by [Xio, theorem
3.41], there exists a subsequence, which we relabel as (�i), satisfying

�k ⇀ v in L21(M)
14One can refer to [Mos71] for a detailed proof.



Zhiyao Xiong 29

for some v ∈ L21(M). By Sobolev embedding theorem10.13, it’s easy to see that v ∈ A.
By remark 10.22 and corollary 3.15 we know J is weakly lower semi-continuous, and
it easily follows that v ∈ A∗ and

J(v) ≤ lim inf
i→∞

J(�i) = inf
A∗
J.

Hence we �nd a minimizer.
(2) Thenwe show that theminimizer v (up to a constant di�erence) is a solution to (3.15)

in the sense of L21(M)-weak solution.
Set

A1 = {� ∈ L21(M) ∶ ∫
S2
K̃e2� dvol > 0 and �(−x) = �(x) a.e.}

Applying the method of Lagrange multipliers 8.2, there exists � ∈ ℝ such that v is a
critical point of

J̃ ∶ A1 → ℝ,

� ↦ 1
2‖∇�‖

2
2 − � ∫

M
� dvol − 2� log ∫

S2
K̃e2� dvol.

Note that for any � ∈ L21(M) with �(x) = �(−x) a.e., we have

0 = d
dt

|||||t=0J̃(v + t�)

= ∫
M

(⟨∇v,∇�⟩ − �� − 4�K̃e2v

∫S2 K̃e2v dvol
�) dvol

= −∫
M

(∆v + � + 4�K̃e2v

∫S2 K̃e2v dvol
) � dvol

Since both v and K̃ are symmetric, we know v is a L21(M)-weak solution to

∆v + � + 4�K̃e2v

∫S2 K̃e2v dvol
= 0

Taking integration we know 4�� + 4� = 0, and hence � = −1. Then setting

u = v + 1
2 log (

1
4� ∫

S2
K̃e2v dvol)

we know u is a L21(M)-weak solution to (3.15).
(3) Finally we show that the solution is smooth.

By lemma 3.14, since u ∈ L21(M), we have eu ∈ Lp(M) for any p ≥ 1. Then remark
10.17 (or theorem 9.24) implies that u ∈ C∞.

We are done. �

Corollary 3.21. On ℝℙ2 with its standard metric g0, a smooth function K̃ ∈ C∞(ℝℙ2) is
the Gaussian curvature of a metric g ∈ Cg0 i� K̃ is positive at some point.

Proof. Necessity. We lift K̃ to S2 by the canonical convering map � ∶ S2 → ℝℙ2. Then
Gauss-Bonnet theorem implies that K̃ is positive at some point.
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Su�ciency. We lift K̃ to S2 by the canonical convering map � ∶ S2 → ℝℙ2. Since the
standardmetric onℝℙ2 is also lifted to the standardmetric on S2, and the lifted function
satis�es the requirements in theorem 3.20, there exists u ∈ C∞(S2) satisfying the lifted
equation (3.3) and also satisfying u(−x) = u(x) for all x ∈ S2. Then clearly, u induces
the solution to equation (3.3) on ℝℙ2. �

Remark 3.22. In fact, this result of corollary 3.21 is true for any Riemannian metric on
ℝℙ2. (See [Aub79].)

Remark 3.23. [SY94, section 5.1] points out that if in the proof of theorem 3.20 we
replace the symmetric subspace by the whole L21(S2), the functional J is still bounded
from below. However, it can be proved that the in�mum of J can not be achieved unless
K̃ is constant. Therefore, when K̃ does not satisfy any symmetry assumption the problem
becomes much more di�cult. In such a case one has to employ more complicated
variational methods to obtain non-minimal critical points of J.

3.C. Yamabe problem. One can refer to [LP87].
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4. Appendix — linear algebra

4.A. Spectral theorem.

De�nition 4.1. Let (V, ⟨∙, ∙⟩) be a real inner product space, and let (E, ⟨∙, ∙⟩) be a complex
inner product space. The adjoint map f∗ ∈ End(V) of f ∈ End(V) is given by

⟨f(x), y⟩ = ⟨x, f∗(y)⟩ ∀x, y ∈ V,

and theHermitian adjoint map �∗ ∈ End(E) of � ∈ End(E) is given by

⟨�(x), y⟩ = ⟨x, �∗(y)⟩ ∀x, y ∈ E.

Moreover,15

(1) The map f ∈ End(V) is symmetric (or self-adjoint) [resp. skew-symmetric] [resp.
normal], i� f∗ = f [resp. f∗ = −f] [resp. f∗f = ff∗], i� the corresponding
(real) matrix A with respect to some orthonormal basis is symmetric [resp. skew-
symmetric] [resp. normal], i.e. AT = A [resp. AT = −A] [resp. ATA = AAT].

(2) The map � ∈ End(E) isHermitian symmetric [resp. Hermitian skew-symmetric]
[resp. normal], i� �∗ = � [resp. �∗ = −�] [resp. �∗� = ��∗], i� the corresponding
(complex) matrix B with respect to any Hermitian orthonormal basis is Hermitian
symmetric [resp. Hermitian skew-symmetric] [resp. normal], i.e. BT = B [resp.
BT = −B] [resp. BTB = BBT].

Here are some basic related facts:

Proposition 4.2. (1) A real square matrix A is symmetric i� there exists P ∈ O(n) such
that PTAP is diagonal.

(2) A complex square matrix B is normal i� there exists Q ∈ U(n) such that QTBQ is
diagonal.

Proof. Well-known. �

Corollary 4.3. Let (V, ⟨∙, ∙⟩) be an inner product space over ℝ. and let f ∶ V → V be a
self-adjoint map. Then there exists an orthonormal basis (vi)ni=1 of V such that

f(vi) = �ivi for some �i ∈ ℝ.

Proof. Let (ei) be an orthonormal basis of V. Setting

f(ei) = aijej,

thenA = (aij) is a real symmetric matrix. By proposition 4.2, there exists P ∈ O(n) such
that PTAP is diagonal, there exists another orthogonal basis (vi) such that

f(vi) = �ivi for some �i ∈ ℝ.

We are done. �

Remark 4.4. For f ∈ End(V), the set of its eigenvalues is called the spectrum of f.
Corollary 4.3 can be regarded as a so-called spectrum theorem.

15Let (ei) be a basis. Then the correspondingmatrix C = (cij) of a linear map T with respect to (ei) is given
by T(ei) = cijej .
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4.B. Elementary symmetric functions. The spectrum of an endomorphism is very
important.16 In the next, we introduce the elementary symmetric functions to help us
analyze it.
Speci�cally, elementary symmetric functions can help us compute the characteristic

polynomial of an endomorphism T ∈ End(V), and we have feasible algorithms for the
computation.
Moreover, in subsection 5.B, we will analyze some important geometric quantities,

which are related to the spectrum, via elementary symmetric functions.

De�nition 4.5 (Elementary symmetric functions). Let (�1,⋯ , �n) ∈ ℂn. We view the
elementary symmetric functions as functions on ℂn,

�k(�1,⋯ , �n) =
∑

i1<⋯<ik

�i1⋯�ik .

Moreover, if T ∈ End(V) for some real vector space V, then

�k(T) = �k(�1,⋯ , �n) where �1,⋯ , �n are the eigenvalues of T,

and if A ∈ M(n × n,ℂ), then

�k(A) = �k(�1,⋯ , �n) where �1,⋯ , �n are the eigenvalues of A.

Proposition 4.6. It holds that
n∏

i=1
(� − �i) =

n∑

k=0
(−1)k�k(�1,⋯ , �n)�n−k,

where we set �0 = 1. Moreover, if A ∈ M(n × n,ℂ), then

det (�I − A) =
n∑

k=0
(−1)k�k(A)�n−k.

Proof. The �rst assertion is trivial. The second assertion follows from the �rst assertion
and the fact that

det (�I − A) =
n∏

i=1
(� − �i)

where �1,⋯ , �n are the eigenvalues of A. �

To compute �k(A) directly, we introduce the following new concepts.

De�nition 4.7. LetV be a real vector space, and letT ∈ End(V). De�ne∧kT ∈ End(∧kV)
on simple tensors by

(∧kT)(v1 ∧⋯ ∧ vk) = Tv1 ∧⋯ ∧ Tvk
and expand the de�nition linearly to all tensors. More generally, we can de�ne ∧lTk ∈
End(∧pV) (l ≥ k) on simple tensors by

(
∧lTk

)
(v1 ∧⋯ ∧ vl) =

∑

1≤i1<⋯<ik≤l
v1 ∧⋯ ∧ Tvi1 ∧⋯ ∧ Tvik ∧⋯ ∧ vl

and expand the de�nition linearly to all tensors. If l < k, de�ne ∧lTk = 0.
16Some important geometric quantities are related to the spectrum. See subsection 5.A.
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In particular, since ∧nV = span {e1 ∧⋯ ∧ en} where (ei) is a basis of V, we can identify
∧nTk with the unique number � satisfying17

(
∧nTk

)
(e1 ∧⋯ ∧ en) = �(e1 ∧⋯ ∧ en).

Proposition 4.8. Let V be a real vector space, and let T ∈ End(V); then

(4.1) �k(A) = tr
(
∧kT

)
= ∧nTk.

In particular,

(4.2) �1(A) = tr(A) = ∧nT1,

(4.3) �n(A) = tr (∧nT) = ∧nTn = det T.

Proof. Let (ei) be a basis of V, and we write

Tei = cijej.

Then for i1 < ⋯ < ik we have

(∧kT)(ei1 ∧⋯ ∧ eik) = Tei1 ∧⋯ ∧ Teik
= ci1j1⋯cikjkej1 ∧⋯ ∧ ejk
=

∑

j1<⋯<jk

"(j1⋯jk)
l1⋯lk

ci1l1⋯cik lkej1 ∧⋯ ∧ ejk

and hence

tr
(
∧kT

)
=

∑

i1<⋯<ik

"(i1⋯ik)
l1⋯lk

ci1l1⋯cik lk .

Note that
(
∧nTk

)
(e1 ∧⋯ ∧ en) =

∑

1≤i1<⋯<ik≤n
e1 ∧⋯ ∧ Tei1 ∧⋯ ∧ Teik ∧⋯ ∧ en

=
∑

1≤i1<⋯<ik≤n
e1 ∧⋯ ∧ ci1j1ej1 ∧⋯ ∧ cikjkejk ∧⋯ ∧ en

=
∑

1≤i1<⋯<ik≤n
"(i1⋯ik)
l1⋯lk

ci1l1⋯cik lke1 ∧⋯ ∧ en,

that is,

∧nTk =
∑

i1<⋯<ik

"(i1⋯ik)
l1⋯lk

ci1l1⋯cik lk .

Also note that

det (�I − A) = "l1⋯ln
(
��1l1 − c1l1

)
⋯

(
��nln − cnln

)

=
2∑

�1=1
⋯

2∑

�n=1
"l1⋯lnb

1l1
�1 ⋯bnln�n

where

bili1 = ��ili and bili2 = −cili .

17Clearly � is independent of the choice of (ei). This de�nition is well-de�ned.
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and hence the coe�cient of �n−k is
∑

I∪J=(1⋯n),|I|=k
"l1⋯ln�

j1
lj1
⋯�jn−kljn−k

bi1li12 ⋯bi1li12 =
∑

i1<⋯<ik

(−1)k"(i1⋯ik)
l1⋯lk

ci1l1⋯cik lk .

Then proposition 4.6 yields that

�k(T) =
∑

i1<⋯<ik

"(i1⋯ik)
l1⋯lk

ci1l1⋯cik lk .

Hence we get formula (4.1). Formula (4.2) follows directly from formula (4.1). By the
above computation we know

∧nTn = "l1⋯lnc
1l1⋯cnln = det(T).

Then formula (4.3) follows from formula (4.1). �

Remark 4.9. By the proof of we know that the entries of the corresponding matrix of
∧kT are k × k-minors of the corresponding matrix of T.

Remark 4.10. (1) The fundamental theorem of symmetric polynomials is another
important property of elementary symmetric functions. One can refer to https:
//en.wikipedia.org/wiki/Elementary_symmetric_polynomial.

(2) For more properties of ∧lTk, one can refer to https://en.wikipedia.org/wiki/
Exterior_algebra.

https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
https://en.wikipedia.org/wiki/Exterior_algebra
https://en.wikipedia.org/wiki/Exterior_algebra
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5. Appendix — pointwise estimates of geometric quantities

5.A. First and second geometric quantities of symmetric (0,2)-tensors. Let ℎ be
a symmetric (0, 2)-tensor, and de�neH ∈ Γ(M, End(TM)) by

ℎ(X, Y) = ⟨H(X), Y⟩ , ∀X, Y ∈ Γ(M, TM).

Corollary 4.3 shows that ℎ is determined by the spectrum and eigenvectors ofH. Clearly,
the spectrum ofH has a close relation to the properties of ℎ.
Moreover, some important geometric quantities of ℎ are exactly given by the spectrum

ofH. Here we introduce the following �rst and second geometric quantities.

De�nition 5.1. Let ℎ be a symmetric (0, 2)-tensor, and de�neH ∈ Γ(M, End(TM)) by

ℎ(X, Y) = ⟨H(X), Y⟩ , ∀X, Y ∈ Γ(M, TM).

By linear algebra, let �1,⋯ , �n ∈ ℝ be the eigenvalues ofH.

(1) The k-th trace of ℎ by

trk(ℎ) =
∑

i1<⋯<ik

�i1⋯�ik .

(2) The �rst geometric quantity of ℎ is de�ned by

Gmin(ℎ) = min
i=1,⋯,n

�i.

(3) The second geometric quantity of type (n, p) of ℎ is de�ned by

Gn,p(ℎ) = min
(i1,⋯,in)

⎧

⎨
⎩

(n − p)
p∑

j=1
�ij + p

n∑

j=p+1
�ij

⎫

⎬
⎭

where (i1,⋯ , in) is a permutation of (1,⋯ , n).

Remark 5.2. Some applications:

(1) Gmin(Ric) leads to the estimates of Ric;
(2) Gn,p(P) and the Bochner technique lead to vanishing theorems (see subsection 2.C).

Our basic idea is making estimates of Gmin and Gn,p via adding restrictions on trk(ℎ).
This idea is natural. We have showed in subsection 4.B that elementary symmetric

functions can help us analyze the spectrum ofH.

5.B. Estimates of geometric quantities.

De�nition 5.3. Here are some basic notations:

(5.1) Γ+k =
{
Λ = (�1,⋯ , �n) ∈ ℝn ∶ �j(Λ) > 0, ∀j ≤ k

}
,

(5.2) Λ|j = (�1,⋯ , �̂j,⋯�n) where Λ = (�1,⋯ , �n),

(5.3) al = (a,⋯ , a) ∈ ℝl where a ∈ ℝ.

Remark 5.4. The cone Γ+k represents the proper restrictions.
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First, let’s try to give some appropriate estimates of the �rst geometric quantity

(5.4) Gmin(Λ) = min
i=1,⋯,n

�i where Λ = (�1,⋯ , �n).

Remark 5.5 (Background). Our geometric background is as following: Λ represents the
spectrum of Ric, and the restriction are imposed on Schouten tensor, whose spectrum
can be represented by

2
n − 2Λ −

�1(Λ)
(n − 1)(n − 2)

1n.

Therefore, we introduce the following new notations:

(5.5) AΛ = Λ −
�1(Λ)
2(n − 1)

1n where Λ = (�1,⋯ , �n),

and, roughly speaking, our aim is that

(1) Adding appropriate restrictions on AΛ;
(2) Finding the lower bound of Gmin(Λ).

Our idea is the continuity method: we �nd a standard model case Λ0 and AΛ0 , and
consider the continuous transformation

Λt = tΛ + (1 − t)Λ0 and At ∶= AΛt = tAΛ + (1 − t)AΛ0 ∀t ∈ [0, 1].

If each At satis�es the restriction, and Gmin(Λt) ∶ [0, 1] → ℝ satis�es

Gmin(Λ1) ≥ Gmin(Λ0),

then we get the conclusion.
People �nd the appropriate restriction as AΛ ∈ Γ

+
k , which has two good properties

(1) Γ
+
k is convex, which ensures At ∈ Γ

+
k for all t ∈ [0, 1];

(2) There exists Λ0 such that A0 ∈ Γ
+
k with �k(A0) = 0. Moreover we have

�k(At) ≥ 0 ⟹ d
dt

|||||t=0�k(At) ≥ 0 ⟹ Gmin(Λ) ≥ Gmin(Λ0).

Speci�cally, we have the following estimates.

Proposition 5.6. Assume k > 1.

(1) If AΛ ∈ Γ
+
k , then

(5.6) Gmin(Λ) ≥
2k − n
2n(k − 1)

�1(Λ).

(2) If AΛ ∈ Γ
+
k and k ≥ n∕2, then

(5.7) Gmin(Λ) ≥
(2k − n)(n − 1)
(n − 2)(k − 1)

(n
k
)− 1

k�
1
k
k (AΛ).

(3) If AΛ ∈ Γ
+
k and k = n∕2, then either �i > 0 for any i, or

Λ = (�,⋯ , �, 0)

up to a permutation. If the second case is true, then we must have � n
2
(AΛ) = 0.
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Proof. Setting

Λ0 = (1n−1, �k) where �k =
(2k − n)(n − 1)
2nk − 2k − n ,

then we have

A0 = (an−1, b) where a = 1 −
n − 1 + �k
2(n − 1)

b = �k −
n − 1 + �k
2(n − 1)

A0 ∈ Γ
+
k and �k (A0) = 0.

Suppose Λ = (�1,⋯ , �n) and AΛ = (a1,⋯ , an). WLOG we assume that18

�1(Λ) = �1(Λ0) and �n = min
i=1,⋯,n

�i.

Setting

Λt = tΛ + (1 − t)Λ0, ∀t ∈ [0, 1],
At ∶= AΛt = tAΛ + (1 − t)AΛ0 ∀t ∈ [0, 1],

then we have

�k(At) ≥ 0 ⟹ d
dt

|||||t=0�k(At) ≥ 0

⟹
n−1∑

i=1
(ai − a)�k−1(A0|i) + (an − b)�k−1(A0|n) ≥ 0

⟹ (an − b) (�k−1(A0|n) − �k−1(A0|1)) ≥ 0
⟹ an ≥ b i.e. Gmin(Λ) ≥ Gmin(Λ0).

Then formula (5.6) follows. Moreover, Maclaurin’s inequality yields that

�1(AΛ)
(n
1
)−1

≥ �
1
k
k (AΛ)

(n
k
)− 1

k ∀1 ≤ k ≤ n.

If 2k ≥ n, we have

Gmin(Λ) ≥
2k − n
2n(k − 1)

�1(Λ) =
(2k − n)(n − 1)
n(n − 2)(k − 1)

�1(AΛ) ≥
(2k − n)(n − 1)
(n − 2)(k − 1)

(n
k
)− 1

k�
1
k
k (AΛ).

Hence we get formula (5.7).
The proof of point (3) is omitted. One can refer to [GVW02, lemma 2]. �

Second, let’s try to give some appropriate estimates of the second geometric quantity

(5.8) Gn,p(Λ) = min
(i1,⋯,in)

⎧

⎨
⎩

(n − p)
p∑

j=1
�ij + p

n∑

j=p+1
�ij

⎫

⎬
⎭

where Λ = (�1,⋯ , �n).

The geometric background of the second geometric quantity is introduced in subsection
2.C. Namely, Gn,p is a geometric quantity arising in the Weitzenböck form for p-forms.
The process of giving the estimates of Gn,p is similar to giving the estimates of Gmin.

18It’s easy to see �1(Λ) > 0. Since (5.6) is invariant under the transformation fromΛ to sΛ for s > 0, clearly
we can add the hypothesis without loss of generality.
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Our idea is still the continuity method: we �nd a standard model case Λ0, and
consider the continuous transformation

Λt = tΛ + (1 − t)Λ0 ∀t ∈ [0, 1].

If each Λt satis�es the restriction, and Gn,p(Λt) ∶ [0, 1] → ℝ satis�es

Gn,p(Λ1) ≥ Gn,p(Λ0) ≥ 0,

then we get the conclusion.
Roughly speaking, people �nd the appropriate restriction as Λ ∈ Γ

+
k , which has two

good properties

(1) Γ
+
k is convex, which ensures Λt ∈ Γ

+
k for all t ∈ [0, 1];

(2) There exists Λ0 such that Λ0 ∈ Γ
+
k with �k(Λ0) = Gn,p(Λ0) = 0. Moreover we have

�k(Λt) ≥ 0 ⟹ d
dt

|||||t=0�k(Λt) ≥ 0 ⟹ Gn,p(Λ) ≥ Gn,p(Λ0) = 0.

Speci�cally, we have the following estimates.

Proposition 5.7.

(5.9) Esn,p ∈ Γ
+
k , s > 0 ⟹ Esn−1,p ∈ Γ+k−1 and Esn−2,p−1 ∈ Γ+k−1,

(5.10) En,p ∈ Γ
+
k ⟹ En−2,p−1 ∈ Γ+k .

Proposition 5.8.

(5.11)

⎧
⎪

⎨
⎪
⎩

p ≤ n∕2, 2 ≤ k, 0 < s ≤ 1
Esn,p ∈ Γ

+
k , �k

(
Esn,p

)
= 0,

Λ ∈ Γ
+
k

⟹ Gn,p(Λ) ≥ 0.

(5.12)

⎧
⎪

⎨
⎪
⎩

p ≤ n∕2, 2 ≤ k, 0 < s < 1
Esn,p ∈ Γ

+
k , �k

(
Esn,p

)
= 0,

Λ ∈ Γ
+
k , �1(Λ) > 0

⟹ Gn,p(Λ) > 0.

Proposition 5.9.

(5.13)

⎧
⎪

⎨
⎪
⎩

1 ≤ p < n∕2, 2 ≤ k ≤ n∕2
En,p ∈ Γ

+
k , �k

(
En,p

)
= 0

Λ ∈ Γ
+
k

⟹ Gn,p(Λ) ≥ 0

The equality holds if and only if Λ = �En,p for some � ≥ 0. In particular, if Λ ∈ Γ+k , then
Gn,p(Λ) > 0.



Zhiyao Xiong 39

Proposition 5.10.

(5.14)

⎧
⎪

⎨
⎪
⎩

2 ≤ p < n∕2, 2 ≤ k < n∕2
�k

(
En,p

)
< 0

Λ ∈ Γ
+
k

⟹ Gn,q(Λ) ≥ 0 ∀p ≤ q ≤ n∕2

(5.15)

⎧
⎪

⎨
⎪
⎩

2 ≤ p < n∕2, 2 ≤ k < n∕2
�k

(
En,p

)
< 0

Λ ∈ Γ
+
k , �1(Λ) > 0

⟹ Gn,q(Λ) > 0 ∀p ≤ q ≤ n∕2

(5.16)

⎧
⎪

⎨
⎪
⎩

2 ≤ p < n∕2, 2 ≤ k < n∕2
En,p ∈ Γ

+
k , �k

(
En,p

)
= 0

Λ ∈ Γ
+
k

⟹ Gn,q(Λ) ≥ 0 ∀p ≤ q ≤ n∕2

(5.17)

⎧
⎪

⎨
⎪
⎩

2 ≤ p < n∕2, 2 ≤ k < n∕2
En,p ∈ Γ

+
k , �k

(
En,p

)
= 0

Λ ∈ Γ+k

⟹ Gn,q(Λ) > 0 ∀p ≤ q ≤ n∕2

Proposition 5.11. The followings are true.

(1) k = 2 and n

2
≥ p ≥ [n−

√
n

2
]; then En,p ∉ Γ+2 . If p = n−

√
n

2
is an integer, then En,p ∈ Γ

+
2

with �2
(
En,p

)
= 0.

(2) p = 2 and k ≥ [n−
√
n

2
], then En,2 ∉ Γ+k . If k =

n−
√
n

2
is an integer, then En,2 ∈ Γ

+
k with

�k
(
En,2

)
= 0.

(3) For the general case, En,p ∉ Γ
+
k , if 3 ≤ p ≤ n∕2, and

k ≥
n − 2p + 4 −

√
n − 2p + 4

2 ;

or if 3 ≤ k < n∕2, and

p ≥
n − k + 2 −

√
n − k + 2

2 .

In particular, if n > 4 and k =
[n+1

2

]
+ 1 − p, then En,p ∉ Γ

+
k .

One can refer to [GLW05] for their proofs.
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6. Appendix — geometry

6.A. Schur theorem.

Theorem 6.1 (Schur). Let (M, g) be a Riemannian manifold with dimension n ≥ 3. If

R = fg ? g

then f is constant.

Proof. By de�nition 1.5, we know

Rijkl = f
(
gilgjk − gikgjl

)
.

Therefore,

Rijkl;s = ()sf)
(
gilgjk − gikgjl

)
.

The third Bianchi identity says that

Rijkl;s + Rijls;k + Rijsk;l = 0.

Hence

()sf)
(
gilgjk − gikgjl

)
+ ()kf)

(
gisgjl − gilgjs

)
+ ()lf)

(
gikgjs − gisgjk

)
= 0

that is,

det
⎛
⎜
⎝

)sf )kf )lf
gis gik gil
gjs gjk gjl

⎞
⎟
⎠
= 0, ∀i, j, k, l, s.

Since n ≥ 3, the subsequent lemma 6.3 yields )sf = 0 for all s. Hence f is constant. �

Remark 6.2. By proposition 1.6 we know

Ric = (n − 1)fg and scal = (n − 1)nf.

Moreover, the sectional curvature K = f, since

R(X, Y, Y, X) = fg ? g(X, Y, Y, X) = f
(
|X|2|Y|2 − ⟨X,Y⟩2

)
.

Lemma 6.3. LetH be an inner product space overℝwith dimH ≥ 3. Let (ei)ni=1 be a basis
ofH, and let gij =

⟨
ei, ej

⟩
. If a, b, c ∈ ℝ satisfy

det
⎛
⎜
⎝

a b c
gi1 gi2 gi3
gj1 gj2 gj3

⎞
⎟
⎠
= 0, ∀i, j

then a = b = c = 0.

Proof. Note that the Grammatrix with respect to e1, e2 and e3

⎛
⎜
⎝

g11 g12 g13
g21 g22 g23
g31 g32 g33

⎞
⎟
⎠
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is positive de�nite since

(
x y z

) ⎛
⎜
⎝

g11 g12 g13
g21 g22 g23
g31 g32 g33

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
= ⟨xe1 + ye2 + ze3, xe1 + ye2 + ze3⟩ .

Now set

�i =
(
gi1 gi2 gi3

)
i = 1, 2, 3.

Then (�i)3i=1 is a basis of ℝ
3. The condition says that

(
a b c

)
∈ span {�1, �2}

⋂
span {�1, �3}

⋂
span {�2, �3}

Clearly, a = b = c = 0, since the unique expression
(
a b c

)
= c1�1 + c2�2 + c3�3

must have coe�cients c1 = c2 = c3 = 0. �

6.B. Derivations — (1,1)-tensors, curvature derivations.

De�nition 6.4. Amap T ↦ DT on tensors is called a derivation if it preserves the type of
the tensor; is linear; commutes with contractions; and satis�es the product rule

D (T1 ⊗ T2) = (DT1) ⊗ T2 + T1 ⊗DT2.

The curvature derivation is an important example:

Proposition 6.5. The operator RX,Y is a derivation for any X,Y ∈ Γ(M, TM).

Proof. It’s clear that RX,Y preserves the type of the tensor; is linear; commutes with
contractions (∇Z commutes with contraction). It su�ces to show that RX,Y satis�es the
product rule. Note that

∇X∇Y(�1 ⊗ �2) = (∇X∇Y�1) ⊗ �2 + (∇Y�1) ⊗ ∇X�2 + (∇X�1) ⊗ ∇Y�2 + �1 ⊗∇X∇Y�2
It follows that

[∇X, ∇Y] (�1 ⊗ �2) = ([∇X, ∇Y] �1) ⊗ �2 + �1 ⊗ [∇X, ∇Y] �2.

Then we know RX,Y = [∇X, ∇Y] − ∇[X,Y] satis�es the product rule. �

Remark 6.6. Note that

RX,YT =
(
∇2T

)
(X, Y) −

(
∇2T

)
(Y, X).

It follows that

(6.1) RX,Yf = 0 ∀f ∈ C∞(M)

since Hessf is symmetric.

Proposition 6.7. Let D be a derivation. Then

D(! ∧ �) = (D!) ∧ � + ! ∧ D�, ∀! ∈ Ωk(M), � ∈ Ωl(M).

Proof. Recall that

(6.2) Alt � = 1
k!

∑

�
(−1)|�| (��) where ��(v1,⋯ , vk) = �(v�(1),⋯ , v�(k))
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and that

(6.3) ! ∧ � = (k + l)!
k!l! Alt(! ⊗ �), ∀! ∈ Ωk(M), � ∈ Ωl(M).

It follows that

D(! ∧ �) = 1
k!l!

∑

�
(−1)|�|D (�(! ⊗ �)) ,

(D!) ∧ � = 1
k!l!

∑

�
(−1)|�| (� ((D!) ⊗ �)) ,

! ∧ D� = 1
k!l!

∑

�
(−1)|�| (� (! ⊗ D�)) .

It su�ces to show the stronger claim:

D (�(T1 ⊗ T2)) = � ((DT1) ⊗ T2) + � (T1 ⊗DT2) ∀T1, T2.

By linearity, WLOG we assume that T1 = 
1 ⊗⋯
k and T2 = 
k+1 ⊗⋯⊗ 
k+l. Seeting
� = �−1, then

D (�(T1 ⊗ T2)) = D
(

�(1) ⊗⋯⊗ 
�(n)

)
=

n∑

i=1

�(1) ⊗⋯⊗

(
D
�(i)

)
⊗⋯⊗ 
�(n),

and
� ((DT1) ⊗ T2) + � (T1 ⊗DT2) = � ((DT1) ⊗ T2 + T1 ⊗DT2) = � (D(T1 ⊗ T2))

= � (
n∑

i=1

1 ⊗⋯⊗ (D
i) ⊗⋯⊗ 
n)

=
n∑

i=1

�(1) ⊗⋯⊗

(
D
�(�(i))

)
⊗⋯⊗ 
�(n)

=
n∑

i=1

�(1) ⊗⋯⊗

(
D
�(i)

)
⊗⋯⊗ 
�(n).

We are done. �

Remark 6.8. Here we use the de�nitions (6.2) and (6.3). We don’t say that D!must be
a di�erential form.

One should note that any derivation is determined by Df and DX:

Proposition 6.9. Let T ↦ DT be a derivation. If we know Df for all f ∈ C∞(M) and
know DX for all X ∈ Γ(M, TM), then we know DT for all tensor T.

Proof. By linearity and the product rule, it su�ces to show that we know D! for all
! ∈ Γ(M, T∗M). Note that

D (C (X ⊗ !)) = C (D (X ⊗ !)) = C ((DX) ⊗ !) + C (X ⊗ D!)

where C is the contraction. Hence we know C (X ⊗ D!) for any X ∈ Γ(M, TM) and for
any ! ∈ Γ(M, T∗M). Let (Ei) be a local frame, and let (Ei) be its dual. Then

C (Ei ⊗D!) = Ei(Ej) ⋅ (D!)(Ej) = (D!) (Ei).
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Hence we know D! for any ! ∈ Γ(M, T∗M). �

Conversely, wewant to construct a derivation byDf andDX. But this is not easy, since
except the linearity, the derivation D satis�es D(fX) = Df ⋅ X + f ⋅ DX. However, we
have a easy model that Df = 0 and D is tensorial:

Proposition 6.10. For any (1, 1)-tensor L, which is also regarded as an element in
Γ(M, End(TM)), there exists a unique derivation D such that Df = 0 for all f ∈ C∞(M)
and DX = LX for any X ∈ Γ(M, TM).

Proof. See [Pet16, section 2.3.1] for the existence of suchD. The uniqueness follows from
proposition 6.9. �

Remark 6.11. For convenience, we write L = D. For any (0, k)-tensor T, we have

(6.4) (LT)(X1,⋯ ,Xk) = −
∑

T (X1,⋯ , LXi,⋯ ,Xk)

Remark 6.12. Since L is tensorial, we can consider L pointwisely. One should note that
Lp coincides with the action of an endomorphisms on tensors [Pet16, section 2.3.1].

An important thing is that we can study the properties of RX,Y via such derivations
of (1, 1)-tensors, since RX,Y, as a derivation, is just the induced derivation by itself as a
(1, 1)-tensor. (This accords with the fact that RX,Yf = 0 for all f ∈ C∞(M).)

Proposition 6.13. If there exists (1, 1)-tensor L such that

RX,YZ = LZ ∀Z ∈ Γ(M, TM),

then RX,Y = L as derivations. In fact, such L uniquely exists, and L = RX,Y as (1, 1)-tensors.

Proof. Since RX,Y is a derivation and RX,Yf = 0 for any f ∈ C∞(M) (see proposition 6.5
and remark 6.6), the conclusion follows from proposition 6.9. �

The above proposition gives us a new perspective to deal with curvature tensors; that
is, we regard it as a derivation induced by a (1, 1)-tensor.
Finally, we introduce some basic properties of L.

Proposition 6.14. If L is skew-symmetric, then we have

⟨LT, S⟩ = − ⟨LS, T⟩ ∀S, T ∈ Γ(M, (⊗sTM) ⊗ (⊗tT∗M))

Proof. By the product rule, it su�ces to verify it on Γ(M, T∗M) (on Γ(M, TM) it holds by
condition). Let (Ei) be a local orthonormal frame. Then for !, � ∈ Γ(M, T∗M) we have

⟨L!, �⟩ = ⟨(L!)(Ei), �(Ei)⟩ = − ⟨!(LEi), �(Ei)⟩
= −

⟨
LEi, Ej

⟩ ⟨
!(Ej), �(Ei)

⟩
=

⟨
LEj, Ei

⟩ ⟨
!(Ej), �(Ei)

⟩

=
⟨
!(Ej), �(LEj)

⟩
= −

⟨
!(Ej), (L�)(Ej)

⟩
= − ⟨!, L�⟩ .

We are done. �

For general properties of L, one can refer to [Pet16, section 2.3.1].
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6.C. Ricci idendity.

Theorem 6.15 (Ricci identity for covariant derivatives). Let (M, g) be a Riemannian
manifold. For the tensor

T = Tj1⋯js
i1⋯ir

dxi1 ⊗⋯⊗ dxir ⊗ )
)xj1

⊗⋯⊗ )
)xjs

,

we have the following Ricci identity:

∇k∇lT
j1⋯js
i1⋯ir

− ∇l∇kT
j1⋯js
i1⋯ir

=
s∑

m=1
RklpjmT

j1⋯jm−1pjm+1⋯js
i1⋯ir

−
r∑

t=1
Rklit

qTj1⋯js
i1⋯it−1qit+1⋯ir

.

In particular, one has

∇k∇lXi − ∇l∇kXi = RklpiXp

and

∇k∇l�i − ∇l∇k�i = −Rklis�s.

Proof. We use the following convention in this problem:

(□) = ( )
)xi1 ,⋯ , )

)xir , dx
j1 ,⋯ , dxjs) .

Then it follows from proposition 6.5 and formula (6.1) that

∇k∇lT
j1⋯js
i1⋯ir

− ∇l∇kT
j1⋯js
i1⋯ir

= (∇ )
)xk
∇ )

)xl
T) (□) − (∇∇ )

)xk

)
)xl
T) (□) − (∇ )

)xl
∇ )

)xk
T) (□) + (∇∇ )

)xl

)
)xk
T) (□)

= (∇ )
)xk
∇ )

)xl
T − ∇ )

)xl
∇ )

)xk
T − ∇[ )

)xk
, )
)xl

]T) (□)

= (R ( )
)xk

, )
)xl

) (Tp1⋯ps
q1⋯qr dx

q1 ⊗⋯⊗ dxqr ⊗ )
)xp1 ⊗⋯⊗ )

)xps )) (□)

=
r∑

t=1
(Tp1⋯ps

q1⋯qr dx
q1 ⊗⋯⊗R ( )

)xk
, )
)xl

) dxqt ⊗⋯⊗ dxqr ⊗ )
)xp1 ⊗⋯⊗ )

)xps ) (□)

+
s∑

m=1
(Tp1⋯ps

q1⋯qr dx
q1 ⊗⋯⊗ dxqr ⊗ )

)xp1 ⊗⋯⊗R ( )
)xk

, )
)xl

) )
)xpm ⊗⋯⊗ )

)xps ) (□)

= −
r∑

t=1
(Tp1⋯ps

q1⋯qr dx
q1 ⊗⋯⊗Rkliqtdxi ⊗⋯⊗ dxqr ⊗ )

)xp1 ⊗⋯⊗ )
)xps ) (□)

+
s∑

m=1
(Tp1⋯ps

q1⋯qr dx
q1 ⊗⋯⊗ dxqr ⊗ )

)xp1 ⊗⋯⊗Rklpm
j )
)xj

⊗⋯⊗ )
)xps ) (□)

=
s∑

m=1
RklpjmT

j1⋯jm−1pjm+1⋯js
i1⋯ir

−
r∑

t=1
Rklit

qTj1⋯js
i1⋯it−1qit+1⋯ir

.

We are done. �

6.D. Abrief introduction to Bochner technique. We start with a basic computation.
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Lemma 6.16. For a general tensor s, we have

(6.5) ∆12|s|
2 = |∇s|2 − g (∇∗∇s, s) .

Proof. Recall the basic formula

(6.6) X ⟨T1, T2⟩ = ⟨∇XT1, T2⟩ + ⟨T1, ∇XT2⟩ if T1 and T2 are tensors of the same type.

Then given any local coordinates (xi), it follows that

∆12|s|
2 = 1

2g
ij∇i∇j ⟨s, s⟩ = gij∇i

⟨
∇js, s

⟩

=
⟨
gij∇i∇js, s

⟩
+ gij

⟨
∇js, ∇is

⟩
= |∇s|2 − g (∇∗∇s, s) .

We are done. �

Then our basic ideas are as follows.

Lemma 6.17. Tensor T if parallel if it satis�es the following two conditions:
(1) |T| admits its maximum at some point;
(2) g (∇∗∇T, T) ≤ 0.

Proof. It follows from formula (6.5) and the maximum principle [Pet16, theorem 7.1.7].
�

De�nition 6.18. De�ne theWeitzenböch curvature operatorRic onΓ(M,⊗kT∗M) by19

Ric(T) (X1,⋯ ,Xk) =
∑(

R(Ej, Xi)T
) (
X1,⋯ , Ej,⋯ ,Xk

)

where (Ei) is a local orthonormal frame. Then we de�ne the Lichnerowicz Laplacian ∆L
on Γ(M,⊗kT∗M) by

∆LT = ∇∗∇T + cRic(T)

for a suitable constant c > 0. TheHodge Laplacian ∆H is of this type with c = 1.

Lemma 6.19. Given T ∈ Γ(M,⊗kT∗M). If T satis�es

(6.7) ∆LT = 0 and g (Ric(T), T) ≥ 0,

and if |T| admits its maximum at some point, then T is parallel.

Proof. This follows from the preceding lemma and the de�nition of ∆L. �

If a tensorT satis�es∆L = 0, Tmay represent some property ofM, such as the topology
property. If we add some constraints to the curvatures, g (Ric(T), T)may hold. Thus we
can apply the Bochner technique to T,20 and then derive some vanishing theorems or
other estimates.

6.E. Flat manifolds.

De�nition 6.20. A (pseudo-)Riemannian manifold is called �at if is it locally isometric
to a (pseudo-)Euclidean space.

Proposition 6.21. A (pseudo-)Riemannian manifoldM if �at i� R = 0.
19We use the “Ric” notation since Ric(!)(X) = ! (Ric(X)).
20For the good case thatM is compact, |T| always admits its maximum.
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Proof. If M is �at, clearly R = 0. In the next we suppose that (M, g) has vanishing
curvature tensor.
First, we show that g shares one important property with (pseudo-)Euclidean spaces:

it admits a parallel orthonormal frame (Ei) in a neighborhood U of each point. Let p ∈
M, and choose an orthonormal basis (ei) of TpM. By solving ODEs, there exist a local
frame (Ei) such that Ei|p = ei for each i. Bacause parallel transport preserves inner
products (see [Lee18, proposition 5.5]), the frame (Ei) is orthonormal.
Second, we show that (Ei) induces the desired coordinates. Since each Ei is parallel

on U, we have

[Ei, Ej] = ∇EiEj − ∇EjEi = 0 ∀i, j on U,

and hence by [Lee13, theorem 9.46], there exist local coordinates (xi) on V ⊂ U such
that

Ei =
)
)xi ∀i on V.

Clearly, (xi) gives the local isometry. �

Problem 6.22. Being �at is special, and having constant curvature is special. How about
the general cases? To what extent does curvature R determine the Riemannian metric g?

One can refer to [Yau74] for the above problem.

6.F. Hodge theorem.

Theorem 6.23 (Hodge). Let (M, g) be a closed Riemannian manifold. Then dimℋ < ∞,
and there exists a bounded linear operator G ∶ Ω∗(M) → Ω∗(M) with
(1) kerG = ℋ;
(2) G (Ωq(M)) ⊂ Ωq(M), and

G ∗=∗ G, Gd = dG, G� = �G.

(3) G is compact with respect to the norm (∙, ∙);
(4) For any ! ∈ Ω∗(M) we have

! = !ℎ + ∆H(G!)

where !ℎ ∈ ℋ.

Proof. See [Mei13, theorem 5.2.12]. �

Corollary 6.24. Let (M, g) be a closed Riemannian manifold. If K ∈ C∞(M) satis�es
∫M K dvol = 0, then there exists f ∈ C∞(M) with ∆f = K.

Proof. By Hodge theorem 6.23, K = Kℎ + ∆f for some harmonic function Kℎ and some
f ∈ C∞(M). By the maximum principle, the harmonic function Kℎ is constant. Taking
integration we get ∫M Kℎ dvol = 0, it follows that Kℎ = 0. �
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7. Appendix — first order PDEs

7.A. Frobenius theorem.

De�nition 7.1. Some basic concepts for Γ(M, TM):
(1) A (smooth) distribution onM of rank k is a rank-k (smooth) subbundle of TM;
(2) We say that a distribution D is involutive if given any pair of smooth local sections of

D, [X, Y] is also a local section of D;
(3) For a distributionD, a non-empty immersed submanifoldN ⊂ M is called an integral

manifold of D if TpN = Dp at each point p ∈ N;
(4) A distribution D on M is said to be integrable if each point of M is contained in an

integral manifold D;
(5) For a rank-k distribution D ⊂ TM, we say that a smooth coordinate chart (U, ') on

M is �at for D if '(U) is a cube in ℝn, and at points of U, D is spanned by the �rst k
coordinate vector �elds )∕)x1,⋯ , )∕)xk;

(6) A distribution D is said to be completely integrable if there exists a �at chart for D in
a neighborhood of each point ofM.

Some basic concepts for Γ(M, T∗M):
(1) IfD is a rank-k distribution, anyn−k linearly independent 1-forms!1,⋯ , !n−k de�ned

on an open setU are said to be local de�ning forms for D if

Dq = ker!1|q ∩⋯ ∩ ker!n−k|q ∀q ∈ U.

(2) Let D be a rank-k distribution. We say that ! ∈ Ωl(M) annihilates D if

!(X1,⋯ ,Xl) = 0 whenever X1,⋯ ,Xl are local sections of D.

Remark 7.2. Sometimes we may construct some special functions via 1-forms. By
Poincaré lemma, Xf = g can be reduced to that X(!) = g and d! = 0.

Remark 7.3. Clearly for a distribution we know

completely integrable ⟹ integrable ⟹ involutive.

Lemma 7.4 (Local coframe criterion for involutivity). Let D be a smooth distribution of
rank k on a smooth n-manifoldM, and letU ⊂ M be an open subset. TFAE:

(1) D is involutive onU.
(2) All (or some) local de�ning forms !1,⋯ , !n−k for D, which are de�ned on U, satisfy

that d!1,⋯ , d!n−k annihilates D.
(3) All (or some) local de�ning forms !1,⋯ , !n−k for D, which are de�ned on U, satisfy

that there exist 1-forms {�ij ∶ i, j = 1,⋯ , n − k} with

d!i =
n−k∑

j=1
!j ∧ �ij.

Proof. (1)⟺ (2) easily follows from the formula

d!(X, Y) = X (!(Y)) − Y (!(X)) − ! ([X, Y]) .

(2)⟺ (3) follows from [Lee13, lemma 19.6]. �
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De�nition 7.5. Any subbundle A ⊂ T∗M is called integrable if for any local frame
(!1,⋯ , !l) of A, there exist 1-forms {�ij ∶ i, j = 1,⋯ , l} with

d!i =
l∑

j=1
!j ∧ �ij

which is denoted by

d!i ≡ 0 mod (!1,⋯ , !l).

Corollary 7.6. For any distribution D, the colletion

A =
⋃

p∈M

Ap where Ap =
{
� ∈ T∗pM ∶ �(v) = 0, ∀v ∈ Dp

}
.

is a subbundle of T∗M. Conversely, for any subbundle A ⊂ T∗M, the colletion

D =
⋃

p∈M

Dp where Dp =
{
v ∈ TpM ∶ �(v) = 0, ∀� ∈ Ap

}
.

is a distribution. Moreover, A is integrable i� D is involutive.

Proof. Given a distribution D, let (Xi)ki=1 be a local frame of D on U. In a neighborhood
of each point inU we can complete the k-tuple (Xi)ki=1 to a smooth local frame (Xi)ni=1 of
TM by [Lee13, proposition 10.15]. Let (!i)ni=1 be the dual of (Xi)ni=1. Then

(
!k+1,⋯ , !n

)

is a local frame of A. Then by the local frame criterion ([Lee13, lemma 10.32]) for
subbundles, A forms a subbundle.
Similarly given a subbundle A ⊂ T∗M, D forms a distribution.
The �nal assertion then follows from lemma 7.4. �

Theorem 7.7 (Frobenius theorem). Every involutive distribution is completely integrale.

Proof. See [Lee13, theorem 19.12]. �

Corollary 7.8. Let A ⊂ T∗M be an integrable subbundle of rank r. Then for any p ∈ M,
there exist a neighborhood U and smooth functions f1,⋯ , fr on U such that A is locally
spanned by (dfi)ri=1.

Proof. By corollary 7.6, the colletion

D =
⋃

p∈M

Dp where Dp =
{
v ∈ TpM ∶ �(v) = 0, ∀� ∈ Ap

}
.

is the corresponding involutive distribution, and hence there exist local coordinates (xi)
on U such that

span { )
)x1

|||||q,⋯ , )
)xk

|||||q} = Dq ∀q ∈ U.

Then clearly we have

Aq = span
{
dxk+1|q,⋯ , dxn|q

}
∀q ∈ U

We are done. �

Remark 7.9. In other words, we have the following conclusion:
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Let !1,⋯ , !r be smooth 1-forms de�ned on a neighborhoodU of p inM. If !1,⋯ , !r
are linearly independent on U and if 21

d!j ≡ 0 mod (!1,⋯ , !r),

then there exist a smaller neighborhood V of p and smooth functions f1,⋯ , fr on V
such that

!j =
r∑

k=1
ℎjkdf

k for j = 1,⋯ , r,

where each ℎjk is a smooth function on V.

7.B. First order PDEs. First, we review Frobenius theorem from the perspective of
PDE. Given p ∈ U and given a local chart (U, (xi)) centered at p. Suppose that the
involutive distribution D is locally spanned by X1,⋯ ,Xk where

Xi = aji
)
)xj

∀1 ≤ i ≤ k.

If (V, (ui)) is a �at chart for D near p, then Xi =
)

)ui
, and hence

Xi(ul) = aji
)ul
)xj

= 0 ∀1 ≤ i ≤ k, ∀l > k.

Therefore, we know the following PDEs (whereX1,⋯ ,Xm are linearly independent and
satisfy the compatibility condition of being involutive)

(7.1)

⎧
⎪

⎨
⎪
⎩

X1(u) = aj1
)u
)xj

= 0

⋯

Xk(u) = ajk
)u
)xj

= 0

have local solutions uk+1,⋯ , un such that ∇uk+1,⋯ ,∇un are linearly independent.
More generally, we consider the non-homogeneous cases. I.e. we solve the �rst order

non-homogeneous overdetermined linear PDEs.

Proposition 7.10. Let W ⊂ ℝn be an open subset, and let X1,⋯ ,Xm be linearly
independent smooth vector �elds on W. Suppose that there are ckij, fl ∈ C∞(W) for
1 ≤ i, j, k, l ≤ m, such that the following compatibility conditions are satis�ed:

(7.2) [Xi, Xj] = ckijXk,

(7.3) Xifj − Xjfi = ckijfk.

Then for each p ∈ W, the following PDEs

(7.4)

⎧
⎪

⎨
⎪
⎩

X1(u) = aj1
)u
)xj

= f1
⋯

Xm(u) = ajm
)u
)xj

= fm

21The following integrability condition holds under invertible transformations and hence is a constraint
for the local subbundle.
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have local solutions near each point inW.
Moreover, suppose we are given an embedded codimension-m submanifold S ⊂ W such

that TpS is complementary to the span of (Ai)mi=1 at each p ∈ S. Then for each p ∈ S, there
is a neighborhoodU of p such that for every ' ∈ C∞(S ∩ U), there exists a unique solution
u ∈ C∞(U) to the following overdetermined Cauchy problem:

(7.5)
⎧

⎨
⎩

Xi(u) = aji
)u
)xj

= fi, ∀1 ≤ i ≤ m,

u|S∩U = '.

Remark 7.11. Compatibility condition (7.2) exactly means that (X1,⋯ ,Xm) is an
involutive distribution; compatibility condition (7.3) is the natural added constraint for
non-homogeneous cases, since

[Xi, Xj]u = ckijXku = ckijfk
= XiXju − XjXiu = Xifj − Xjfi.

Proof. The idea is as follows: via Frobenius theorem, �nd ! such that

!(Ai) = fi ∀1 ≤ i ≤ m,

and show that ! has some closedness to a certain degree; then ! will induce u just like
what we do for proving Poincaré lemma.
We �nd a �at chart

(
U, (v, w) =

(
v1,⋯ , vm, w1,⋯ ,wn−m)) for D centered at p by

Frobenius theorem 7.7, so

span {X1,⋯ ,Xm} = span { )
)v1 ,⋯ , )

)vm } .

Note that (X1,⋯ ,Xm, )∕)w1,⋯ , )∕)wn−m) is a local frame of TM on U; then let
(�1,⋯ , �m, �1,⋯ , �n−m) be its dual. Setting

! = !kdvk ∶= fk�k,

and hence

(7.6) !(Xi) = fi ∀1 ≤ i ≤ m, and ! ( )
)wj ) = 0 ∀1 ≤ j ≤ n −m.

Moreover, we have

d!
(
Xi, Xj

)
= Xi

(
!(Xj)

)
− Xj (!(Xi)) − !

(
[Xi, Xj]

)

= Xifi − Xjfi − !
(
ckijXk

)

= Xifi − Xjfi − ckijfk = 0.

It follows that

0 = d! ( )
)vi ,

)
)vj

) = )
)vi (! ( )

)vj
)) − )

)vj
(! ( )

)vi )) =
)!j
)vi −

)!i
)vj

,

and hence

(7.7)
)!i
)vj

=
)!j
)vi ∀1 ≤ i, j ≤ m.
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Then we de�ne (the construction is in analogy with [Lee13, theorem 11.49])

u1(v, w) = ∫


! = ∫

1

0
! (
′(t)) dt = ∫

1

0
!k (tv, w) vk dt

where 
(t) = (tv, w). Clearly u1 ∈ C∞(U), and by (7.7) we know
)
)vi

(
!k (tv, w) vk

)
= t

)!k
)vi (tv, w) v

k + !i (tv, w)

= t
)!i
)vk (

tv, w) vk + !i (tv, w)

= d
dt (t!i(tv, w)) .

Setting ℎj(v, w) = ∫ 1
0

)

)wj

(
!k (tv, w) vk

)
dt, it follows that

du1(v, w) = (∫
1

0

d
dt (t!i(tv, w)) dt) dv

i + ℎj(v, w)dwj

= !i(v, w)dvi + ℎj(v, w)dwj = !(v, w) + ℎj(v, w)dwj

and hence

Xi(u1) = du1 (Xi) = ! (Xi) = fi ∀1 ≤ i ≤ m.

Therefore, we �nd a desired local solution.
For the Cauchy problem (7.5), by [Lee13, corollary 19.13],22 WLOG we assume that

S ∩ U is the slice where v1 = ⋯ = vm = 0. Then setting

u0(v, w) = '(0, w) and u = u0 + u1,

we get the solution to the Cauchy problem (7.5).
Let ũ be any other solution to the Cauchy problem (7.5), then Xi (ũ − u) = 0 for each

1 ≤ i ≤ m, and hence  ∶= ũ − u is independent of v. Therefore,  (v, w) =  (0, w) =
'(0, w) − '(0, w) = 0, and hence u = ũ. �

More generally, we apply Frobenius theorem to �rst order overdetermined quasi-
linear PDEs.

Proposition 7.12. Let W be an open subset of ℝn × ℝm, and let � = (�ij) ∶ W →
M (m × n,ℝ) be a smoothmatrix-valued function. If the following compatibility conditions

(7.8)
)�ij
)xk

+ �lk
)�ij
)zl

=
)�ik
)xj

+ �lj
)�ik
)zl

∀i, j, k

hold,23 then for any (x0, z0) ∈ W, there is a neighborhood U of x0 in ℝn such that the
following overdetermined PDEs (with initial condition)

(7.9)
⎧

⎨
⎩

)ui
)xj (

x) = �ij
(
x, u1(x),⋯ , um(x)

)
, ∀i, j

u(x0) = z0

admit a unique local solution u ∈ C∞(U,ℝm).
22This is a nontrivial corollary of [Lee13, theorem 9.46] and Frobenius theorem 7.7.
23where we denote a point in ℝn × ℝm by (x, z) = (x1,⋯ , xn, z1,⋯ , zm)
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Proof. The idea is as follows:

(1) Finding u is equivalent to �nding Γ(u) = {(x, u(x)) ∶ x ∈ U};
(2) Setting F(x) = (x, u(x)). The overdetermined PDEs are equivalent to that

(7.10) dF ( )
)xi

|||||x) =
)
)xi

|||||(x,u(x)) + �ji (x, u(x))
)
)zj

|||||(x,u(x)) ∀1 ≤ i ≤ n

which shows the geometric meaning of the quasi-linear �rst order PDEs: the
tangent space of im(Γ) is spanned by

Xi
||||(x,z) =

)
)xi

|||||(x,z) + �ji (x, z)
)
)zj

|||||(x,z), onW.

(3) To show (7.10), it su�ces to show that the distribution D spanned by X1,⋯ ,Xn are
involutive, which is guaranteed by the compatibility conditions. Therefore, we can
�nd Γ(u) by �nding the integral manifold of D.

De�ne Xi and D as above. Note that D is involutive since we have

[Xi, Xj] = [ )
)xi + �li

)
)zl

, )
)xj

+ �sj
)
)zs ]

=
)�sj
)xi

)
)zs + �li

)�sj
)zl

)
)zs −

)�li
)xj

)
)zl

− �sj
)�li
)zs

)
)zl

=
⎛
⎜
⎝

)�lj
)xi + �si

)�lj
)zs −

)�li
)xj

− �sj
)�li
)zs

⎞
⎟
⎠

)
)zl

= 0.

So given any point p = (x, z) ∈ W, there is an integral manifold N of D containing
p. More precisely, by Frobenius theorem 7.7, we suppose that there is a �at chart
(V, (v1,⋯ , vn, w1,⋯ ,wm)) centered at p such thatN = Φ−1(0)whereΦ =

(
w1,⋯ ,wm).

To show the existence of u, by the implicit function theorem [Mei10, theorem 12.5.2]
and what we said in the idea, it su�ces to show that

( )wi

)zj

)
m×m

is of rankm. For the sake
of convenience, we set

P ∶ V → M (m ×m,ℝ) where Pij =
)wi

)zj
,

Q ∶ V → M(m × n,ℝ) where Qij =
)wi

)xj
.

Then we know

rank ()w
i

)zj
) = rank(P) and rank ([Q, P]) = rank

(
dw1,⋯ , dwm) = m.

Note that

Φ|N ≡ 0 and TN = D|N ⟹ d!i(Xj) = 0, ∀i, j.

Then we know
)!i
)xj

= −�sj
)!i
)zs , that is, Q = −P ⋅ �.

Therefore

[Q, P] = [−P ⋅ �, P] = P ⋅ [−�, I].
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Hence we know rank(P) = rank ([Q, P]) = m. It follows that
( )wi

)zj

)
m×m

is of rankm, and
hence we prove the existence.
The uniqueness follows immediately from the local structure of integral manifolds

[Lee13, proposition 19.16]. �

Corollary 7.13. Let (M, g) be a (pseudo-)Riemannian manifold, and let A ∶ T∗M →
⊗2T∗M be a smooth map satisfying the following compatibility condition: [where A(!) ∈
Γ(M,⊗2T∗M) for all ! ∈ Γ(M, T∗M)]

(7.11) A(!)ij;k − A(!)ik;j = Rjkil!l, ∀! ∈ Γ(M, T∗M).

Then foy any p ∈ M and every covector �0 ∈ T∗pM, the overdetermined system of equations

(7.12) !i;j = A(!)ij i.e. ∇!(X,Y) = A(!)(Y, X)

admit a smooth solution on a neighborhood of p with !p = �0.

Remark 7.14. The following is awrong edition:
“Foy any p ∈ M, there exists a neighborhood U of p such that for any covector �0 ∈

T∗pM, the overdetermined system of equations ∇! = A(!) admit a smooth solution on
U with !p = �0.”

Remark 7.15. If U is a su�ciently small neighborhood U of p (such that the local
solution exists), then the solution on U is also unique.

Proof. For p ∈ M, let (xi) be local coordinates on U centered at p. Then (7.12) becomes
)!i
)xj

= Γsij!s + A(!)ij

where we use the fact that

(7.13) Γkij = Γkji ∀i, j, k.

Moreover, it’s equivalent to
)!i
)xj

(x) = �ij (x, !1(x),⋯ , !n(x))

where

�ij (x, (z1,⋯ , zn)) = Γsij(x)zs + A (zsdxs)ij .

By proposition 7.12, it su�ces to show

(7.14)
)�ij
)xk

+ �lk
)�ij
)zl

=
)�ik
)xj

+ �lj
)�ik
)zl

∀i, j, k on U × ℝn.

The idea to verify it is as follows:

(1) If we compute terms like )�ij∕)z
l directly, it will be hard to connect the results to our

conditions.
(2) In fact, �ij is easy to analyze only when we consider �ij (x, !1(x),⋯ , !n(x)), since

�ij (x, !1(x),⋯ , !n(x)) = Γsij(x)!s(x) + A(!)ij(x).
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(3) The derivative of �ij (x, !1(x),⋯ , !n(x)) with respect to xk will also produce the
terms like )�ij∕)z

l:

)
)xk

|||||x
(
�ij (x, !1(x),⋯ , !n(x))

)
=
)�ij
)xk

|||||(x,!1(x),⋯,!n(x))
+
)�ij
)zl

|||||(x,!1(x),⋯,!n(x))

)!l
)xk

|||||x.

(4) Any point (x, z1,⋯ , zn) ∈ U ×ℝn can be expressed as (x, !1(x),⋯ , !n(x)) for some
! ∈ Γ(U, T∗U). Moreover, for a �xed point (x, z1,⋯ , zn) ∈ U × ℝn, we can choose
! ∈ Γ(U, T∗M) with

(7.15) !k(x) = zk ∀k and
)!i
)xj

(x) = �ij(x, z) ∀i, j.

It follows from the idea that

(
)�ij
)xk

+ �lk
)�ij
)zl )

(x, z1,⋯ , zn) =
)
)xk

|||||x
(
Γsij!s + A(!)ij

)
,

)!s
)xk

(x) = �sk (x, !1(x),⋯ , !n(x)) = Γmsk(x)!m(x) + A(!)sk(x).

Therefore,

(
)�ji
)xk

+ �lk
)�ji
)zl )

(x, z1,⋯ , zn) =
((
)kΓsij + ΓmijΓ

s
mk

)
!s + ΓsijA(!)sk + )kA(!)ij

)
(x)

and hence using (7.13) we have

(
)�ij
)xk

+ �lk
)�ij
)zl )

(x, z1,⋯ , zn) − (
)�ik
)xj

+ �lj
)�ik
)zl )

(x, z1,⋯ , zn)

=
(
)kΓsij + ΓmijΓ

s
mk − )jΓsik − ΓmikΓ

s
mj

)
!s

||||x
+

(
ΓsijA(!)sk + )kA(!)ij − ΓsikA(!)sj − )jA(!)ik

) ||||x
= Rkjis!s

||||x +
(
A(!)ij;k − A(!)ik;j

) ||||x = Rkjis!s
||||x + Rjkis!s

||||x = 0.

We are done. �

Via the proof, we know that although our condition is natural, it’s still too strong.
Speci�cally, to show the conclusion, it su�ces to show that for any point (x, z1,⋯ , zn) ∈
U × ℝn, there exists ! ∈ Γ(U, T∗U) such that

(7.16) A(!)ij;k
||||x − A(!)ik;j

||||x = Rjkil!l
||||x

and that

(7.17) !k(x) = zk ∀k and
)!i
)xj

(x) = Γmij (x)!m(x) + A(!)ij(x) ∀i, j.

Clearly, there exists ! ∈ Γ(U, T∗U) satisfying (7.17). It su�ces to show that any
! ∈ Γ(U, T∗U) satisfying (7.17) also satis�es (7.16). Therefore, we have the following
conclusion:

Proposition 7.16. Let (M, g) be a (pseudo-)Riemannian manifold, and let A ∶ T∗M →
⊗2T∗M be a smoothmap such thatA(!) ∈ Γ(M,⊗2T∗M) for all! ∈ Γ(M, T∗M). Suppose
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that for any x ∈ M and for any ! ∈ Γ(M, T∗M) with

!i;j(x) = A(!)ij(x)

it holds that

A(!)ij;k
||||x − A(!)ik;j

||||x = Rjkil!l
||||x.

Then foy any p ∈ M and every covector �0 ∈ T∗pM, the overdetermined system of equations

!i;j = A(!)ij
admit a smooth solution on a neighborhood of p with !p = �0.

Proof. We keep the notations in the proof of corollary 7.13. By conditions it is clear that
for any (x, z1,⋯ , zn) ∈ U × ℝn, there exists ! ∈ Γ(U, T∗U) satisfying (7.16) and (7.17).
Then by the proof of corollary 7.13 again, we get the conclusion. �

Example 7.17. Let P be the Schouten tensor,W theWeyl tensor, andC the Cotton tensor
(see de�nitions 1.11, 1.24). Let A ∶ T∗M → ⊗2T∗M be a smooth map given by

A(!) = P
2 + ! ⊗ ! − 1

2 ⟨!, !⟩ ⋅ g ∀! ∈ Γ(M, T∗M).

IfW = C = 0, then foy any p ∈ M and every covector �0 ∈ T∗pM, the overdetermined
system of equations

!i;j = A(!)ij
admit a smooth solution on a neighborhood of p with !p = �0.

Proof. By proposition 7.16, it su�ces to show that for any x ∈ M and for any ! ∈
Γ(M, T∗M) with

(7.18) !i;j(x) = A(!)ij(x)

it holds that

A(!)ij;k
||||x − A(!)ik;j

||||x = Rjkil!l
||||x.

Note that

A(!)ij =
Pij
2 + !i!j −

1
2!

m!mgij.

It follows that

A(!)ij;k =
Pij;k
2 + !i;k!j + !i!j;k − !m!m;kgij

and hence

A(!)ij;k − A(!)ik;j = Cijk + !i;k!j + !i!j;k − !m!m;kgij
−!i;j!k − !i!k;j + !m!m;jgik.
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By formula (7.18), we know

A(!)ij;k
||||x − A(!)ik;j

||||x = Cijk(x) + (
Pik
2 + !i!k −

1
2!

s!sgik)!j
|||||x

−(
Pmk
2 + !m!k −

1
2!

s!sgmk)!mgij
|||||x

−(
Pij
2 + !i!j −

1
2!

s!sgij)!k
|||||x

+(
Pmj
2 + !m!j −

1
2!

s!sgmj)!mgik
|||||x

=
(
Cijk − (P ? g)mijk!m

) |||||x.

SinceW = C = 0, it follows that

A(!)ij;k
||||x − A(!)ik;j

||||x = −Rmijk!m
||||x = Rjkil!l

||||x.

We are done. �

Remark 7.18. It’s easy to see that d! = 0 for the local solution !, and hence we actually
get a local solution of the following second-order PDEs:

P − 2Hess f + 2df ⊗ df − ⟨∇f,∇f⟩ ⋅ g = 0.
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8. Appendix — functional analysis and real analysis

8.A. Lagrange multiplier on Banach spaces.

De�nition 8.1. Let V andW be normed vector spaces, and U ⊂ V be an open subset of
V. A map f ∶ U → W is called Fréchet di�erentiable at x ∈ U if there exists a bounded
linear operator A ∶ V → W such that

lim
‖ℎ‖→0

‖f(x + ℎ) − f(x) − Aℎ‖W
‖ℎ‖V

= 0

or equivalently

f(x + ℎ) = f(x) + Aℎ + o(ℎ).

If there exists such an operatorA, it is unique, so wewirteDf(x) = A and call it theFréchet
derivative of f at x.
A map f that is Fréchet di�erentiable at any point ofU is said to be C1 if the function

Df ∶ U → B(V,W), x ↦ Df(x)

is continuous, where B(V,W) denotes the normed vector space of all bounded linear
operators form V toW.

Theorem 8.2. Let X and Y be real Banach spaces, let U be an open subset of X, let f ∶
U → ℝ be continuously di�erentiable function, and let g ∶ U → Y be another continuously
di�erentiable function. Then

⎧

⎨
⎩

f(u0) = inf
u∈g−1(0)

f(u) for some u0 ∈ U

Dg(u0) ∶ X → Y is surjective
⟹ Df(u0) = �◦Dg(u0) for some � ∈ Y∗.

Proof. See [Zei85, theorem 43.D]. �

8.B. Sobolev inequalities and Poincaré inequality on domains.

Theorem 8.3 (General Sobolev inequalities on domains). For ℝn, we have the following
conclusions:
(1) (Gagliardo-Nirenberg-Sobolev inequality) Assume 1 ≤ p < n. There exists a constants

C = C(p, n) such that

‖u‖Lp∗ (ℝn) ≤ C‖Du‖Lp(ℝn) ∀u ∈ C1
c (ℝn).

In particular, since C1
c (ℝn) is dense inW1,p(ℝn), we have

(8.1) ‖u‖Lp∗ (ℝn) ≤ C‖Du‖Lp(ℝn) ∀u ∈ W1,p(ℝn)

which implies the continuous embeddingW1,p(ℝn) ↪ Lp∗(ℝn).
(2) (Morrey’s inequality) Assume n < p ≤ ∞. Then there exists a constant C = C(p, n)

such that

‖u‖C0,
(ℝn) ≤ C‖u‖W1,p(ℝn) ∀u ∈ C1(ℝn),

where


 ∶= 1 − n
p.
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In particular, since C1(ℝn) is dense inW1,p(ℝn), we have

(8.2) ‖u‖C0,
(ℝn) ≤ C‖u‖W1,p(ℝn) ∀u ∈ W1,p(ℝn),

which implies the continuous embeddingW1,p(ℝn) ↪ C0,
(ℝn).
LetU be a bounded open subset of Rn with a C1 boundary.
(1) If

k < n
p and 1

q =
1
p − k

n
then we have a continuously embedding

Wk,p(U) ↪ Lq(U).

Speci�cally, we have the estimate

‖u‖Lq(U) ≤ C‖u‖Wk,p ∀u ∈ Wk,p(U)

where C = C(k, p, n,U) is a constant.
(2) If

k > n
p and 
 =

⎧

⎨
⎩

[n
p
] + 1 − n

p
, if n

p
is not an integer

any positive number < 1, if n
p
is an integer

then we have a continuously embedding

Wk,p(U) ↪ Ck−[ n
p
]−1,
(U).

Speci�cally, we have the estimate

‖u‖
C
k−[ np ]−1,


(U)
≤ C‖u‖Wk,p(U) ∀u ∈ Wk,p(U)

where C = C(k, p, n, 
, U) is a constant.

Proof. See [Eva10, section 5.6 — theorems 1, 4, 6]. �

Remark 8.4. In particular, for n ≥ 3, Gagliardo-Nirenberg-Sobolev inequality (8.1)
implies the Sobolev inequality

(8.3) ‖u‖
L

2n
n−2 (ℝn)

≤ �n‖Du‖L2(ℝn) ∀u ∈ W1,p(ℝn)

where the smallest such constant �n is called the n-dimensional Sobolev constant.

Theorem 8.5 (Poincaré inequality). Assume U is a bounded open subset of ℝn. Suppose
1 ≤ p < n. Then we have the estimate

‖u‖Lq(U) ≤ C‖Du‖Lp(U) ∀u ∈ W1,p
0 (U)

for each q ∈ [1, p∗], where C = C(p, q, n,U) is a constant.

Proof. See [Eva10, section 5.6 — theorem 3]. �

Theorem 8.6 (Rellich-Kondrachov compactness theorem). Assume U us a bounded
subset ofℝn and )U is C1. Suppose 1 ≤ p < n. Then we have the compact embedding

W1,p(U) ↪ Lq(U)
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for each 1 ≤ q < p∗.

Proof. See [Eva10, section 5.7 — theorem 1]. �

Remark 8.7. Observe that since p∗ > p and p∗ → ∞ as p → n, in particular we have
the compact embedding

W1,p(U) ↪ Lp(U)

for all 1 ≤ p ≤ ∞. Note also that we have the compact embedding

W1,p
0 (U) ↪ Lp(U)

even if we do not assume )U to be C1.

Theorem8.8 (Poincaré-Wirtinger inequality). LetΩ be a domain inℝn withC1 boundary
)Ω. Assume 1 ≤ p ≤ ∞. Then there exists a constant C = C(n, p,Ω) such that

‖u − uΩ‖Lp(Ω) ≤ C ‖Du‖Lp(Ω) ∀u ∈ W1,p(Ω)

where uΩ = (∫Ω u dx)∕(∫Ω dx).

Proof. See [Eva10, section 5.8 — theorem 1]. �

8.C. Some basic real analysis.

Lemma 8.9. Let Ω be a domain in ℝn. Assume 1 ≤ p < ∞. If uj → u pointwisely, and if
|uj| ≤ g for some g ∈ Lp(Ω) , then uj → u in Lp(Ω). In particular, on a compact manifold
M, if each uj is bounded, and if uj → u pointwisely, then uj → u in Lp(M).

Proof. It follows from Lebesgue’s dominated convergence theorem. �
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9. Appendix — second order PDE

Throughout this section we shall denote by Lu = f tbe equation

Lu = aijDiju + bi(x)Di(u) + c(x)u = f(x),

where the coe�cients and f are de�ned in an open set Ω ⊂ ℝn and, unless otherwise
stated, the operator L is strictly elliptic; that is,

aij�i�j ≥ �|�|2, ∀x ∈ Ω, � ∈ ℝn,

for some positive constant �.

9.A. Introduction. Roughly speaking, we consider the problem

L ∶ ℬ → V

where we have some basic cases:

(9.1) ℬ = W2,p(Ω) and V = Lp(Ω),

(9.2) ℬ = C2,�(Ω) and V = C�(Ω),

(9.3) ℬ = H1(Ω) and V = H−1(Ω).

First, we put forward a basic method to deal with cases (9.1) and (9.2).
(1) Using priori estimates and continuity method, we show that L(ℬ) = V is

equivalent to∆(ℬ) = V . [L(ℬ) = Vmeans that the equation always has a solution.24]
(2) By Perron process and priori estimates, ∆(ℬ) = V follows.

Speci�cally, Perron process helps us �nd the solution, and priori estimates shows
that the solution has some regularity.

Second, we put forward a basic method to deal with case (9.3).
(1) Setting a(u, v) = (Lu, v), then by Lax-Milgram theorem [Xio, corollary 4.20], the

Dirichlet problem has a (unique) solution if a is coercive.
(2) Via integration by parts, we canwrite down a exactly. Then by Poincaré inequality

and basic estimates, we know L + � ∶ H1
0(Ω) → H−1(Ω) is an isomorphism for

su�ciently large �, since the corresponding bounded bilinear form is coercive.
Note that up to nowwe have considered su�cient conditions for L(ℬ) = V . Generally,

this doesn’t hold, but elliptic operator L still has the alternative property:
either one can always solve Lx = y,

or else 0 < dimker L∗ < ∞, in which case a solution exists i� y ⟂ ker L∗.
Both the above two methods can show the alternative property:
(1) For cases (9.1) and (9.2), the priori estimates show that

L(ℬ) is closed and ker L is �ntie dimensional.
Then the alternative conclusion follows from [Xio, theorem 3.15].

(2) For case (9.3), by compact embedding we know (L+�)−1 is compact, and hence the
conclusion follows from Fredholm alternative.

24By themaximum principle, L is a positive operator, and hence the solution must be unique.
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9.B. Continuity method.

Theorem 9.1 (Continuity method). Let ℬ be a Banach space, let V be a normed vector
space, and let L0, L1 ∶ ℬ → V be bounded linear operators. For each t ∈ [0, 1], set

Lt = (1 − t)L0 + tL1
and suppose that there is a constant C such that

(9.4) ‖x‖ℬ ≤ C ‖Ltx‖V , ∀x ∈ ℬ, ∀t ∈ [0, 1]

Then im(L1) = V i� im(L2) = V .

Proof. Condition (9.4) shows that Lt is injective for each t ∈ [0, 1]. Suppose that Ls is
onto for some s ∈ [0, 1]. Therefore, Ls is bijective. Then given any t ∈ [0, 1] and given
any y ∈ V , we have

Ltx = y ⟺ ((1 − t)L0 + tL1) (x) = y
⟺ ((1 − s)L0 + sL1) (x) + (s − t)(L0 − L1)(x) = y
⟺ Ls(x) + (s − t)(L0 − L1)(x) = y
⟺ x = L−1s (y) − (s − t)L−1s (L0 − L1)(x).

To show such x exists (for Ltx = y), by Banach �xed point theorem [Xio, theorem 2.14]
it su�ces to show that

T ∶ ℬ → ℬ, x ↦ L−1s (y) − (s − t)L−1s (L0 − L1)(x)

is a contraction mapping. By condition (9.4), clearly, T is a contraction map if

|s − t| < 1
C

(
‖L0‖ + ‖L1‖

)

By compactness of [0, 1], the conclusion follows. �

9.C. Schauder estimate on domains, solving PDE on Hölder spaces.

Remark 9.2. A Ck,� (0 ≤ � ≤ 1) domain is already bounded. One can refer to [GT01,
section 6.2] for its detailed de�nition.

Theorem 9.3 (Schauder estimate). LetΩ be a C2,� domain inℝn. Suppose that
�|�|2 ≤ aij�i�j ∀x ∈ Ω, � ∈ ℝn,
||||a

ij||||0,� ,
||||b
i||||0,� , |c|0,� ≤ Λ

for some positive constants � and Λ. If

{
Lu = f in Ω
u = � on )Ω

where u ∈ C2,�(Ω), f ∈ C�(Ω), � ∈ C2,�(Ω)

then

(9.5) |u|2,�;Ω ≤ C
(
|u|0;Ω + |�|2,�;Ω + |f|0,�;Ω

)

where C = C(n, �, �, Λ,Ω) is a constant.

Proof. See [GT01, theorem 6.6]. �
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Theorem 9.4. Let Ω be a C2,� domain in ℝn, and let L be strictly epplitic in Ω with
coe�cients in C�(Ω) and with c ≤ 0. Then if the Dirichlet problem for Poisson’s equation

{
∆u = f in Ω
u = � on )Ω

has a C2,�(Ω) solution for all f ∈ C�(Ω) and all � ∈ C2,�(Ω), the problem

{
Lu = f in Ω
u = � on )Ω

also has a (unique) C2,�(Ω) solution for all f ∈ C�(Ω) and all � ∈ C2,�(Ω).

Proof. By setting v = u − �, it su�ces to restrict consideration to zero boundary values.
In the next we apply the continuity method 9.1. For t ∈ [0, 1] we set

Lt = tL + (1 − t)∆ ∶ ℬ1 → ℬ2

where Banach spaces ℬ1 and ℬ2 are given by

ℬ1 =
{
u ∈ C2,�(Ω) ∶ u = 0 on Ω

}
and ℬ2 = C�(Ω).

By hypothesis we may assume that the coe�cients of Lt satis�es

(9.6)
�|�|2 ≤ aij(t)�i�j ∀x ∈ Ω, � ∈ ℝn, t ∈ [0, 1],
||||a

ij(t)||||0,� ,
||||b
i(t)||||0,� ,

|||c(t)|||0,� ≤ Λ ∀t ∈ [0, 1],

for some positive constants � and Λ. Clearly by (9.6), we know Lt ∶ ℬ1 → ℬ2 is well-
de�ned and bounded for each t ∈ [0, 1].
By the maximum-estimate theorem [GT01, theorem 3.7], we know furthermore that

|u|0 ≤ C1 sup
Ω

|Ltu| ≤ C1|Ltu|0,� ∀t ∈ [0, 1]

where C1 = C1 (�, Λ, diam(Ω)) is a constant. By Schauder estimate (9.5) we know

|u|2,� ≤ C|Ltu|0,� ∀t ∈ [0, 1]

where C = C(n, �, �, Λ,Ω) is a new constant. That is,

‖u‖ℬ1
≤ C ‖Ltu‖ℬ2

∀t ∈ [0, 1].

Then the conclusion follows from the continuity method 9.1. �

Then by the conclusion for the model case L = ∆, we have the following conclusion:

Theorem 9.5. Let Ω be a C2,� domain, and let L be strictly epplitic in Ω with coe�cients
in C�(Ω) and with c ≤ 0. Then the Dirichlet problem,

{
Lu = f in Ω
u = � on )Ω

where f ∈ C�(Ω), � ∈ C2,�(Ω)

has a (unique) solution lying in C2,�(Ω).

Proof. It follows from theorem 9.4 and subsequent theorem 9.11. �

9.D. Lp estimate on domains, solving PDE on Sobolev spaces.



Zhiyao Xiong 63

Remark 9.6. A Ck,� (0 ≤ � ≤ 1) domain is already bounded. One can refer to [GT01,
section 6.2] for its detailed de�nition.

For the sake of convenience, given a domain Ω and a function f ∶ Ω → ℝ, we denote
the moduli of continuity of f by

|f|mc;Ω = inf {� ∶ |f(x) − f(y)| ≤ �|x − y|, ∀x, y ∈ Ω} .

Theorem 9.7 (Lp estimate). Let Ω be a domain in ℝn with a C1,1 boundary portion T ⊂
)Ω. Suppose that

aij ∈ C0(Ω ∪ T), bi, c ∈ L∞(Ω),
�|�|2 ≤ aij�i�j ∀� ∈ ℝn,
|aij|, |bi|, |c| ≤ Λ

for some positive constants � and Λ. If 1 < p < ∞ and if

{
Lu = f in Ω [strong solution]
u = 0 on T [in the sense ofW1,p(Ω)]

where u ∈ W2,p(Ω), f ∈ Lp(Ω)

then for any domainΩ′ ⊂⊂ Ω ∪ T, we have

(9.7) ‖u‖2,p;Ω′ ≤ C
(
‖u‖p;Ω + ‖f‖p;Ω

)

where C = C(n, p, �, Λ,Ω′, Ω, |aij|mc;Ω′) is a constant.

Proof. See [GT01, theorem 9.13]. �

Corollary 9.8. LetΩ be a C1,1 domain inℝn. Suppose that

aij ∈ C0(Ω), bi, c ∈ L∞(Ω), c ≤ 0
�|�|2 ≤ aij�i�j ∀� ∈ ℝn,

for some positive constant �. Then for 1 < p < ∞, we have

(9.8) ‖u‖2,p;Ω ≤ C‖Lu‖p;Ω ∀u ∈ W2,p(Ω) ∩W1,p
0 (Ω)

where C = C(n, p, �, Λ,Ω, �) is a constant, where25

� = max |aij|mc;Ω and Λ = max
{
sup |aij|, sup |bi|, sup |c|

}
.

Proof. By Lp estimate 9.7, it su�ces to show that

‖u‖p;Ω ≤ C‖Lu‖p;Ω ∀u ∈ W2,p(Ω) ∩W1,p
0 (Ω)

for some constant C. Suppose for contradiction that there exists a sequence (vm) ⊂
W2,p(Ω) ∩W1,p

0 (Ω) satisfying

‖vm‖p;Ω = 1, ‖Lvm‖p;Ω → 0, ∀m ∈ ℕ.

Then via Lp estimate 9.7, the weak compactness of bounded sets in W2,p(Ω), and the
compact embedding W1,p

0 ↪ Lp(Ω), there exists a subsequence, which we relabel as
(vm), converging weakly (both inW2,p and inW1,p

0 ) to a function v ∈ W2,p(Ω) ∩W1,p
0 (Ω)

25Since Ω is compact, � and Λ are �nite.



64 Introduction to conformal geometry

satisfying ‖v‖p;Ω = 1. Since

∫
Ω
gD�vm → ∫

Ω
gD�v, ∀|�| ≤ 2, ∀g ∈ Lp∕(p−1)(Ω),

we must have

∫
Ω
gLv = 0, ∀g ∈ Lp∕(p−1)(Ω),

and hence Lv = 0. By uniqueness we know v = 0 (using themaximumprinciple), which
contradicts the condition ‖v‖p = 1. �

Theorem 9.9. LetΩ be a C1,1 domain inℝn. Given 1 < p < ∞. Suppose that

aij ∈ C0(Ω), bi, c ∈ L∞(Ω), c ≤ 0
�|�|2 ≤ aij�i�j ∀� ∈ ℝn,

for some positive constant �. If the Dirichlet problem for Poisson’s equation

{
∆u = f in Ω [strong solution]
u − � ∈ W1,p

0

has aW2,p(Ω) solution for all f ∈ Lp(Ω) and all � ∈ W2,p(Ω), the problem

{
Lu = f in Ω [strong solution]
u − � ∈ W1,p

0

also has a (unique)W2,p(Ω) solution for all f ∈ Lp(Ω) and all � ∈ W2,p(Ω),.

Proof. By setting v = u − �, it su�ces to restrict consideration to zero boundary values.
In the next we apply the continuity method 9.1. For t ∈ [0, 1] we set

Lt = tL + (1 − t)∆ ∶ ℬ1 → ℬ2

where Banach spaces ℬ1 and ℬ2 are given by

ℬ1 = W2,p(Ω) ∩W1,p
0 (Ω) and ℬ2 = Lp(Ω)

where ℬ1 is equipped with the norm ‖∙‖2,p;Ω. By hypothesis we may assume that the
coe�cients of Lt satis�es

(9.9)

aij(t) ∈ C0(Ω), bi(t), c(t) ∈ L∞(Ω), ∀t ∈ [0, 1],
�|�|2 ≤ aij(t)�i�j ∀� ∈ ℝn, ∀t ∈ [0, 1],
|aij(t)|, |bi(t)|, |c(t)| ≤ Λ, ∀t ∈ [0, 1],
|aij(t)|mc;Ω ≤ �, c(t) ≤ 0, ∀t ∈ [0, 1],

for some positive constants �, Λ and �. Clearly by (9.9), we know Lt ∶ ℬ1 → ℬ2 is well-
de�ned and bounded for each t ∈ [0, 1]. By the Lp estimate (9.8) forW1,p

0 (Ω) ∩W2,p(Ω),
we know that

‖u‖2,p;Ω ≤ C‖Ltu‖p;Ω ∀u ∈ ℬ1 ∀t ∈ [0, 1]

where C = C(n, p, �, Λ,Ω, �) is a constant. That is,

‖u‖ℬ1
≤ C ‖Ltu‖ℬ2

∀u ∈ ℬ1 ∀t ∈ [0, 1].
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Then the conclusion follows from the continuity method 9.1. �

Then by the conclusion for the model case L = ∆, we have the following conclusion:

Theorem 9.10. LetΩ be a C1,1 domain inℝn. Suppose that

aij ∈ C0(Ω), bi, c ∈ L∞(Ω), c ≤ 0
�|�|2 ≤ aij�i�j ∀� ∈ ℝn,

for some positive constant �. Then for 1 < p < ∞, the Dirichlet problem

{
Lu = f in Ω [strong solution]
u − � ∈ W1,p

0
where f ∈ Lp(Ω), � ∈ W2,p(Ω)

has a unique solution u ∈ W2,p(Ω).

Proof. It follows from theorem 9.9 and subsequent theorem 9.11. �

9.E. The model case: L = ∆. For the model case L = ∆, Perron process helps us �nd
the solution, and priori estimates shows that the solution has some regularity.

Theorem 9.11. Here are two basic conclusions for the existence of Poisson’s equations:
(1) IfΩ is a C2,� domain inℝn, then the Dirichlet problem for Poisson’s equation

{
∆u = f in Ω
u = � on )Ω

has a C2,�(Ω) solution for all f ∈ C�(Ω) and all � ∈ C2,�(Ω).
(2) IfΩ is a C1,1 domain inℝn, then the Dirichlet problem for Poisson’s equation

{
∆u = f in Ω [strong solution]
u − � ∈ W1,p

0

has aW2,p(Ω) solution for all f ∈ Lp(Ω) and all � ∈ W2,p(Ω).

Proof. Point (1) follows from [GT01, theorem 6.11, lemma 6.12, remarks in section 6.3].
In the next we prove point (2). By setting v = u−�, it su�ces to restrict consideration

to the case � = 0. Then let (fn) ∈ C∞
c (M) satisfying fn → f in Lp(Ω), and let (un) be the

solutions to

{
∆un = fn in Ω
un = 0 on Ω ⧵ supp(fn).

By point (1), it’s clear that un ∈ C∞
c (Ω). By Lp estimate (9.8) forW1,p

0 (Ω) ∩W2,p(Ω),26 we
know (un) converges inW2,p(Ω). Say u ∈ W2,p(Ω) with un → u inW2,p(Ω). Clearly u is
the solution as desired. �

9.F. Lax-Milgram theorem, solving PDE onH1(Ω).

Theorem 9.12 (Lax-Milgram theorem). LetH be a Hilbert space, and let � be a bounded
and coercive bilinear form. Then for all f ∈ H∗, there exists a unique y ∈ H such that

f(x) = �(x, y), ∀x ∈ H.
26This property uses the condition that Ω is a C1,1 domain.
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Proof. See [Xio, corollary 4.20]. �

Theorem 9.13. LetΩ ⊂ ℝN be open and bounded. Given the elliptic operator

L ∶ H1(Ω) → H−1(Ω), u ↦ −)j
(
aij)iu + dju

)
+ bi)iu + cu,

where aji = aij, aij ∈ L∞(Ω) and there exist constants 0 < � < Λ such that

(9.10) �|�|2 ≤ aij(x)�i�j ≤ Λ|�|2 ∀� ∈ ℝn ∀x ∈ Ω,

(9.11)
n∑

i=1

‖‖‖‖b
i‖‖‖‖Ln(Ω) +

n∑

i=1

‖‖‖‖d
i‖‖‖‖Ln(Ω) + ‖c‖Ln∕2(Ω) ≤ Λ.

Suppose that v ∈ H−1(Ω), g ∈ H1(Ω). Then there exist � > 0, such that for � ≥ �, the
Dirichlet problem

{
Lu + �jiu = v
u − g ∈ H1

0(Ω)

has a unique solution u ∈ H1(Ω), where

i ∶ H1
0(Ω) ↪ L2(Ω) is the compact embedding.

j ∶ L2(Ω) → H−1(Ω), u ↦ (u, ⋅)L2(Ω).

Proof. Note that the Dirichlet problem can be transformed into �nding u ∈ H1
0(Ω) such

that Lu + �jiu = w, where w ∈ H−1(Ω). Since

⟨Lu + �jiu, v⟩ =
⟨
−)j

(
aij)iu + dju

)
+ bi)iu + (c + �)u, v

⟩

=
⟨
aij)iu + dju, )jv

⟩
+

⟨
bi)iu + (c + �)u, v

⟩

the equation is equivalent to �nding u ∈ H1
0(Ω) such that a(u, ⋅) = w, where

a ∶ H1
0(Ω) × H

1
0(Ω) → ℝ

(u, v) ↦ ∫
Ω

(
aij)iu)jv + dju)jv + bi()iu)v + (c + �)uv

)
dx

is a continuous bilinear form.27 Now we claim that

(⋆) ∶ There exists � > 0 such that a is coercive for � ≥ �.

Note that the conclusion will follow from (⋆) by Lax–Milgram theorem 9.12. Thus it
su�ces to prove (⋆).
Claim (⋆) is easy if the coe�cients are in L∞(Ω), but we only have (9.11). Our idea is

to show that the gap between (9.11) and L∞ can be controlled.
Note that via Poincaré inequality 8.5 there exists c0 > 0 such that

‖∇u‖L2(Ω) ≥
2c0
�

‖u‖H1
0 (Ω)

∀u ∈ H1
0(Ω).

27 Continuity (i.e. boundedness) follows from (9.10), (9.11), Hölder inequality and

|xAy⊤| ≤
√
xAy⊤(xAy⊤)⊤ =

√
xA(y⊤y)Ax⊤ = |y|

√
xAAx⊤ =

|y|
|x|

√
(xAx⊤)(xAx⊤) ≤ Λ|x||y|
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Then we choose 0 < " < c0 and �nd bi1, b
i
2, d

i
1, d

i
2, c1, c2 and k via the subsequent lemma

9.14 such that
n∑

i=1

‖‖‖‖b
i
1
‖‖‖‖L∞(Ω) +

n∑

i=1

‖‖‖‖d
i
1
‖‖‖‖L∞(Ω) + ‖c1‖L∞(Ω) ≤ k,

n∑

i=1

‖‖‖‖b
i
2
‖‖‖‖Ln(Ω) +

n∑

i=1

‖‖‖‖d
i
2
‖‖‖‖Ln(Ω) + ‖c2‖Ln∕2(Ω) ≤ ".

Set

a1(u, v) = ∫
Ω

(
aij)iu)jv + dj1u)jv + bi1()iu)v + c1uv

)
dx,

a2(u, v) = ∫
Ω

(
dj2u)jv + bi2()iu)v + c2uv

)
dx,

a3(u, v) = (k + 2k2
� ) ∫

Ω
uv dx.

Then by Hölder inequality we know that28

a1(u, u) ≥ � ‖∇u‖2L2(Ω) − k
(
‖u‖L2(Ω) ‖∇u‖L2(Ω) + ‖u‖L2(Ω) ‖∇u‖L2(Ω) + ‖u‖L2(Ω) ‖u‖L2(Ω)

)

= � ‖∇u‖2L2(Ω) − k ‖u‖2L2(Ω) − 2k ‖∇u‖L2(Ω) ‖u‖L2(Ω)

= �
2 ‖∇u‖2L2(Ω) − (k + 2k2

� ) ‖u‖2L2(Ω) +
�
2 ‖∇u‖2L2(Ω) +

2k2
�

‖u‖2L2(Ω) − 2k ‖∇u‖L2(Ω) ‖u‖L2(Ω)

≥ �
2 ‖∇u‖2L2(Ω) − (k + 2k2

� ) ‖u‖2L2(Ω)

≥ c0 ‖u‖
2
H1
0 (Ω)

− (k + 2k2
� ) ‖u‖2L2(Ω)

and that

|a2(u, u)| ≤ " ‖u‖2H1
0 (Ω)

.

Therefore,

a1(u, u) + a2(u, u) + a3(u, u) ≥ (c0 − ") ‖u‖2H1
0 (Ω)

which proves claim (⋆). Hence the conclusion follows. �

Lemma 9.14. Given f ∈ Lp(Ω) and " > 0. Then we can �nd f = f1 + f2 such that

sup
x∈Ω

|f1(x)| ≤ k(") ‖f2‖Lp(Ω) ≤ "

Proof. Put Ak = {x ∈ Ω ∶ |f| < k}, Bk = Ω ⧵ Ak and

f1k = f�Ak f2k = f�Bk
Then we know

f1k + f2k = f sup
x∈Ω

|f1(x)| ≤ k

28If we use c1 ‖∇u‖
2
L2(Ω)+c2 ‖u‖

2
L2(Ω) to controll−‖∇u‖L2(Ω) ‖u‖L2(Ω), we can use a small c1. But if we use

c1 ‖∇u‖
2
L2(Ω) and Poincaré inequality to controll −‖∇u‖L2(Ω) ‖u‖L2(Ω), we can’t use an arbitrarily small c1.
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for all k. Note that f ∈ Lp(Ω) implies that m(Bk) → 0 as k → ∞, and then via the
Lebesgue dominated convergence theorem [Xio, theorem 9.25] we know

lim
k→+∞

‖f2k‖Lp(Ω) = 0

Thus for any " > 0, we can �nd an appropriate k such that f1k and f2k satisfy the
requirements. �

Corollary 9.15. In theorem 9.13, if � ≥ �, the operator L + �ji ∶ H1
0(Ω) → H−1(Ω) is

actually an isomorphism.

Proof. Note that L + �ji ∶ H1
0(Ω) → H−1(Ω) is continuous since the corresponding

bilinear form a is continuous. Thus the conclusion follows from theorem 9.13 and
theorem [Xio, theorem 3.22]. �

Example 9.16. The operator −∆ + cji ∶ H1
0(Ω) → H−1(Ω) is an isomorphism, where

c ≥ 0 a.e. and c ∈ Ln∕2(Ω).

Proof. The corresponding bilinear form is

a(u, v) = ∫
Ω
()iu ⋅ )iv + cuv) dx

Then via Hölder inequality we have

|a(u, v)| ≤ ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) + c1 ‖u‖
2
H1
0 (Ω)

‖v‖2H1
0 (Ω)

≤ c2 ‖u‖
2
H1
0 (Ω)

‖v‖2H1
0 (Ω)

,

and via Poincaré inequality we have

a(u, u) ≥ ‖∇u‖2L2(Ω) ≥ c3 ‖u‖
2
H1
0 (Ω)

.

Hence the conclusion follows. �

9.G. General cases onW2,p(Ω). The idea has been introduced in subsection 9.A.

Lemma 9.17. Let E and F be Banach, and let L ∶ E → F be a bounded linear operator
Then the following properties are equivalent:
(1) im(L) is closed.
(2) im(L) = ker(L∗)⟂.

Proof. See [Xio, theorem 3.51]. �

Lemma 9.18. Let X,Y, Z be re�exive Banach spaces with X ↪ Y a compact embedding,
and let L ∶ X → Z be a continuous linear operator. Then the following properties are
equivalent:
(1) im(L) is closed and ker L is �nite dimensional.
(2) There are constants c1 and c2 such that

(9.12) ‖x‖X ≤ c1‖Lx‖Z + c2‖x‖Y
Proof. (1) ⟹ (2): Since ker L is �ntie-dimensional, by [Xio, lemma 3.46] there exists
a closed linear subspace X1 ⊂ X with X = X1 ⊕ ker L, and by [Xio, theorem 3.15] there
exist positive constants b1 and b2 with

b1‖v‖Y ≤ ‖v‖X ≤ b2‖v‖Y, ∀v ∈ ker L.
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Moreover, since L|X1 is injective and im(L|X1) = im(L) is closed and hence Banach, by
[Xio, theorem 3.22], there exists positive constant b3 with

‖v‖X ≤ b3‖Lv‖Y, ∀v ∈ X1.

Therefore, for any x ∈ X, we write x = x1 + x2 in a unique way due to the direct sum
X = X1 ⊕ ker L; then we have

‖x‖X ≤ ‖x1‖X + ‖x2‖X
≤ b3‖Lx1‖Y + b2‖x2‖Y = b3‖Lx‖Y + b2‖x − x1‖Y
≤ b3‖Lx‖Y + b2‖x‖Y + b2‖x1‖Y

≤ b3‖Lx‖Y + b2‖x‖Y +
b2
b1

‖x1‖X

≤ b3‖Lx‖Y + b2‖x‖Y +
b2b3
b1

‖Lx‖Y.

(2) ⟹ (1): Condition (9.12) implies that

‖x‖X ≤ c2‖x‖Y, ∀x ∈ ker L.

By the compact embeddingX ↪ Y, it follows that ‖∙‖X and ‖∙‖Y are equivalent norms on
ker L. Moreover, with ker L equipped with the norm ‖∙‖X, the compact embedding X ↪
Y and the norm equivalence imply that the unit ball in ker L is sequentially compact.
Therefore, by [Xio, corollary 3.19], ker L is �nite-dimensional.
In the next we prove that im(L) is closed. By [Xio, lemma 3.46] we decompose X =

X1 ⊕ ker L where X1 is a closed linear subspace. By [Xio, theorem 3.32], we know X1 is
also a re�exive Banach space. Suppose Lxi → z for some (xi) ⊂ X1.

(1) First we prove that (xi) is bounded. Suppose not; there exists a subsequence, which
we relabel as (xi), satisfying ‖xi‖X →∞. Setting

yi =
xi

‖xi‖X
, ∀i = 1, 2,⋯ .

then (yi) is a bounded sequence in X1 and

Lyi → 0 in Z.

By [Xio, theorem3.41], there exists a subsequence, whichwe relabel as (yi), satisfying
yi ⇀ y in X1 for some y ∈ X1. By compact embedding X ↪ Y and [Xio, proposition
3.55], we know

yi → y in Y.

Then condition (9.12) implies that yi → y in X1. Therefore, Lyi → Ly and hence
Ly = 0; i.e. y ∈ ker L. Since y ∈ ker L ∩ X1, y = 0. However yi → y also implies
‖y‖ = limi ‖yi‖ = 1. A contraction.

(2) Then we show that (xi) has a convergent subsequence. Since (xi) is bounded, by
[Xio, theorem 3.41], there exists a subsequence, which we relabel as (xi), satisfying
xi ⇀ x in X1 for some x ∈ X1. By compact embedding X ↪ Y, [Xio, proposition
3.55], and condition (9.12), we know xi → x in X1.

Therefore z = limi Lxi = Lx, which implies im(L) is closed. �
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Since Ck,�(Ω) is not re�exive,29 we only apply lemmas 9.17 and 9.18 to elliptic PDEs
onW2,p(Ω).

Theorem 9.19 (Solvability of elliptic PDE on W2,p(Ω)). Let Ω be a C1,1 domain in ℝn.
Given 1 < p < ∞. Suppose that

aij ∈ C0(Ω), bi, c ∈ L∞(Ω)
�|�|2 ≤ aij�i�j ∀� ∈ ℝn,

for some positive constant �. Then

Lp(Ω) = L
(
W2,p(Ω) ∩W1,p

0 (Ω)
)
⊕ ker L∗

Proof. Since we have the compact embeddingW2,p(Ω) ↪ Lp(Ω), the conclusion follows
from Lp estimate 9.7, lemma 9.17 and lemma 9.18. �

9.H. General cases onH1(Ω). The idea has been introduced in subsection 9.A.

Theorem 9.20 (Solvability of elliptic PDE onH1(Ω)). LetΩ ⊂ ℝN be open and bounded.
Consider the elliptic operator

L ∶ H1(Ω) → H−1(Ω), u ↦ −)j
(
aij)iu + dju

)
+ bi)iu + cu,

where aji = aij, aij ∈ L∞(Ω) and there exist constants 0 < � < Λ such that
�|�|2 ≤ aij(x)�i�j ≤ Λ|�|2 ∀� ∈ ℝn ∀x ∈ Ω;
n∑

i=1

‖‖‖‖b
i‖‖‖‖Ln(Ω) +

n∑

i=1

‖‖‖‖d
i‖‖‖‖Ln(Ω) + ‖c‖Ln∕2(Ω) ≤ Λ.

Suppose that v ∈ H−1(Ω). Then for the Dirichlet problem

Lu = v, u ∈ H1
0(Ω),

we have
(1) either for every v ∈ H−1(Ω) the equation has a unique solution,
(2) or the homogeneous equation Lu = 0 admits n linearly independent solutions, and in

this case, the inhomogeneous equation Lu = v is solvable i� v satis�es n orthogonal
conditions; that is, v ∈ N(I − T∗)⟂, where T = �(L + �)−1 ∶ H1

0(Ω) → H1
0(Ω) and � is

an appropriate constant with L + � being an isomorphism.

Proof. Note that the equation is equivalent to �nding u ∈ H1
0(Ω) such that

(L + �ji)u − �jiu = v,

where � ∈ ℝ and

i ∶ H1
0(Ω) ↪ L2(Ω) is the compact embedding;

j ∶ L2(Ω) → H−1(Ω), u ↦ (u, ⋅)L2(Ω).

By corollary 9.15, we�nd an appropriate�withL+�ji being an isomorphism. Therefore,
the elliptic equation is equivalent to �nding u ∈ H1

0(Ω) such that

u − Tu = w,
29See https://math.stackexchange.com/questions/388129.

https://math.stackexchange.com/questions/388129
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where

T = �(L + �ji)−1ji, and w = (L + �ji)−1(v) ∈ H1
0(Ω).

Since T is compact by proposition [Xio, proposition 3.55], then the conclusion follows
from Fredholm alternative theorem [Xio, theorem 5.1]. �

Remark 9.21. Fredholm alternative [Xio, theorem 5.1] also implies that any eigenspace
of a elliptic operator is �nite-dimensional. If L is self-adjoint, we can apply spectral
decomposition theorem to get more interesting conclusions.

9.I. Regularity of weak solutions. In Schauder estimate 9.3 and Lp estimate 9.7, we
require u to belong to C2,�(Ω) orW2,p(Ω). These priori estimates ensures the regularity
of solutions, as we showed in preceding subsections.
In subsection 9.F, we considered H1(Ω)-weak solutions. In fact, such weak solutions

also have regularity. Speci�cally, if u is a solution to Lu = f in the sense of L1loc(Ω)-weak
solution, where f and the coe�cients of L have good regularity, then u also have good
regularity.
First, we deal with the relatively easy cases, the interior regularity of H1(Ω)-weak

solutions.

Theorem 9.22 (Interior regularity). LetΩ ⊂ ℝn be a bounded open subset. Suppose that
L has the divergence form

Lu = −)j
(
aij)iu

)
+ bi)iu + cu.

(1) If

aij ∈ C1(Ω), bi, c ∈ L∞(Ω),

and if u ∈ H1(Ω) is a weak solution to

Lu = f in Ω, where f ∈ L2(Ω)

then

u ∈ H2
loc(Ω)

and for each open subsetU ⊂⊂ Ω, we have the estimate

‖u‖H2(U) ≤ C
(
‖f‖L2(Ω) + ‖u‖L2(Ω)

)

where C = C(Ω,U, aij, bi, c) is a constant.
(2) If

aij, bi, c ∈ C1m + 1(Ω),

and if u ∈ H1(Ω) is a weak solution to

Lu = f in Ω, where f ∈ Hm(Ω)

then

u ∈ Hm+2
loc (Ω)

and for each open subsetU ⊂⊂ Ω, we have the estimate

‖u‖Hm+2(U) ≤ C
(
‖f‖Hm(Ω) + ‖u‖L2(Ω)

)
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where C = C(Ω,U, aij, bi, c,m) is a constant.

Proof. See [Eva10, section 6.3 — theorems 1, 2]. �

More generally, we introduce the general conclusions.

Theorem 9.23 (Weyl’s lemma). LetΩ be a bounded domain inℝn. Suppose that

aij ∈ C2,�(Ω), bi ∈ C1,�(Ω), c ∈ C1(Ω).

Then if u is a L1loc(Ω)-weak solution to

Lu = f in Ω, where f ∈ C�(Ω)

then u coincides almost everywhere with a function ũ ∈ C2,�(Ω) inΩ.

Proof. See [Hel60, section 4.2]. �

Theorem 9.24. Suppose Ω ⊂ ℝn is an open subset, and L is an elliptic operator of order
k with smooth coe�cients on Ω. Let u and f be distributions on Ω satisfying Lu = f. If
f ∈ Hs

loc(Ω) for some s ∈ ℝ, then u ∈ Hs+k
loc (Ω).

Proof. See [Fol95, theorem 6.33] �
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10. Appendix — transfer the results to to compact manifolds

10.A. Di�erential operators for vector bundles.

De�nition 10.1. Let E, F be smooth vector bundles over a smooth manifold M. We say
that a map L ∶ Γ(M, E) → Γ(M, F)30 is a di�erential operator if over any a�ne chartU
trivialising both E and F, the map

C∞(U,ℝn) ≅ Γ(U, E) → Γ(U, F) ≅ C∞(U,ℝm)

is a classical di�erential operator.
Moreover, L is linear if any local expression of L is a classical linear di�erential operator.

The order of L is the highest order of all its local expressions.
A di�erential operator on a manifold M is a di�erential operator from Γ(M,M ×

ℝ) → Γ(M,M × ℝ), i.e. a di�erential operator form C∞(M) to C∞(M).
Remark 10.2. (1) The regularity of L is characterized by its local expressions. Unless

otherwise stated, the di�erential operator P is smooth (i.e. all its local expressions
are classical smooth di�erential operators).

(2) If L is linear, then locally, given (U, (xs)) and a local frame (ei) of E, P is expressed by

(10.1) Lu = L(uiei) =
∑

|�|≤m
)�ui ⋅ a�(ei)

where a� ∈ Γ (U,Hom(E, F)).
(3) By local computation, it’s easy to see the linearity is well-de�ned.

Remark 10.3. In [Kaz16] the author shows that
(1) Generally, for a di�erential operator, the linearized di�erential operator may re�ect

its properties.
(2) For a linear di�erential operator with variable coe�cients, the corresponding linear

di�erential operator with constant coe�cients derived by freezing the coe�cients at
one point, will re�ect its properties. (We use the continuity method 9.1.)

An important characterization of linear di�erential operator is its principal symbal,
which is motivated by remark 10.3 (2).

De�nition 10.4. Let E, F be smooth vector bundles over a smooth manifold M, and let
L ∶ Γ(M, E) → Γ(M, F) be a linear di�erential operator of orderm. At any point p ∈ M,
and for every � ∈ T∗pM, the principal symbol ��(L; p) [or simply ��(L)] is de�ned as
follows:
Given any a�ne chart (U, (xs)) containing p, then for any local frame (ei) of E near p,

the principal symbol is given by31

��(L; p) =
∑

|�|=m
��a�(p) ∈ Hom(Ep, Fp)

where a� is given by (10.1) and

�� = � ( )
)x�1 )⋯� ( )

)x�m ) .
30Some people say that L is a morphism between the sheaves of smooth sections of E and F. This is
equivalent to that L is a map from Γ(M, E) to Γ(M, F).
31People usually write

∑
|�|=m a

�(p)��
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Remark 10.5. This de�nition is well-de�ned. For any compatible (V, (yt)) and (ẽi),

Lu = L(uiei) =
∑

|�|≤m
)�xui ⋅ a�(ei)

= L(ũi ẽi) =
∑

|�|≤m
)�y ũi ⋅ ã�(ẽi).

It follows that

Lu =
∑

|�|=m
)�xui ⋅ a�(ei) + lower order terms

=
∑

|�|=m

∑

|�|=m

)y�1
)x�1 ⋯

)y�m
)x�m )

�
yui ⋅ a�(ei) + lower order terms

=
∑

|�|=m

∑

|�|=m

)y�1
)x�1 ⋯

)y�m
)x�m )

�
y ũi ⋅ a�(ẽi) + lower order terms

=
∑

|�|=m

⎛
⎜
⎝
)�y ũi ⋅

∑

|�|=m

)y�1
)x�1 ⋯

)y�m
)x�m a

�(ẽi)
⎞
⎟
⎠
+ lower order terms

=
∑

|�|=m
)�y ũi ⋅ ã�(ẽi) + lower order terms

and hence
∑

|�|=m

)y�1
)x�1 ⋯

)y�m
)x�m a

� = ã�.

Therefore
∑

|�|=m
� ( )

)y�1
)⋯� ( )

)y�m
) ã� =

∑

|�|=m

∑

|�|=m

)y�1
)x�1 ⋯

)y�m
)x�m � ( )

)y�1
)⋯� ( )

)y�m
) a�

=
∑

|�|=m
� ( )

)x�1 )⋯� ( )
)x�m ) a�

i.e.
∑

|�|=m
�(y)� ã� =

∑

|�|=m
�(x)� a�,

which implies that ��(L; p) is well-de�ned.

De�nition 10.6. A linear di�erential operator P ∶ C∞(E) → C∞(F) is elliptic at a point
x ∈ M if the symbol ��(P; x) is an isomorphism for every � ∈ T∗xM ⧵ {0}.

Moreover, for Hermitian vector bundles, we can de�ne the formal adjoint of a linear
di�erential operator.

De�nition 10.7. If E and F are smooth Hermitian vector bundles over M and if P ∶
Γ(M, E) → Γ(M, F) is a linear di�erential operator, then one can use the L2 inner product
to de�ne the formal adjoint, P∗, by the usual rule

∫ ⟨Pu, v⟩F dvol = ∫ ⟨u, P∗v⟩E dvol, ∀u ∈ C∞
c (M, E), ∀v ∈ C∞

c (M, F).
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Remark 10.8. Since the supports of u and v can be assumed to be in a coordinate patch,
one can compute P∗ locally using integration by parts.

10.B. Sobolev spaces and Hölder spaces on manifolds.

De�nition 10.9 (John Lee’s version). Let (M, g) be a Riemannian manifold.
(1) Let P be a linear di�erential operator onM. If u and f are locally integrable functions

onM, we say u is aweak (or distribution) solution to the equation Pu = f if

∫
M
uP∗� dvol = ∫

M
f� dvol ∀� ∈ C∞

c (M)

where C∞
c (M) denotes the set of all compactly supported smooth functions, and P∗ is

the formal adjoint of P.
(2) If q ≥ 1, the Lebesgue space Lq(M) is de�ned by

Lq(M) =
⎧

⎨
⎩

u is locally integrable ∶ ‖u‖q = (∫
M

|u|q dvol)
1∕q

< ∞
⎫

⎬
⎭

(3) If q ≥ 1 and k is a non-negative integer, the Sobolev space Lqk(M) is de�ned as32

the set of u ∈ Lq(M) such that Pu = f ∈ Lq(M) (in the weak sense)
whenever P is a smooth di�erential operator of order ≤ k.

We de�ne the Sobolev norm ‖∙‖q,k on L
q
k(M) by:

‖u‖q,k =
⎛
⎜
⎝

k∑

i=0
∫
M

|∇iu|q dvol
⎞
⎟
⎠

1∕q

where ∇i = ∇◦⋯◦∇⏟⎴⏟⎴⏟
i times

.

(4) The space Ck(M) is de�ned by

Ck(M) =
⎧

⎨
⎩

u is k times continuously di�erentiable ∶ ‖u‖Ck =
k∑

i=0
sup
M

|∇iu| < ∞
⎫

⎬
⎭

.

(5) TheHölder space Ck,�(M) is de�ned for 0 < � < 1 by

Ck,�(M) = {u ∈ Ck(M) ∶ ‖u‖Ck,� = ‖u‖Ck + sup
x,y

||||∇
ku(x) − ∇ku(y)||||

|x − y|� < ∞}

where the supremum is over all x ≠ y such that y is contained in a normal coordinates
neighborhood of x, and ∇ku(y) is taken to mean the tensor at x obtained by parallel
transport along the radial geodesic from x to y.

(6) C∞(M) and C∞
c (M) denote the spaces of smooth functions and smooth compactly

supported functions onM, respectively.

Remark 10.10. The Sobolev space Lqk(M) is a re�exive Banach space, and C∞
c (M) is

dense in Lqk(M).
32Some people writeWk,p(M) = Lqk(M).
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For compact manifolds, people can simply de�ne Sobolev space and Hölder space via
partition of unity.

De�nition 10.11 (Kazdan’s version). Let (M, g) be a Riemannian manifold.

(1) Let A ⊂ ℝn be the closure of a connected bounded open set and 0 < � < 1. Then
f ∶ A → ℝ is Hölder continuous with exponent � if the following expression is
�nite

[f]�,A = sup
x,y∈A
x≠y

|f(x) − f(y)|
|x − y|� .

TheHölder space Ck,�(Ω) is the Banach space of real valued functions f de�ned onΩ
all of whose k-th order partial derivatives are Hölder continuous with exponent �. The
norm is

|f|k+� = ‖f‖Ck(Ω) +max
|I|=k

[)If]�,Ω.

OnM, one obtains the space Ck,�(M) by using a partition of unity. Speci�cally, let (Bi)
be an open cover ofM where each (Bi, �i) is a regular coordinate ball, and let (�i) be a
partition of unity subordinate to (Bi); then the norm is

‖u‖Ck,� =
∑

i

||||(�iu) ◦�
−1
i

||||k+�

and theHölder space Ck,�(M) is

Ck,�(M) =
{
u is k times continuously di�erentiable ∶ ‖u‖Ck,� < ∞

}
.

(2) For f ∈ C∞(M), 1 ≤ p < ∞, and an integer k ≥ 0 de�ne the norm

‖f‖k,p =
⎛
⎜
⎝
∫
M

∑

0≤|I|≤k
|∇If|p

⎞
⎟
⎠

1∕p

.

The Sobolev space Lpk (M) is the completion of C∞(M) in this norm; equivalently, by
using local coordinates and partition of unity, one can describe Lpk (M) as equivalent
classes of measurable functions all of whose partial derivatives up to order k are in
Lp(M).

Remark 10.12. For compact manifolds, any open cover has a �ntie sub-cover (Ui)Ni=1.
Suppose each (Ui, �i) is a coordinate ball. Let (�i)Ni=1 be a partition of unity subordinate
to (Ui); then

N∑

i=1
(∫

M
‖�iu‖

p dvol)
1∕p

∼
N∑

i=1

‖‖‖‖(�iu) ◦�
−1
i

‖‖‖‖p ,

N (∫
M

|u|p dvol)
1∕p

≥
N∑

i=1
(∫

M

|||�iu|||
p dvol)

1∕p

,
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(∫
M

|u|p dvol)
1∕p

= (∫
M

|||||

N∑

i=1
�iu

|||||
p
dvol)

1∕p

≤ (
N∑

i=1
∫
M

|||�iu|||
p dvol)

1∕p

≤
N∑

i=1
(∫

M

|||�iu|||
p dvol)

1∕p

where the red inequality follows from p ≥ 1. Therefore, for compact manifolds, two
de�nitions coincide (the norms are equivalent).
For non-compact manifolds, two de�nitions are not equivalent, so people should

be careful with the basic de�nitions. In fact, non-compact situations need special
treatment, and we won’t discuss them for the time being.33

10.C. Transfer the results to compact manifolds. In the next we focus on compact
manifolds, and we will transfer the results in subsection 8.B and section 9, to a compact
manifoldM by coveringM with small coordinate patches, applying the results in normal
coordinates, and summing the results with a partition of unity.

Theorem 10.13 (Sobolev embedding theorem for compact manifolds). SupposeM is a
compact Riemannian manifold of dimension n (possibly with C1 boundary).

(1) If
1
r ≥

1
q −

k
n,

then Lqk(M) is continuously embedded in Lr(M).
(2) Suppose strict inequality holds in (1). Then the inclusion Lqk(M) ⊂ Lr(M) is a compact

operator.
(3) Suppose 0 < � < 1, and

1
q ≤ k − �

n .

Then Lqk(M) is continuously embedded in C�(M).

Ahead of giving a proof, we consider the special case, the Sobolev inequality (8.3).

Theorem 10.14 (Aubin). Let (M, g) be a compact Riemannianmanifold, and let �n be the
best Sobolev constant de�ned in (8.3). Then for every " > 0, there exists a constant C" with

‖�‖2q ≤ (1 + ")�n ∫
M

|||∇�|||
2 dvol + C" ∫

M
�2 dvol ∀� ∈ C∞(M)

where q = 2n∕(n − 2).

Proof. Fix " > 0. For each point p ∈ M, we choose a normal coordinates chart (U, (xi))
centered at p such that the eigenvalues of g are between (1 + ")−1 and (1 + "), and
furthermore dvol = f dx where (1 + ")−1 < f < (1 + "). By compactness we choose
a �nite subcover (Ui) and a subordinate partition of unity, which we may write as (�2i ),

33One can see https://en.wikipedia.org/wiki/Sobolev_inequality for some related discussions.

https://en.wikipedia.org/wiki/Sobolev_inequality
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where �i ∈ C∞(M) and
∑

i �
2
i = 1. Then we have

‖�‖2q = ‖�2‖q∕2 =
‖‖‖‖‖‖‖‖‖

∑

i
�2i �

2
‖‖‖‖‖‖‖‖‖q∕2

≤
∑

i
(∫

M

|||�i�|||
q dvol)

2∕q

≤ (1 + ")2∕q
∑

i
(∫

Ui

|||�i�|||
q dx)

2∕q

.

By Sobolev inequality (8.3) and our restriction on the deviation of g and dvol from the
Euclidean metric, we have

(∫
Ui

|||�i�|||
q dx)

2∕q

≤ �n ∫
Ui

|||d(�i�)|||
2
0 dx ≤ (1 + ")2�n ∫

Ui

|||d(�i�)|||
2 dvol

where |∙|0 denotes the Euclidean metric in normal coordinates. Therefore,

‖�‖2q ≤ (1 + ")2+2∕q�n
∑

i
∫
Ui

|||∇(�i�)|||
2 dvol.

Note that by Hölder inequality and 2ab < "a2 + "−1b2 we have
|||∇(�i�)|||

2 = �2i |∇�|
2 + 2�i� ⟨∇�,∇�⟩ + �2|∇�i|2

≤ (1 + ")�2i |∇�|
2 + (1 + "−1)�2|∇�i|2.

It follows that

‖�‖2q ≤ (1 + ")2+2∕q�n
∑

i
∫
Ui

(
(1 + ")�2i |∇�|

2 + (1 + "−1)�2|∇�i|2
)
dvol

= (1 + ")3+2∕q�n ∫
M

|||∇�|||
2 dvol + (1 + ")2+2∕q(1 + "−1)�n

∑

i
∫
Ui

�2|∇�i|2dvol

≤ (1 + ")3+2∕q�n ∫
M

|||∇�|||
2 dvol + C" ∫

M
�2dvol

where the last inequality uses the �niteness and the compactness. By taking " su�ciently
small we get the conclusion. �

Therefore, to a certain degree, the Sobolev inequality holds with the same constant on
any compact manifoldM.
Moreover, by a technique similar to the proof of theorem 10.14, one can give a proof

of the general cases (theorem 10.13) via theorem 8.3.34 The proof is omitted.
Now we turn to the results for PDE.

Theorem10.15 (Lp estimate). Let (M, g) be a compact RiemannianmanifoldM. Suppose
L = ∆ + c, where c ∈ C∞(M). Assume 1 < p < ∞.

(1) We have the Lp estimate for L = ∆ + c:

(10.2) ‖u‖Lpk+2(M) ≤ C
(
‖Lu‖Lpk (M) + ‖u‖Lp(M)

)
∀u ∈ Lpk+2(M).

34Clearly, this technique doesn’t work for Poincaré inequality. We will introduce a new method to deal
with Poincaré inequality in the next subsection.
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(2) Suppose in addition that c ≤ 0 and c ≢ 0. Then the equation

Lu = f [strong solution] where f ∈ Lp(M)

has a unique solution u ∈ W2,p(M). Moreover,

(10.3) ‖u‖Lpk+2(M) ≤ C ‖Lu‖Lpk (M) ∀u ∈ Lpk+2(M).

Proof. By a procedure similar to the proof of theorem 10.14, point (1) easily follows from
Lp estimate 9.7.
In the next we prove point (2). By lemma 9.17, lemma 9.18 and point (1), we know

Lp(M) = L
(
Lp2 (M)

)
⊕ ker L∗.

By themaximumprinciple [Pet16, theorem7.1.7], clearlywe have ker L = 0 and ker L∗ =
0.35 Therefore, in this case, the bounded linear operator

L ∶ W2,p(M) → Lp(M)

is bijective. Then formula (10.3) follows from [Xio, theorem 3.22]. �

Theorem 10.16 (Schauder estimate). Let (M, g) be a compact Riemannian manifoldM.
Suppose L = ∆ + c, where c ∈ C∞(M).
(1) We have the Schauder estimate for L = ∆ + c,:

(10.4) ‖u‖Ck+2,�(M) ≤ C
(
‖Lu‖Ck,�(M) + ‖u‖C�(M)

)
∀u ∈ Ck+2,�(M).

(2) Suppose in addition that c ≤ 0 and c ≢ 0. Then the equation

Lu = f where f ∈ C�(M)

has a (unique) solution lying in C2,�(M). Moreover,

(10.5) ‖u‖Ck+2,�(M) ≤ C ‖Lu‖Ck,�(M) ∀u ∈ Ck+2,�(M).
Proof. By a procedure similar to the proof of theorem 10.14, point (1) easily follows from
Schauder estimate 9.3.
In the next we prove point (2). Note that C�(M) ⊂ Lp(M). By theorem 10.15 (2), for

any f ∈ C�(M), there exists u ∈ W2,p(M) such that

Lu = f [strong solution].

By Lp estimate (10.15), we know u ∈ Lpk (M) for arbitrarily large k. Then by Sobolev
embedding theorem 10.13, u ∈ C�(M). Then by Schauder estimate (10.16) we know
u ∈ C2,�(M). Hence we know the bounded linear operator

L ∶ C2,�(M) → C�(M)

is bijective. Then formula (10.5) follows from [Xio, theorem 3.22]. �

Remark 10.17. By Lp estimate (10.2) and Schauder estimate (10.4), for L = ∆ + c, if

Lu = f where f ∈ C∞(M)

has a solution u in Lp2 (M), then u ∈ C∞(M). Moreover, weak solutions also have
regularity. Via subsection 9.I, people can show that:
35For generalp, one use the de�nition of adjoint operator and and regularity ofweak solutions to guarantee
that we can apply the maximum principle for ker L∗ = 0.
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(1) If u ∈ L1loc(M) is a weak solution to Lu = f and if f ∈ Lpk (M), then u ∈ Lpk+2(M);
(2) If u ∈ L1loc(M) is a weak solution to Lu = f and if f ∈ Ck,�(M), then u ∈ Ck+2,�(M).

More generally, for a compactmanifoldM, and for a linear elliptic di�erential operator
P ∶ C∞(E) → C∞(F) of order k, we also have elliptic estimates (Schauder estimate and
Lp estimate), and we also know the existence and regularity of solutions to Pu = v. One
can refer to [Kaz16, chapter 2].

10.D. Poincaré inequality on compactmanifolds. To prove the Poincaré inequality,
the technique for proving theorem 10.14 doesn’t work.
In the next we use the method of Rayleigh quotient to prove the classical version.

Lemma 10.18. Let (M, g) be a closed Riemannian manifoldM. Consider the Laplacian

∆ ∶ H2(M) → L2(M).

Then

im(∆) = {� ∈ L2(M) ∶ ∫
M
� dvol = 0} .

Proof. By lemma 9.18 and Lp estimate (10.2), we know im(∆) is closed. By lemma 9.17
and the fact that ∆ is self-adjoint, we know

im(∆) = ker(∆)⟂.

By the maximum principle [Pet16, theorem 7.1.7], ker(∆) = spanℝ{1}. Then

im(∆) = 1⟂ = {� ∈ L2(M) ∶ ∫
M
� dvol = 0} .

We are done. �

Theorem 10.19. Let (M, g) be a closed manifold. Consider the eigenvalue problem

(10.6) − ∆u = �u.

Then the eigenvalues of (10.6) can be represented as 0 = �0 < �1 < �2 < ⋯. Moreover,
given the Rayleigh quotient

Q ∶ H1(M) ⧵ {0} ↦ ℝ, � ↦
∫M |∇�|2 dvol
∫M �2 dvol

.

Then we have

�1 = Q(u1) = inf
A⧵{0}

Q for A ∶= {� ∈ H1(M) ∶ ∫
M
� dvol = 0}

where u1 is an eigenfunction corresponding to �1.

Remark 10.20. One should pay attention to the choice of A.
(1) We can’t choose A = H1(M). Otherwise, considering u ≡ 1 we know infA⧵{0} = 0.

Therefore, in this case we get nothing.
(2) Also, we can’t choose

A =
{
� ∈ H1(M) ∶ u is not constant

}
.
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It seems like that the variational method shows that the minimizer of infA⧵{0}Qmust
be the �rst eigenvalue and then we get the conclusion. But, in fact, in this case
infA⧵{0}Q doesn’t admit a minimizer!36 Hence the approach is wrong.

Proof. Set

A0 = {u ∈ Lp(M) ∶ ∫
M
u dvol = 0} and A1 = {u ∈ Lp2 (M) ∶ ∫

M
u dvol = 0} .

By lemma 10.18, we know the bounded linear operator

∆ ∶ A1 → A0

is invertible. Sobolev embedding theorem 10.13 yields that the operator

∆−1 ∶ A0 → A1↪A0

is compact. Clearly, ∆−1 is self-adjoint, EV(∆) ⧵ {0} = EV(∆−1) ⧵ {0}, and 0 ∉ EV(∆−1).
By Fredholm alternative [Xio, theorem 5.1], each eigenspace is �nite-dimensional.

Since Lp(M) is in�nite-dimensional, [Xio, theorem 5.12] and spectral decomposition
[Xio, theorem 5.24] yield that EV(∆−1) = EV(∆−1) ⧵ {0} is a sequence converging to
0. Since Lp estimate 10.15 implies that EV(∆) ⊂ ℝ≥0, the �rst assertion easily follows.
In the next we prove the second assertion. First we show that the minimizer of Q

exists. Suppose (�k) is a sequence in A ⧵ {0} such that

Q(�k) → inf
A⧵{0}

Q.

Setting

 k =
�k

‖�k‖L2(M)
∀k,

then Q( k) = Q(�k) for each k, and ( k) is a bounded sequence in H1(M). Since H1(M)
is re�exive, by [Xio, theorem 3.41], there exists a subsequence, which we relabel as ( k),
satisfying

 k ⇀ u in H1(M)

for some u ∈ H1(M). By Sobolev embedding theorem 10.13,  k → u in L2(M), and hence

‖u‖L2(M) = lim
k→∞

‖ k‖ = 1 and ∫
M
u dvol = lim

k→∞
∫
M
 k dvol = 0.

Moreover,

∫
M

|∇u|2 = ∫
M

|||∇ k|||
2 − |||∇( k − u)|||

2 − 2 ⟨∇( k − u),∇u⟩

≤ ∫
M

|||∇ k|||
2 − 2 ⟨∇( k − u),∇u⟩

36Consider �n = C + u
n
∈ A ⧵ {0}, where C ≠ 0 is a constant and u ∈ A. Then Q(�n) → 0 but �n → C,

where C ∉ A ⧵ {0}.
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and hence by  k ⇀ u inH1(M) we know

∫
M

|∇u|2 ≤ lim inf
k

∫
M

|||∇ k|||
2 .

It follows that

Q(u) ≤ lim inf
k

Q( k) = inf
A⧵{0}

Q

Therefore, u is a minimizer of infA⧵{0}Q.
On the other hand, for any u ∈ A ⧵ {0}, consider

f ∶ ℝ × A → ℝ, (t, v) ↦
∫M |∇(u + tv)|2 dvol
∫M(u + tv)2 dvol

.

Then

f′(t, v) =
(
2 ∫M ⟨∇u,∇v⟩ + 2t ∫M |∇v|2

) (
∫M(u + tv)2

)
−

(
∫M |∇(u + tv)|2

) (
∫M 2v(u + tv)

)

(
∫M(u + tv)2

)2

and hence

f′(0, v) = 2
∫M ⟨∇u,∇v⟩ ⋅ ∫M u2 − ∫M |∇u|2 ⋅ ∫M uv

(
∫M u2

)2 .

Note that

f′(0, v) = 0 ⟺ ∫
M

⟨∇u,∇v⟩ ⋅ ∫
M
u2 = ∫

M
|∇u|2 ⋅ ∫

M
uv

⟺ ∫
M
(div (v∇u) − v∆u) =

∫M |∇u|2

∫M u2
⋅ ∫

M
uv

⟺ ∫
M

(
∫M |∇u|2

∫M u2
u + ∆u) v = 0.

Therefore, if u is a minimizer of infA⧵{0}Q, then

∫
M

(
∫M |∇u|2

∫M u2
u + ∆u) v = 0 ∀v ∈ A

and hence
∫M |∇u|2

∫M u2
u + ∆u ≡ C for some constant C.

Since u ∈ A, we know

∫
M

(
∫M |∇u|2

∫M u2
u + ∆u) = 0

and hence C = 0. Therefore, any minimizer u must be an eigenfunction. Since
u ∈ A ⧵ {0}, the minimizer u is not constant, and hence u must be an eigenfunction
corresponding to �k for some k ≥ 1 . Moreover, note that

Q(u) =
∫M |∇u|2

∫M u2
=
∫M −u∆u
∫M u2

= �k.
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Then the second follows from the �rst assertion. �

Remark 10.21. Furthermore, we can compute �k bymin-max principle in a similar way.

Remark 10.22. We say that a function J ∶ W1,p(M) → ℝ is weakly lower semi-
continuous onW1,p(M) if

J(u) ≤ lim inf
k→∞

J(uk)

whenever uk ⇀ u inW1,p(M). Clearly, by red inequalities, we know that the function

J(u) = ∫
M

|∇u|2 dvol

is weakly lower semi-continuous.

Corollary 10.23 (Poincaré inequality). Let (M, g) be a compact Riemannian manifold of
dimension n. Then we have the Poincaré inequality

‖u − uM‖L2(M) ≤ C‖∇u‖L2(M) ∀u ∈ H1(M)

where C−1 is the �rst (positive) eigenvalue of (10.6), and

uM =
∫M u dvol
∫M dvol

.

Proof. Just apply theorem 10.19 to the function u − uM ∈ A. �

For more general versions of Poincaré inequalities, one can refer to [Li12, section 5]
and [Pet16, section 7.1.5].
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