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A BRIEF INTRODUCTION

Conformal geometry is an important tool to study curvatures. The basic topic of
conformal geometry is the conformal deformation of curvature tensors.

Except the standard curvature tensors (Riemannian curvature tensor, Ricci curvature
tensor and scalar curvature tensor), we put forward two new curvature tensors: Schouten
tensor and Weyl tensor. One the one hand, they naturally come from the decomposition
of Riemannian curvature tensor with respect to the trace operator and determine the
properties of curvatures. On the other hand, they have relatively better properties under
conformal transformations.

In conformal geometry we know the basic fact: a manifold is locally conformally flat
iff the Weyl tensor equals to zero (in dimension n > 3). We also classify the properties of
Schouten tensor and Weyl tensor and the study of locally conformal flat manifolds into
the category of conformal geometry.

We put forward two applications.

(1) First, we generalize the scalar curvature via Schouten tensor, and give the curvature
estimate on locally conformally flat manifolds.

(2) Second, based on the transformation laws of curvature tensors under conformal
transformations, we study the prescribed curvature problem via the theory of elliptic
partial differential equations.

In addition, we point out that due to space constraints, we only introduce the 2-
dimensional case in detail for the second application. In fact, Weyl tensor still plays
an important role in high-dimensional cases, which we do not introduce in detail.
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1. PRELIMINARIES

A motivating problem (corollary 1.16):

Problem 1.1. Let (M, g) be a 3-dimensional Riemannian manifold. If g is an Einstein
metric, then M has constant sectional curvatures.

1.A. Algebraic curvature tensors — trace operator, Kulkarni-Nomizu product.
To study the curvature tensors, we put forward the concept of algebraic curvature tensor
onV:

Definition 1.2 (Algebraic curvature tensor). Let V be an n-dimensional real vector space.
Thenwe call T € ®*(V*) an algebraic curvature tensor on 'V if it satisfies:

(1) T(x,y,Z, w) = —T(y,x,Z, w) = _T(xay’w’z) = T(Z, w’x’}’)forall X,y,Z,w S V;
2 Tx,y,z,w)+TQy,z,x,w)+T(z,x,y,w) =0forall x,y,z,w € V.

We denote the space of algebraic curvature tensors on V by R(V*).

Remark 1.3. The Riemannian curvature tensors satisfy the differential property in
addition (see Bianchi second identify [Pet16, proposition 3.1.1]). Here we just use the
pointwise algebraic properties of Riemannian curvature tensors.

In the next we introduce some basic conclusions of linear algebra. First, we note that
R(V*)is a linear subspace of ®*(V*), and its dimension is computed as follows.

Proposition 1.4. Let V be an n-dimensional real vector space. Then
n*(n*-1)

dim R(V*) = B

Proof. See [Leel8, proposition 7.21]. O

Second, we introduce the trace operator tr, : R(V*) — Z3(V*), and try to study R(V*)
via this linear map.

This is just like the process that we derive the Ricci curvature tensor via a Riemannian
curvature tensor. For any g € Z?(V*) which is nondegenerate (not necessarily positive
definite), we define a map

(1.1) tr, : R(V*) - Z2(V*), T~ g'Tjj.

Clearly this is well-defined. It is natural to wonder whether this operator is surjective
and what its kernel is,' as a way of asking how much of information contained in the
Riemannian curvature tensor is captured by the Ricci tensor.

One way to try to answer the question is to attempt to construct a right inverse for
the trace operator.” A natural right inverse operator is induced by the Kulkarni-Nomizu
product, which is a natural product operator that yields algebraic curvature operators.

In other words, we want to decomposes T orthogonally into the traceless part and its orthogonal.
Le. alinear map G : Z2(V*) » R(V*) such that tryoG = id.
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Definition 1.5 (Kulkarni-Nomizu product). Let V be a real vector space. For h,k €
>2(V*), we define the Kulkarni-Nomizu product of h and k by the following formula

(R ©) (01,03, 03,0) = 3 ((03,0,) - k{03, 03) + h(03,03) - k(vy, )

1
) (h(vy, v3) - k(Vy, 04) + B(Vy, Uy) - k(Vy, 03))
The factor 1/2 is not used consistently in the literature, but is convenient when h = k.
Proposition 1.6. Let V be an n-dimensional real vector space, and let g € Z*(V*) be
nondegenerate. Then for h,k € Z*(V*), we know:

(1) h ® k is an algebraic curvature tensor;

2)hdk=koh;

(3) 2tr,(h® g) = (n— 2)h + (trgh) g;

(4 trg(gog) =mn-1g;

(5) (T, h © g), = 2{tr,T, h)g;

(6) In case g is positive definite, |g ® h|; = (n — 2)|h|; + (tryh)™.

Proof. Points (1) and (2) are trivial. Note that
2trg (h © g)jk = g (hilgjk + g — hugji — hjlgik)
higy +nhj —hy —hj = hi'gy + (n—2)h,.
Hence we get point (3). Point (4) follows from point (3) immediately. Also note that
2(T,h® g>g = TUH (hilgjk + hjgu — hugji — hjlgik)

= Tikpug, + Tk, g — T b, g — TR, g,

= Ti*%hug; + T¥h, g + T hy g + TV h; gy = 4(tr,T, h)g.
Hence we get point (5). Then it follows from the preceding points that

lgohl; = (gOhgoh),= 2(tr,(g ® h), h}g
= ((n—-2)h+(tr,h) g, h)g = (n —2)|hl; + (tryh)?

where we use the fact that (g, h) e = trgh. O

Proposition 1.7. Let V be an n-dimensional real vector space with n > 3, and let g €
T2(V*) be nondegenerate. We define a linear map

G : Z(V*) = R(VY), hH< 2 i g)@g.
n-2 (m-1)n-2)

Then G is a right inverse for tr,. Moreover, we have

im (G) = (ker (tr,)) .

Proof. Thefact thattr,oG = id follows from proposition 1.6 (3) (4), i.e. G isaright inverse
for tr,. Via simple linear algebra, it follows that that

dimim (G) = dim (ker (trg))l :
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On the other hand, proposition 1.6 (5) yields that
im (G) c (ker (tr,))

Therefore we get the conclusion by dimensionality. O

1

Remark 1.8. We hence get an orthogonal decomposition

R(V*) = ker (tr,) & im (G)
These results lead to some important simplifications in low dimensions.

Corollary 1.9. Let V be an n-dimensional real vector space, and let g € Z*(V*) be
nondegenerate.

(D Ifn =0o0rn =1, then R(V*) = {0}.
(2) If n = 2, then R(V*) = span{g ® g}.
(3) Ifn = 3, then dim R(V*) = 6, and G : Z*(V*) —» R(V*) is an isomorphism.

Proof. The dimensional results follow immediately from proposition 1.4.

In the case n = 2, proposition 1.6 (4) implies that tr, (g ® g) = g # 0. Therefore,
g ® g # 0 and hence spans the 1-dimensional space R(V*).

In the case n = 3, proposition 1.7 implies that G is injective (using tr,oG = id).
Therefore, G is an isomorphism by dimensionality. [l

Remark 1.10. Corollary 1.9 (3) implies that the Riemannian curvature tensor will be
determined by the Ricci tensor in dimension 3. In fact, in dimension 3, tr, = G, and
hence

(1.2) R =G (tr,R) = G (Ric).

1.B. Weyl tensor and Schouten tensor. Now we apply the conclusions of subsection
1.A to (pseudo-)Riemannian manifolds. We focus on the case that & = Ric.

Definition 1.11 (Weyl tensor and Schouten tensor). Let g be a Riemannian or pseudo-
Riemannian metric. Define the Schouten tensor of g by

2 scal
1.3 P = Ric— ———— -
(1.3) n—2 ¢ (n—=1)(n-2) &
and define the Weyl tensor of g by
. scal
14 W=R-P =R - R + " .
(1.4) b8 n—2 cdg (n—1)(n-2) 808

Remark 1.12. Clearly, we have G(Ric) = P ® g.

Proposition 1.13. For every (pseudo-)Riemannian manifold (M, g) of dimension n > 3,
(1.5) R=W+PDg

is the orthogonal decomposition of R corresponding to R(T3;M) = ker (tr,) & (ker (trg))l.
(This implies that the trace of Weyl tensor is zero.)

Proof. 1t follows directly from proposition 1.7. O
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Proposition 1.14. On every (pseudo-)Riemannian manifold (M, g) of dimension 2, the

Riemannian and Ricci tensors are determined by the scalar curvature as follows:
scal scal

R=7g®g and R1C=Tg.

Proof. By corollary 1.9 (2), there exists f € C*°(M) such that R = fg ® g. Taking traces,
we get via proposition 1.6 (4) that Ric = fg, and then scal = tr(Ric) = 2f. Done. O

Proposition 1.15. On every (pseudo-)Riemannian manifold (M, g) of dimension 3, the
Weyl tensor is zero, and Riemannian curvature tensor is determined by the Ricci tensor via
the formula

R=P®g=2Ric®g—%alg®g.

Proof. Corollary 1.9 shows that G : Z*(V*) - R(V*) is an isomorphism in dimension
3. Since tr,oG = id, we know tr, = G~ is also an isomorphism. Bacause tr,W = 0 by
proposition 1.13, it follows that W = 0. The second assertion follows from (1.2). O

Corollary 1.16. Let (M, g) be a 3-dimensional Riemannian manifold. If g is an Einstein
metric, then M has constant sectional curvatures.

Proof. The conclusion follows from proposition 1.15 and Schur theorem 6.1. U

Moreover, using the traceless Ricci tensor, we can further decompose the Riemannian
curvature tensor.

Proposition 1.17. Let (M, g) be a (pseudo-)Riemannian manifold of dimension n > 3.
Then the (0, 4)-curvature tensor of g has the following orthogonal decomposition:

R=W+

. o scal
Ric ®g+n gDhg.

2 ———
n—2 (n—-1)
Therefore, in the Riemannian case,

2
scal

R? = W2+ e

4 P
PRy |Ric® ® g|g +

4
— 2 .
= |W|g+n 2|R1c

g o gl;

2 2 2
+ —— scal’.
g nn-2)

Proof. 1t follows from the definition and proposition 1.6. O

1.C. Curvatures of conformally related metrics. By formula (1.5), we can reduce
the analysis of Riemannian curvature R to the analysis of Weyl tensor W and Schouten
tensor P.

An important property of Weyl tensor W is its transformation law under conformal
changes of metric. Moreover, we can use W to judge whether the manifold is locally
conformally flat, which explains the geometric significance of the Weyl tensor.

Definition 1.18. Two Riemannian or pseudo-Riemannian metrics on the same manifold
are said to be conformal to each other if one is a positive function times the other.
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Proposition 1.19. Let (M, g) be a (pseudo-)Riemannian n-manifold (with or without
boundary), and let § = e*' g be any metric conformal to g. If V and V denote the Levi-
Civita connections of g and g respectively, then

(1.6) VY = VY + (XY +(Y)X —(X,Y)- VF.
In any local coordinates, the Christoffel symbols of the two connections are related by
(1.7) f:lk] =T§, + fi65 + f,;6f — 8 f.gij-
Proof. Recall that
1
FZ = Egkl (aigjl +9,81 — algij)-

Then we know

~ 1
Fi'{j - Ee_zfgkl (0; (e gy) +9; (¥ gu) — 9, (e gyy))

1
= ze_zfgkl (e¥/0,g; + €/ 0,8, — e¥ dg;;)
1
+§e_2fgkl (2e2ff;igjl + 2esz;jgil - Zesz;lgij)
= FZ- + f;igklgjl + f;jgklgil - f;lgklgij
= Ffj + f;i5;-c + f;jalk - gklf;lgij-

Hence we get formula (1.7). Clearly, formula (1.6) is a straightforward computation using
formula (1.7) in coordinates. We are done. 0

Corollary 1.20 (Laplacian on functions). Let (M, g) be a (pseudo-)Riemannian manifold
(with orwithout boundary), and let g = e*/ g be any metric conformal to g. Then for smooth
function ¢, it holds that

Rp = (Ap—(n=2)(V/.V8),).

Proof. Note that the Laplacian on functions can be expressed as

. 0% . oo}
A = gik——— — gikpl —Z|
?=8" 5riax & Tiga
Then the conclusion easily follows from (1.7). O

Proposition 1.21. Let (M, g) be a (pseudo-)Riemannian n-manifold (with or without
boundary), and let § = e*/' g be any metric conformal to g. In the Riemannian case, the
curvature tensors of g (represented with tildes) are related to those of g by the following
formulas:

(1.8) R=e¥(R-2Hessf O g+2(df®@df)0g—|Vf2-gng),
(1.9)  Ric=Ric—(n—2)Hess f + (n —2)(df ® df) — (Af + (n—2)|Vf|?)g,
(1.10) scal = e7%/ (scal — 2(n — DAf — (n — D(n — 2)|Vf|2).

Ifin addition n > 3, then
(1.11) P=P-2Hessf+2df @df — |Vf|2-g,
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~

(1.12) W =eWw.

In the pseudo-Riemannian case, the same formula hold with each occurrence of |V f |§
replaced by (V f, Vf)g.

Proof. Recall that
Rijia = 8 (T — 8,100 + TV, I — T, T ).
Let (x') be normal coordinates centered at p. Then at p we have®
f;i;j = ajaif’
]‘:Z{j = f;i5j'{ + f;jalk - gklf;lgija
ami::;{j = amF;{j + f;i;m5§-{ + f;j;m5§‘ - gklf;l;mgij-

Then we have

=

ikl = 8&m (air?;{ =0l + F;kF?; - F?krj"?>

= ezf(Rijkl - (f;i;lgjk + [ — [ — f;j;lgik)
+ (f;if;lgjk + [ w8 — fif & — f;jf;lgik)
_gmrf;mf;r (gilgjk - gikgjl) )

which is the coordinates version of (1.8). Then the rest of this proposition follows from
proposition 1.6 and formulas (1.3) and (1.4). O

In the next we begins to explain the geometric significance of the Weyl tensor.

Definition 1.22. A Riemannian manifold is said to be locally conformally flat if every
point has a neighborhood that is conformally equivalent to an open subset of Euclidean
space.

Similarly, a pseudo-Riemannian manifold is said to be locally conformally flat if every
point has a neighborhood that is conformally equivalent to an open subset of pseudo-
Euclidean space.

Corollary 1.23. Suppose that (M, g) is a (pseudo-)Riemannian manifold of dimension
n > 3. If g is locally conformally flat, then its Weyl tensor vanishes identically.

Proof. 1t follows from proposition 1.21 directly.” O

In fact, in dimension n > 4, W = 0 is also a sufficient condition. But in dimension 3,
as we showed in proposition 1.15, we always have W = 0. So to understand that case,
we must introduce one more tensor field.

Definition 1.24. On a (pseudo-)Riemannian manifold, the Cotton tensor C is defined by
2C =-DP ie 2Cij =P — Py,
where D is the exterior covariant derivative, i.e.
DT)X,Y,Z)=—(V,T)X,Y)+ (V,T)X,Z) forany(0,2)-tensorT.

3Covariant derivative and directional derivative are mixed in this calculation. It will be convenient to unify
them with normal coordinates.

“*Note that for (pseudo-)Euclidean spaces R = W = 0 and P = 0.
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Proposition 1.25. Let (M, g) be a (pseudo-)Riemannian manifold of dimension n > 3,
and let W and C denote its Weyl and Cotton tensors respectively. Then

C (VW) = (n = 3)C.

Proof. The equation W = R — P ® g yields that
2Wija = 2R;jig — Pugjk — Pji&u + Pik&j1 + P18
and hence
2Wia" = 2R — P8 — P’ &u + Pu'gn + P Qi
Note that the second Bianchi identify yields that

. g 1
Rijkim + Rijimk + Rijmiy =0 = Rijii' = Rjy — Rje = Ry' = Escal;l.

Then by formula (1.3), we know
2 scal . scaly

p.o=—_% Rp.___ 5% P =
L A I ) B

It follows that

2Wijkl;i = 2Rijkl;i - Pil;igjk — ij;igil + Pik;igjl + le;igik
scal, scal.,
_1gjk_ij;l+ lg]l+P

= (n=2)(Pjiy = Pjix) — Pjig + Pjrge = 2(n = 3)Cjy.

Hence we get the conclusion. U

= ZRjk;l - 2le;k -

Remark 1.26. Basic idea of computation: we first reduce it to an equation about
curvature tensors R, P, W, and then use the special properties of curvature tensors.

Proposition 1.27. Let (M, g) be a (pseudo-)Riemannian manifold of dimension n > 3,
and let § = e¥ g for some f € C*(M). If C and C denote the Cotton tensors of g and g
respectively, then

5 =C+ lva ie. éijk = Cijk + f;lWlijk'

Proof. Formula (1.11) yields that
(1.13) ﬁij =P —2f ;i +2fuf — " fn&ij»

and hence

Piiw = Pije—2fuju + 2 uuck s +2F S o — "o & — [ fomkc8ij
= Pijx—2fujn +2f S+ 2f0if ke — 20" f mkc8ij-
It follows that
Piw—Py=(Pijs—Puj) =2 (Fjuc — Frinj)

1.14
( ) +2 (f;i;kf;j - ;i;jf;k) -2 (f’mf;m;kgij - f;mf;m;jgik) .
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Moreover, by formula (1.7) we know

Pz = (V5P)(6.,0;) =0,P; —P(V,0,0;) —P (8, V5,0;)
= 8P, -P(T\38,9;) - P( WL a)
= 8P, -P(r 4,9, —P( l,r;{ja)
— (£u8L+ [0l — 8 F &) Py — (Fud' + £10L — 8" 84s) P
= Uk (kaz; + £y ij f;lgkiEj + f;kjsij +f;j§ik — f;lgkjjsil)
and hence by the symmetry of P and g we know
(1.15) Pz—Pys=Pj—Py,;—-2(P0g)
Hence by formulas (1.14) and (1.15) we know
C7ijk = Cijx— (fz,k ;i;k;j) + (f;i;kfj - ijfk)
—(Ff " f mik8ij — f;mf;m;jgik) (Pog)

In the next we kill the high-order terms of f.” Specifically, by Ricci identity 6.15 we know

f;i;j;k - f;i;k;j = _Rkjisf;s

sz]k

Sl]k

and by (1.13) we know
2f.; =Py _ﬁij +2ff = ffs&; Vi, J.
It follows that
C~'ijk = Cijk— (fljk ikj)"‘(fikfj— ijfk)
_(f mf;m;kgl] f fm]glk) ( ®g)

= Cj+R'fs— (PO g)wk
"% (P — Py +2f if = F*F s8ux) [
_% (Pij - f)ij +2ff— f;sf;sgij) [
3178y (P = P+ 2 = 5 )

1, - o
+§f’ 8ik (ij_ij+2f'mf'j_ ’f~s8mj)
= Cijk +Rsijkf;s_(ﬁ®g) f*—= @g)wkfs+(P®g)
= Cij + Wypf”
We are done. O

Sl]k

sijk Sl]k

Remark 1.28. One can refer to [Gre, Conformal Transformation of the Cotton Tensor]|
or [Gar, theorem 4.3.1] for new proofs.

Corollary 1.29. C is a conformally invariance in dimension 3.

>The basic idea for simplification is to kill the high-order terms, and then reduce our problem to the
property of curvature tensors. Seeing from the result we also know that the high-order terms will cancel.
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Proof. In dimension 3, proposition 1.15 shows that W = 0, and hence the conclusion
follows from proposition 1.27. O

Corollary 1.30. If (M, g) is a locally conformally flat 3-manifold, then the Cotton tensor
of g vanishes identically.

Proof. Note that for (pseudo-)Euclidean spaces P = 0 (and R = W = 0). Then the
conclusion follows from proposition 1.27. O

The real significance of the Weyl and Cotton tensors is explained by the following
important theorem.

Theorem 1.31 (Weyl-Schouten). Let (M, g) be a (pseudo-)Riemannian manifold of
dimension n > 3.

(1) Ifn > 4, then (M, g) is locally conformally flat iff its Weyl tensor is identically zero.

(2) If n = 3, then (M, g) is locally conformally flat iff its Cotton tensor is identically zero.

Proof. The necessity of each condition was proved in corollaries 1.23 and 1.30. To prove
sufficiency, suppose (M, g) satisfies the hypothesis appropriate to its dimension.

First, we note that W = 0 and C = 0 by propositions 1.15 and 1.25. Moreover, by
formula (1.12), every metric § = e*/g conformal to g also has zero Weyl tensor, and
hence its curvature tensoris R = P ® g.

Second, we prove that in a neighborhood of each point, the function f can be chosen
to make P = 0, which completes the proof by proposition 6.21. From formula (1.11), it
follows that P = 0 iff

(1.16) P—2Hessf+2df @ df —(Vf,Vf)-g=0.

To locally solve the above second order PDEs (1.16), our idea is as follows:

(1) Find a solution with d f substituted by w. (Then it’s reduced to a first order PDEs,
and we may be able to apply the Frobenius theorem (see section 7).)
(2) Show that dw = 0; then by Poincaré lemma we can find f locally.

Let A : T*M — ®*T*M be a smooth map given by
Alw) = g +oQ@w— %(w,w) g Yo eI'(M,T*M).
By example 7.17, there exists a local solution w to the following first order PDEs:
A(w); j = Wi
in a neighborhood of each point. Moreover, since A(w) is symmetric, we know®
0j; = wy; + Iy = @y + Iy = 0.

It follows that dw = 0. Then by Poincaré lemma [Leel8, theorem 17.14], in some
(possibly smaller) neighborhood of each point, there is a smooth function f withw = df;
this f is the function we seek. O

®Here we use formula (7.13).
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2. CURVATURE ESTIMATE AND ITS APPLICATIONS

2.A. o-scalar curvature. First, we generalize the concept of scalar curvature via
Schouten tensors.

Definition 2.1 (o -scalar curvature). Let (M, g) be a Riemannian manifold, and let P be
the Schouten tensor. Then the k-th scalar curvature of M is tr, (P), where tr; (P) is defined
in definition 5.1.

Remark 2.2. Clearly, by definition 1.11 we know

tr,(P) = tr (P) = scal.

__n=s
(n—1)(Mn-2)
This explains why tr, (P) is called o, -scalar curvature.

The ideas and tools to make curvature estimates are introduced in section 5. Roughly
speaking, we will add restrictions on tr,(P) to derive estimates of G,;,(Ric) and G, ,(P).
These estimates have the following basic applications:

(1) the estimates of G,,;,(Ric) will give a lower bound of Ricci curvature (subsection 2.B);
(2) the estimates of G, ,(P) will lead to the vanishing theorems (subsection 2.C).

Remark 2.3. Note that tr;(P)’s determine the spectrum of P, which almost determine P
(corollary 4.3 shows that P is determined by the spectrum and eigenvectors of P! i)

Therefore, when M is conformally flat, these methods have great power, since in this
case R is determined by P (R = P ® g).

Specifically, the restriction is that g, € T}/, g, € f:, ger,orgery;
Definition 2.4. Let (M, g) be a Riemannian manifold and x € M. We say that g, € T if
tr;(P)(x)>0 V1<j<k,
and we say that g, € fz if
tr;(P)(x) >0 V1<j<k
Moreover, we say that g € T, (resp. g € f:) ifg, € I} (resp. g, € f;)for allx € M.
2.B. Estimates of Ricci curvature — first geometric quantity.

Theorem 2.5. Let (M, g) be a Riemannian manifold and x € M. Assume k > 1. If
—+
g, € I} (resp. g, € T) for some k > n/2, this its Ricci curvature is positive (resp. non-

—+
negative) at x. Moreover, if g € I'y for some k > 1, then

In particular, if k > n/2, then

Ric >

(2k —n)(n — 1) ;m\~& =
— (k) tri (P) - g.

Proof. 1t follows directly from the estimate of first geometric quantity (proposition 5.6).
O
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In case k > n/2, if M is locally conformally flat in addition, these estimates will lead
to a more precisely result about classification.

Corollary 2.6. Let (M, g) be a compact and locally conformally flat manifold. Assume

—+

g € I, with k > n/2. Then (M,g) is conformally equivalent to either a space from or
a finite quotient of Riemannian S"*(c) x S* for some constant ¢ > 0 and k = n/2. In
particular, if g € T}, then (M, g) is conformally equivalent to a spherical space form.

Proof. One can refer to [GVWO02, corollary 1]. O

2.C. Vanishing theorems — second geometric quantity. In the next we apply
the Bochner technique to differential forms on locally conformally flat manifolds. By
subsection 6.D and Hodge theorem 6.23, the key point is to show that

g (Ric(w),w) >0, VYw e HP(M)
where
HP(M) ={w € QP(M) : Ayw = 0}.
In practice, we will show that the linear operator
Ric : QP(M) — QP(M)

is non-negative (and in addition is positive at some point). Specifically, lemma 6.19
implies that

(1) ifRic : QP(M) — QP(M) is non-negative, then each harmonic p-form w is parallel;
(2) if in addition Ric is positive at some point, then F = {0}.

Another key point is that the positivity of Ric is highly related to the second geometric
quantity of P (in case M is locally conformally flat). Specifically,

G,p(P)(x) 20 = Ric: APTyM — APTM is non-negative
G,p(P)(x) >0 = Ric: APTyM — APTM is positive

We will show this later.
First we simplify the Weitzenboch curvature operator Ric for differential forms.

Proposition 2.7. Let (E;) be a local orthonormal frame of TM and let (E") be its dual. For
w € Q*(M), we have
(2.1) Ric(w) = ) B/ A (EDR(E), E))w.

Proof. Suppose w € Q*(M). By formulas (6.2) and (6.3) we know

1

o 2 2D (B @ iERELE)w)).

Lj=1 o

DB A (EDR(E, E)w =

For each o € P, we associate with it the following map

n—1 if2<n<i

ue :{1""9@9"'38}_){19"'9@3"'9S}9 O'(n)H . .
n ifn>i
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then using that i(E))R(E}, E;)w and R(E|, X;)w are differential forms, we know

<Z E/ A l(El)R(El’E])a)> (Xl’ 9Xs)

= G _1 1! Z Z Z (-1 (° (B @ i(El)R(El,Ej)a))) X, X,)
* 1,j=1i=1 0€P;
o(1)=i

B (s_ll)l 2. 2 2, CDEEIX) - (i(BDRE, Epw) (KXo, -+ » Xog)
' 1,j=1i=1 0€P;
o(1)=i

= (S_ll)' D200 D (FDel(=D)=EIX) - (i(EDR(E, Ew) (Xy, -, Xy -+, X,)
* 1,j=1i=1 O€P;
o(1)=i

- (s—ll)' D00 D) CDTEIX) - (i(EDR(EL Epw) (Xy, -+, Xy -+, X,)
: l,j:1 i=1 O'EPS
o(1)=i

= > D(-DEI(X) - (i(BEYRE;, Epw) (Xy, -+, Xi o+, X,)

1,j=1i=1

= Z Z(_l)i_l (R(El’Xi)w) (El’Xl’ s)/(\is ’Xs)

I=1i=1

= ZZ (R(El’Xz)w) (X19 ’El’ ’Xs) = RIC(C‘)) (X19 ’Xs)

I=1i=1

where we use the fact that (—1)°/(=1)/7! = (—=1)i-1 O

Remark 2.8. Clearly, we have
(2.2) Ric(fw) = fRic(w) Vf € C®°(M).
In the next we simplify Ric(w) furthermore on locally conformally flat manifolds. This
is natural, since for a conformally flat manifold M, we have
R=Pp»g, whereP isthe Schouten tensor.

which shows that the curvature tensor is easy to understand via P.

Proposition 2.9. Let (M, g) be a locally conformally flat manifold. We regard the Schouten
tensor P as a symmetric (1, 1)-tensor P! 5 Then for each x € M, by corollary 4.3, there exists
an orthogonal basis (e;) of T,.M such that

P(e;) = Aje; forsome A; € R.

"We extend 7, to 7, € P, by setting 7, (¢(1)) = o(1). Then (—1)/7e| = (—1)!%!, and clearly we have
(=Dlol(=1)l7el = (=1)lol(=1)ITe| = (=1)IFo00l = (—1)i-1,
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WLOG we consider w = e* A --- A eP; then

(2.3) 2Ric(w) = [ (n — p)Z/l +p Z A .

i=p+1

Remark 2.10. In fact, by formula (2.2), formula (2.3) shows how to compute Ric(w) in
the general sense.

Proof. As in subsection 6.B, we regard R(e;, e j) as a derivation determined by itself as a
(1, 1)-tensor. Specifically, note that

2R(e,e)(X, ) = 2(P ® 8) (e, ¢}, X, )
= P(e;, w*)g(e;, X) + P(ej, X)g(e,, @) — Ple;, X)g(e;, @) — Ple;, w)gler, X)
= (e, @) (e;, X) +(Ae;, X) (e, @) — (Lie, X) (ej, w*) — (A,¢;, F) (e, X)
= (A + 1) (e, ") e;, X) — (e1. X) (e}, %))
and hence
2R(ELE) = (4 + 1)) (e/()e,—€l(2)e;) =4+ 1) (! @ e —el Qe;).
Recall that if e A --- A €' # 0 then we have
e (@ n e net) = |0 | X | l:¢{.i1,...,is}
(=1)* e Aev Al A Al T =0

then it follows from proposition 6.7 and formulas (6.4) (2.1) that
2Ric(w) = Y. e/ Ai(e)2R(e, e;)(e A+ AeP)

np
= D, D el nile) (e A A (2R(ep, €))ek) A -+ AeP)
jl=1k=1
n

p
= ; kZ(/ll +2)e! niCe) (e Ao A (85— 8Fel) Ao AeP)
jl=1k=1
n o p
= 22

I=1 k=1
n

L+ A)ek ni(e) (et A Aek Tt At AekTE A AeP)

14
=D 0 A+ )l Nile) (1A - AT AR AR A AeP)

=1k=1

J
nop

= > D+ nie) (e A AT A AT - AeP)
=p

1
I=p+1 k=1

n

p
= Z E(/ll+/1k)a)— (n— p)Zl +p Z A |w.
I=p+1

k=1 i=p+1

We are done. O

Now, it’s clear that

if the second geometric quantity G, ,(P) > 0, then vanishing theorems follow



Zhiyao Xiong 15

where the second geometric quantity is introduced in subsection 5.A. In the next we use
subsection 5.B, the estimates of geometric quantities, to derive vanishing theorems.

Remark 2.11. For the sake of convenience, let bq denote the g-th Betti number, let S"~?
denote the standard sphere of sectional curvature 1, and let H? denote a hyperbolic plane
of sectional curvature —1.

Proposition 2.12. Let (M, g) be a compact, locally conformally flat manifold and let 2 <
—+

k <n/2and1 < p <n/2. Suppose g € T';, and tr,(P) is not identical to zero in M.

(1) IfE,, €T,_ andE, , & T, then

b,=0 for p<q<n-p.

—+
(2) Suppose E, , € T'y, oy (E, ) = 0 and tr,(P) > 0 at some point in M, then
by,=0 for p<qg<n-p.

—+
(3) Suppose E,, , € Ty, oi(E,, ;) = 0, then b, # 0 iff (M, g) is a quotient of S"™P X HP.

Proof. Under the conditions given in (1) and (2), the estimate of second geometric
quantity (proposition 5.10) implies that

Ric : QP(M) — QP(M)
is a non-negative operator and positive at some point. Therefore, by Bochner technique
(lemma 6.19) and Hodge theorem 6.23, we know b, = 0for p <q <n - p.
In the next we prove point (3). By Hodge theorem 6.23, there exists a non-zero

harmonic p-from w. Again, the estimate of second geometric quantity (proposition 5.10)
implies that

Ric : QP(M) — QP(M)

is a non-negative operator. Therefore, by Bochner technique (lemma 6.19), w is parallel.
After showing the existence of such parallel and non-zero harmonic p-from w,
[GLWO05] claims that the conclusion follows form a technique of holonomy group. [

Theorem 2.13. Let (M, g) be a compact, locally conformally flat manifold with tr,(P) > 0.
—+
(1) Ifg € T forsome2 < k < n/2, then

b, =0 for [n+1

(2) Suppose g € T';, then

]+1—k§q§n—<[nT+1 +1—k>.

n—\n n+n
b, =0 for > ] <qg< 5 .
—+ n—yn . .
Ifg €T, and b, # 0 where p = ——, then (M, g) is a quotient of S"P X HP.

2

(3) Ifg € T} for some k > #, then

b,=0 for 2<q<n-2.

=t n—/n
Ifg €Ty and b, # O wherek = T\/— then (M, g) is a quotient of S"~% x H?.
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Proof. 1t follows from proposition 2.12 and proposition 5.11. U
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3. CONFORMAL DEFORMATION OF SCALAR CURVATURES

3.A. Introduction. The core problem is as follows:

Problem 3.1. Let (M, g) be a closed Riemannian manifold with dimension n > 2, and let
Cy=1{pg : p € C(M), p > 0}.
Given h € C®(M). Does there exist g € C, such that scal = h?

By formula (1.10), we know
scal = e~/ (scal — 2(n — DAf — (n — 1)(n — 2)|V.f|?)
for g = e*/g. Therefore,
(1) If n = 2, for g = e*g we have
(3.1) scal = e~ (scal — 2Au).

4
(2) If n > 3, for g = un—2g we have

P — n+2

_n2 4n—1
(3.2) scal = u n—2 <scal ‘U — (n > )Au>.

Remark 3.2. For the case that n > 3, we set f = ¢(u) to kill the gradient term, where ¢
is to be determined. Namely, since

Ap(u) = p(u) + ¢(w)|Vu|* and |Vu)|> = $(u)*|Vul?,
we need to find ¢ with
2¢ + (n—2)¢* = 0.

Then we set ¢ = iz log u.
—

If h is constant, then problem 3.1 becomes the Yamabe problem. In dimension n = 2,
Yamabe problem follows from the uniformization theorem. In dimension n > 3, Yamabe
problem is solved by Yamabe (1960), Triidinger (1968), Aubin (1976), and Schoen (1984).

Theorem 3.3 (Yamabe, Triidinger, Aubin). The Yamabe problem can be solved on any
closed manifold M with A(M) < A(S"), where S" is the sphere with its standard metric and
Ju scal dvolg
-2
(S dvoly) -

Theorem 3.4 (Aubin). If M has dimension n > 6 and is not locally conformally flat then
AM) < A(S™).

AM) = inef 9(g), where 9Q(g) =
gee,

Theorem 3.5 (Schoen). If M has dimension 3, 4, or 5, or if M is locally conformally flat,
then A(M) < A(S™) unless M is conformal to the standard sphere.

Yamabe put forward his problem in order to prove the Poincaré conjecture. By
corollary 1.16, to prove the Poincaré conjecture, it suffices to show that any simply
connected 3-dimension manifold admits an Einstein metric. Clearly, Yamabe problem
is our first step.
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Moreover, let M be the colletion of all Riemannian metrics on M, and we set

AM,g) = lncf Q(g), and A(M) = sup inf Q(g).
gee,

gem 8€C
Then we have:

(1) Ifg € €, with Q(g) = A(M, g), then g has constant scalar curvature; [Euler-Lagrange
equation]|
(2) If g € M with Q(g) = A(M, g) = A(M), then g is Einstein.

We say that g achieves A(M) if Q(g) = A(M, g) = A(M). Then the standard metric g,
on S" with n > 3 achieves A(S"), and the standard metric g, on T" achieves A(S").?
It’s still unknown that whether the Poincaré metric g_; achieves A(H").

3.B. The two dimensional cases. First we consider the case that scal is constant (in
dimension 2). As we said before, we can solve (3.1) by the uniformization theorem.

Theorem 3.6 (Uniformization theorem). Every simply connected Riemann surface is
biholomorphic to one of three Riemann surfaces: the open unit disk, the complex plane,
or the Riemann sphere.

Proof. One can refer to [Chal]. O

Corollary 3.7. Let M be an orientable closed 2-dimensional Riemannian manifold. Then
M admits a conformally equivalent metric of constant curvature.

Proof. 1t’s well-known that a Riemann surface with a complex structure corresponds to
a 2-dimensional oriented manifold with orientation-preserving isothermal coordinate
charts, and that biholomorphic maps correspond to conformal transformations.

By this correspondence and theorem 3.6, each such is conformally equivalent to a
unique closed 2-manifold of constant curvature, so a quotient of one of the following
by a free action of a discrete subgroup of an isometry group:

(1) the sphere (curvature +1);
(2) the Euclidean plane (curvature 0);
(3) the hyperbolic plane (curvature —1).

Hence we get the conclusion by the classification of closed orientable Riemannian 2-
manifolds. O

In the next we consider problem 3.1 for general scal (in dimension 2). Our equation
(3.1) becomes

(3.3) Au—K+Ke* =0

where K is the Gaussian curvature, and K is a given function.
First we note that Gauss-Bonnet formula yields that

f K dvol, = 27 y(M).
M

8There are no metrics on T" with positive scalar curvature. See [Li] and [GL83].
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If u solves (3.3), then we have
(3.4) / Ke* dvol, = 2 y(M).
M

This is just the Gauss-Bonnet formula for (M, g), since dvol; = e* dvolg9 and K is exactly
the Gaussian curvature for g.

Clearly, in cases where y(M) has different signs the given function K should satisfy
different kinds of conditions. Hence, we separate our discussions into three cases
according to whether y(M) is negative, zero, or positive.

Case 1: y(M) < 0. In this case, although the existence problem of (3.3) has not been
completely resolved, we have a relatively good understanding for the problem. For
this case it seems reasonable to solve (3.3) by the so-called principle of “sup- and sub-
solutions”. The following is a simple case of this principle.

Proposition 3.8. Let (M, g) be a smooth, compact, Riemannian manifold. Consider the
semi-linear elliptic equation

(3.5) Au+ f(x,u)=0

where f € C*(M X R). Suppose that there exist ¢, € C*(M) satisfying
A¢ + f(x,¢) 20,
A + f(x,9) <0,

(such ¢ and ) are called respectively a sub-solution and a sup-solution for (3.5)), and ¢ < .
Then (3.5) has a solution u € C*(M) such that ¢ < u <.

(3.6)

Proof. The idea is as follows: we use the linearized operator to derive an approximation
sequence, and then use elliptic theory to show the regularity.
Find a constant A with —A < ¢ <9 < A, and find a sufficiently large c such that

(3.7) F(x,t) =ct+ f(x,t) isincreasingint € [—A, A] for any fixed x € M.
Since ¢ > 0, the linearized elliptic operator (where 0 < a < 1)
Lu=—Au+cu : C**(M) - C**(M)

is invertible (see theorem 10.16). Moreover, by the maximum principle, L is a positive
operator, i.e.

(3.8) Lv, > Lv, = v; > 0,.
Now we define inductivey
¢0 = ¢’ ¢k = L_l (F(x’ ¢k—l)>’ k > la

(3.9) bo=9, Y=L FC ) k21

Then
(3.6)(3.7)(3.9) = L¢ <L, = F(x,¢) < F(x,9) = Ly, <Ly

This claims easily follows from vol = /det(g; j)dx1 A Adx™.
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and hence by positivity (3.8) we know
< <P <.

Similarly, by induction we know

PP P Y S <P, Ve 1
Then pointwisely, ¢, — uand ¢, > uwith¢p <u <u <.

(1) By lemma 8.9, the pointwise convergence is in fact a convergence in LP(M) for all
1<p < oo;

(2) By LP estimate 10.15, the convergence in L?(M) is in fact a convergence in Lf (M).

(3) Taking a sufficiently large p, then Sobolevembedding theorem 10.13 implies that the
convergence in Lf (M) is in fact a convergence in C**(M).

(4) By formula (3.9) and Schauder estimate 10.16, the convergence in C*%(M) is in fact
a convergence in C®(M).

Therefore, taking limit we get
Lv = F(x,v)
where v = u or u and v € C*(M). Then we get the conclusion. O

Now we come back to our equation (3.3).

Proposition 3.9. Suppose y(M) < 0. Then a sufficient condition for the existence of a
solution of (3.3) is that there exists a sup-solution 1 € C*(M) for (3.3).

Proof. By proposition 3.8, it suffices to find a sub-solution ¢ for (3.3) such that ¢ < 1.
Note that
Jy K dvol

- Jy dvol

By corollary 6.24, K — K, = Af for some f € C*(M). Setting ¢ = f — c for sufficiently
large c, then ¢ < 7. Note that

A¢p — K + Ke* = —K,, + Ke?¥/ >

K, : = f(K—KO)dvolzo.
M

and that
x(M) <0 = K, <0 (Gauss-Bonnet).

Therefore, pick a sufficiently large c, we get a sub-solution as desired. We are done. [J

Corollary 3.10 (Kazdan-Warner). If y(M) < 0, K < 0 but K is not identically zero. Then
(3.3) has a solution u € C*(M).

Proof. By proposition 3.9, it suffices to find a sup-solution. By corollary 6.24, there exists
f € C®(M) solves

Afzfo_ﬁ

where K, is the mean value of K. We set ¢ = af + b where a and b are to be determined.
By condition, K,, < 0. Pick sufficiently large a and b such that

akKy, < K(x),Vx €M and e“**—qa>0.
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Then
Ap —K +Ke¥ = aK, — K + (e¥** —a)K <0,
which shows that 1 is a sup-solution. We are done. 0J

Note that condition (3.4) indicates that, in the case y(M) < 0, for (3.3) to have a
solution it is necessary that K takes negative values somewhere. However, if K changes
sign it may happen that (3.3) has no solutions. In such a case, we do not know the
necessary and sufficient conditions for the solvability of (3.3).

Case 2: y(M) = 0. This case has been completely solved.

Theorem 3.11. Assume y(M) = 0. Then (3.3) has a smooth solution iff either
(1) K=0,or
(2) K changes sign and satisfies

(3.10) f Ke?*! dvol < 0,
M
where f is a solution to Af = K.
Proof. Necessity. Note that
xM)=0 = f K dvol =0 (Gauss-Bonnet),
M

= 3dfeC>*WM) with K=Af (corollary 6.24).

If u is a solution to (3.3), then setting v = u — f, we get

(3.11) Av + Ke?*2 = 0.

Therefore,
/Eezf dvol = —/ e 2 Av dvolzf [(V(e=?), Vv) — div(e~®*Vv)] dvol
M M M

—2f e~2’|Vu|?dvol < 0.
M

If this integration equals to zero, clearly v is constant, and hence (3.11) implies that K =
0. Therefore, if K # 0, then (3.10) holds, and clearly K changes sign.

Sufficiency. If K = 0, then f is the solution. In the next we assume that K # 0.

It suffices to find v = u — f that satisfies (3.11). The idea is to apply the method of
Lagrange multiplier 8.2 and the variational method, which transfers the equation to a
minimizer problem.

Specifically, set

A= ggb eLiM) : f ¢ dvol = f Ke?*2f dvol = OI
M M

and
1

T IAM) > R, ¢H§f|v¢|2.
M

We consider the problem inf , J.
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(1) First we prove that there exists v € A such that J(v) = inf ,J.
Suppose (¢;) is a sequence in A such that

J(¢) — ir}lf].

Clearly, Poincaré inequality 10.23 implies that (¢,) is bounded in L}(M). Since L3(M)
is reflexive, by [Xio, theorem 3.41], there exists a subsequence, which we relabel as
(¢,), satisfying

¢ —v in L3(M)
for some v € L}(M). Since J is weakly lower semi-continuous (see remark 10.22),

J(v) <liminfJ(¢;) = ir};f J.
The Sobolev embedding theorem 10.13 implies that ¢, — v in LP(M) for any p > 1,
and hence

i—oo

M

f vdvol =lim | ¢;dvol = 0.
M
Moreover, by the subsequent technique lemma (corollary 3.15), we know

/ Ke?*¥ dvol = lim | Ke** dvol = 0.
M =M
Therefore v € A. Hence we find a minimizer.
(2) Then we show that the minimizer v (up to a constant difference) is a solution to (3.11)
in the sense of L?(M)-weak solution.
Applying the method of Lagrange multipliers 8.2," there exists a, 8 € R such that v

is a critical point of

T:LX(M)->R, ¢~ %f |V¢|2dvol—ocf¢dvol—5ffe2¢+2fdvol.
M M M

Note that for any ¢ € L(M), we have

d
0=

- f ((Vu, V¢) — ag — 2pKe**+?/ ¢) dvol
M

TJ(v + t9)

t=0

= —/ (Av + o + 2BKe?+2/) ¢ dvol
M

Therefore, in the sense of L}(M)-weak solution, v satisfies

Av + a + 2BKe*+¥ = 0.

10get f =17 : L%(M) — R and define g : L%(M) — R? by

¢($) = ( f b dvol, f Re+rs dvol).
M M

Then apply the method of Lagrange multipliers 8.2 to f and g.
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Taking integration we know a = 0 (since v € .4). Also note that'’

1

B | Ke*fdvol = —= e~ Av dvol = = (V(e™), Vuv) — div(e~®Vv) dvol

—f e=2'|Vul|?dvol <0
M

where the last inequality is strict since if v is contant then clear K = 0. Then the
condition 3.10 implies g > 0. Therefore, setting

vO:v+%logB

then v, is a solution to (3.11) in the sense of L?(M)-weak solution.

(3) Finally we show that the solution is smooth.
By the subsequent lemma 3.14, since v, € L2(M), we have e* € LP(M) for any p > 1.
Then remark 10.17 (or theorem 9.24) implies that v, € C*. Then u = v, + f is the
desired smooth solution.

We are done. O

Lemma 3.12 (Triidinger inequality). Let (M, g) be a closed 2-dimensional Riemannian
manifold. Then there exist positive constants 3 and C such that

feﬁuzdvolsc Vue;ueLf(M):fudvol=0,f|Vu|2dvolsll.
M M M

Proof. Let (,oi)ﬁ‘:1 be a partition of unity subordinate to an open cover (Ul-)f.‘:1 of M, where
each (U;, ¢,) is a unit coordinate ball, i.e. each ¢,(U;) is the unit disk in R?. The idea is
to show the generalization of Poincaré inequality:

(3.12) ullerany 2V PIVUllzon, VP 22
and then the conclusion will follow from Taylor expansion.

(1) First we prove the generalization of Poincaré inequality
”U”Lp(D) = \/E||VOU”L2(D) Yu e Wé,z(D) Vp 2 2

on the unit open disk D C R2."
For each x € D we set

1
b RZoR, o —log(lx— ).
It’s well-known that
A¢,=6(x) in S'(R?

and hence

o(x) = f (Bd ) dy Vo € CL(D).
D

UThe following integration may seem a little unreasonable, but we can apply the method of step (3) to
show that v is in fact a smooth solution, and then this integration becomes natural.

121 this point, let V,, denote the standard gradient on R?, let A, denote the standard Laplacian on R?, and
let div, denote the standard divergence on R2.
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Therefore, via integration by parts we know for any v € Cy(D) we have

1 X—y
0@ = 5 [0 Ty

1 -
< 35 | VO] -x=y1ay

The idea is to apply the Holder inequality to kill the term |x — y|™!, and the key point
is that we need to eliminate the term |x — y|~! gradually through two integrations."’
Namely, setting

2
AY)= Vo) and B(xy)=lx =yl where g =" €[1.2)

we know that

2
fB(x,y)dy < f ly|™%dy = 271'/ r'=tdr =2"7(p +2) < Cip
D lyl<2 0
and that

|VorO)| - [x —y|™! = (A)BG, )P - B(x, )2 - A(y)/21/p,
Therefore, for any v € Cy(D) and p > 2 we have

. 1/p 1/2 1/2-1/p
L ( f AD)B(x, ) dy) ( f B(x.) dy) ( f AB) dy)
D D D

1/p
1-2/
Cz@(”VOUHLZ(D)) ’ ’ (f A(y)B(x,y) dy)

and hence for any v € C}(D) and p > 2 we have

1-2/p 1/p
CB(Wutll) ([ [A0IBGy)dy
D YD

lo(x)|

IA

IA

IA

”U”LP(D)

1-2/p 1/p
= VB (Vo) | [ 402y [ Berpdx
D D

IA

1-2/p /e
B (Notl)  -(Cop [AGIay
D

C3\/E ||V0U||L2(D) .
Since C,(D) is dense in Wé’z(D), we know

”v”Lp(D) < C3\/I_3||VOU||L2(D) Yu e Wé,z(D) vp >2

for some constant Cs.
(2) Then we show the generalization of Poincaré inequality

lll sy < VPIVUll2ry Yu € LI(M) V¥p > 2

IA

BSince Jplx — y|~2dy is not under controll, we can’t eliminate the term |x — y|~! directly by just one
integration via Holder inequality.
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on a closed manifold M.
Setting u; = p;u, then by compactness and point (1) there exists constant C, with

It follows that

k k
”u“Lp(M) S Z ”ui”Lp(M) S C4\/EZ ||Vui||L2(M)

i=1 i=1

Note that
||vu’i||L2(M) = ”V(piu)lle(M) = ”u : V;Oi”LZ(M) + ||pl ’ Vu“LZ(M) .
Then by finiteness and compactness there exists constant Cs with
IVtill oy < Cs Mletll gy, + Vel V1 <P<K

and hence by the standard Poincaré inequality 10.23 we know (since f,, u dvol = 0)

”u”LP(M) < Cé\/E ||vu||L2(M) .

(3) Finally we prove the conclusion via Taylor expansion.
Now it follows from ||Vu||;2r) < 1 that

SE k o B k- k
2 1 (Blu?) dvol = 3 o= [ ul* dvol < 3 3= (2CZ6)
Mk=0 """ k=0 "° k=0 °

Since Stirling’s approximation yields that

’;—’; (2c2)" = % (1 +0 (%)) .

we know

B < 12 = i k—]: (2C§6)k < c0.
2Cge oo k!

Then the conclusion follows from Taylor expansion and the monotone convergence
theorem [Xio, theorem 9.10].

We are done. O
Remark 3.13. For the best constant in Triidinger inequality, one can refer to [Mos71].

Lemma 3.14. Let (M, g) be a closed 2-dimensional manifold. There exist constants C,n >
0 such that

1
(3.13) /Me” dvol < Cexp (77||Vu||i2(M) +3 Ludvol)

whereV = [, dvolis the volume of M. Moreover, e* € LP(M) for any p > 1.

Proof. WLOG we assume ||Vul|;2s) # 0; otherwise u is constant and the conclusion is
trivial. Setting

Uy

1
Uy=u—— | udvol and ¢p=-——"-—
° V./A; IVullc2)
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then by Triidinger inequality 3.12, there exist positive constants 8 and C such that
(3.14) / e%” dvol < C.

Since

2
(2
Uy < ;8 <—O) + ||VU||i2(M)/45

||Vu||L2(M)

exp (% f udvol)- f e"o dvol
M

exp (%/ udvol + ||Vu||i2(M)/4ﬁ)-/eﬁ¢2 dvol
M

which implies (3.13) together with Triidinger inequality (3.14). The last assertion follows
by replacing u with pu. O

we have

f e* dvol

IA

Corollary 3.15. Let (M, g) be a closed 2-dimensional manifold. Consider the map
I:L2M)->R, uw- f fe*dvol
M
where f € C®(M). Then I is continuous with respect to the weak topology of L>(M).

Proof. Suppose u; — u in L}(M). Then by Sobolev embedding theorem 10.13, u; — u in
LP(M) for any p > 1. Therefore, by Fubini theorem [Xio, theorem 9.28] we know

1
f f(e“ —e*)dvol = f f fert =W (y, —u)dt dvol
M M Y0

1
= fffe”“(”i‘“)(ui—u)dvoldt.
0 M

Then by Holder inequality and lemma 3.14, we know I(u;) — I(u). We are done. 0

Case 3: y(M) > 0. In this case, M = S? or RP2. First we consider the case (M,g) =
(S?, g,) where g, is the standard metric. Then it has Gaussian curvature K = 1. Moreover,
equation (3.3) becomes

(3.15) Au—1+Ke* =0

and condition (3.4) becomes
(3.16) / Ke* dvol = 4.
S2

This requires that K must take positive values somewhere. However, even if K > 0,
(3.15) sitll may have no solutions.

Proposition 3.16 (Kazdan-Warner). Let ¢ be a first eigenfunction on standard sphere:

(3.17) A¢ + 24 = 0.
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Suppose u € C*(S?) is a solution to (3.15). Then

(3.18) f (VK,V¢)e* dvol = 0
SZ

Remark 3.17. By [Lil2, theorem 5.1], the first (positive) eigenvalue of S" is n.

Remark 3.18. Considering K = 1 + ¢¢ for sufficiently small ¢, then K > 0. But (3.18)
indicates that (3.15) doesn’t have a solution for this K.

Proof. Let (E;) be any local orthonormal frame. By the proof of [Li12, theorem 5.1], we
know that ¢ satisfies

(3.19) ¢;i;j - _¢5ij‘
Multiplying equation (3.15) by (Vu, V¢) and then integrating over S* we get

f (Vu, V) Au dvol — f (Vu, Vé)dvol + f (Vu, V¢)yKe* dvol = 0.
S2 S2 S2

It follows from (3.19) that

f (Vu,V¢) Audvol = —f (V(Vu,Ve¢), Vu)dvol
SZ SZ

- f (u;l;lu;1¢;1 - u;lu;1¢ + u;z;1”;1¢;2 + u;1;2u;2¢;1 - u;2u;2¢ + u;Z;Zu;1¢;2) dvol
52

_%f<v(|vu|2),v¢>dvol+f |Vu|?¢ dvol
S2 S2

_ %f IVul (Ap + 2¢) dvol = 0.
S2
Note that
/ (Vu, V) dvol = — f ¢Au dvol = / ¢ (Ke* — 1) dvol = f pKe* dvol
S2 S2 S2 S2
and that

f (Vu, V) Ke** dvol
SZ

%f (KVe*,V¢)dvol = %/ (V (Ke**) — e**VK, V) dvol
S2 S2

1

— _lfﬁe2uA¢dvol_ f(VI?,VqS)eZ“dVOl
2 <2 i

N

= f ¢pKe? dvol — L f (VK,V¢)e* dvol.
52 2 Ju
Then the conclusion follows. O

Remark 3.19. Generally, on (S", g,) we have similar conclusions like formula (3.18).
Namely, via a similar process one can prove that

f (V¢, Vscal)uis dvol = 0
SZ

4
where ¢ is the first eigenfunction on S” (i.e. A¢p + np =0)and g = un—=2g,,.
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Moreover, we know that the gradient vector field X = V¢ of a first eigenfunction
on S" is a conformal vector field, i.e. X generates a 1-parameter family of conformal
transformations of S”. One can use conformal vector fields to derive certain identities
for some special differential equations. Such a fact was first discovered by Pohozaev S. 1.
[Poh65], who made use of X = r% on R". Later, Richard M. Schoen proved the following

general result [Sch88].
In the next we introduce a sufficient condition for the solvability of (3.15).

Theorem 3.20 (Moser, 1973). Let g, be the standard metric on S. Suppose that K €
C>(S?) satisfying K(—x) = K(x) for all x € S?, and that maxs. K > 0. Then (3.15) has a
solution u € C*(S?) with u(—x) = u(x) forall x € S

Proof. The idea is to apply the method of Lagrange multiplier 8.2 and the variational
method, which transfers the equation to a minimizer problem.
Specifically, we set

A

{qb e L¥(S?) : f ¢dvol =0 and ¢(—x)= ¢(x) a.e.}
M

%cp €A : f Ke?** dvol > 0}
SZ

where maxg, K > 0 implies A, is non-empty, and set

A,

J: A, >R, ¢ %||V¢||§ - 27r10gf Ke?® dvol.

S2
We consider the problem inf ; J.

(1) First we prove that there exists v € A such that J(v) = inf 4 J.
Since [SY94, section 5.1] claims that the constant 7 in (3.13) can be choosen as 1/327
for symmetric functions on (52, g,),"* we know

f e* dvol < Cexp (L||V¢||2> V¢ € A,
<2 8
and hence for any ¢ € A, we have

1 1 ~
1$) 2 31991 — 27 (511715 + log C + log(max )
(3.20) )
> ZI|V¢|I§ -2 (logC + log(maxf)) > —00.
S2
Then we suppose (¢;) is a sequence in A, such that
; inf J.
J(¢;) — ind J
Note that formula (3.20) implies that (|| V¢;]|,) is bounded. Then Poincaré inequality

10.23 implies that (¢;) isbounded in L}(M). Since L}(M) is reflexive, by [Xio, theorem
3.41], there exists a subsequence, which we relabel as (¢,), satisfying

¢ —v in LA(M)

140ne can refer to [Mos71] for a detailed proof.
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for some v € L}(M). By Sobolevembedding theorem 10.13, it’s easy to see that v € A.
By remark 10.22 and corollary 3.15 we know J is weakly lower semi-continuous, and
it easily follows that v € A* and

J(v) <liminf J(¢;) = inf J.
i—>oo A,
Hence we find a minimizer.
(2) Then we show that the minimizer v (up to a constant difference) is a solution to (3.15)

in the sense of Lf(M )-weak solution.
Set

A, = {qb eLX(M) : f Ke**dvol >0 and ¢(—x) = $(x) a.e.g
SZ

Applying the method of Lagrange multipliers 8.2, there exists 4 € R such thatv is a
critical point of

A - R,

¢ l||Vg15||§—/1‘/‘<¢>dvol—27rlog'/Eez‘ﬁdvol.
2 M 52

~

Note that for any ¢ € Lf(M) with ¢(x) = ¢(—x) a.e., we have

0 = T +t)

‘t:O

dt
7 520
f (Vo, V) — 1 — —TKe” 1) dvol
M Js: Ke?v dvol

7 52V
= —/ Av+/l+4irL ¢ dvol
v Js: Ke?v dvol

Since both v and K are symmetric, we know v is a Lf(M )-weak solution to
4nKe®
Ji» Ke2v dvol

Taking integration we know 474 + 47 = 0, and hence 4 = —1. Then setting

_ 1 i 7 520
u=0v+ 2log<47r/3-2Ke dvol)

we know u is a Lf(M )-weak solution to (3.15).

(3) Finally we show that the solution is smooth.
By lemma 3.14, since u € Lf(M ), we have e* € LP(M) for any p > 1. Then remark
10.17 (or theorem 9.24) implies that u € C*.

Av+ 1+

We are done. O

Corollary 3.21. On RP? with its standard metric g,, a smooth function K € C*(RP?) is
the Gaussian curvature of a metric g € Cg iff K is positive at some point.

Proof. Necessity. We lift K to S? by the canonical convering map 7 : S — RP2. Then
Gauss-Bonnet theorem implies that K is positive at some point.
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Sufficiency. We lift K to S? by the canonical convering map 7 : S*> — RP2. Since the
standard metric on RP? is also lifted to the standard metric on S?, and the lifted function
satisfies the requirements in theorem 3.20, there exists u € C®(S?) satisfying the lifted
equation (3.3) and also satisfying u(—x) = u(x) for all x € S2. Then clearly, u induces
the solution to equation (3.3) on RP2. O

Remark 3.22. In fact, this result of corollary 3.21 is true for any Riemannian metric on
RP2. (See [Aub79].)

Remark 3.23. [SY94, section 5.1] points out that if in the proof of theorem 3.20 we
replace the symmetric subspace by the whole L2(S?), the functional J is still bounded
from below. However, it can be proved that the infimum of J can not be achieved unless
K is constant. Therefore, when K does not satisfy any symmetry assumption the problem
becomes much more difficult. In such a case one has to employ more complicated
variational methods to obtain non-minimal critical points of J.

3.C. Yamabe problem. One can refer to [LP87].
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4. APPENDIX — LINEAR ALGEBRA

4.A. Spectral theorem.

Definition 4.1. Let (V, (e, ¢)) be a real inner product space, and let (E, (=, »)) be a complex
inner product space. The adjoint map f* € End(V) of f € End(V) is given by

(fy) =) Vx,yeV,
and the Hermitian adjoint map ¢* € End(E) of ¢ € End(E) is given by

(), y) = (x,¢*(y)) Vx,y €E.

Moreover, "’

(1) The map f € End(V) is symmetric (or self-adjoint) [resp. skew-symmetric] [resp.
normal], iff f* = f [resp. f* = —f][resp. f*f = ff*] iff the corresponding
(real) matrix A with respect to some orthonormal basis is symmetric [resp. skew-
symmetric] [resp. normal], i.e. AT = A [resp. AT = —A] [resp. ATA = AAT].

(2) The map ¢ € End(E) is Hermitian symmetric [resp. Hermitian skew-symmetric|
[resp. normal], iff ¢* = ¢ [resp. ¢* = —¢] [resp. ¢*d = ¢d*], iff the corresponding
(complex) matrix B with respect to any Hermitian orthonormal basis is Hermitian
symmetric [resp. Hermitian skew-symmetric| [resp. normal], i.e. BT = B [resp.
BT = —B] [resp. BTB = BBT].

Here are some basic related facts:

Proposition 4.2. (1) A real square matrix A is symmetric iff there exists P € O(n) such
that PT AP is diagonal. .

(2) A complex square matrix B is normal iff there exists Q € U(n) such that QTBQ is
diagonal.

Proof. Well-known. 0J

Corollary 4.3. Let (V, (e, +)) be an inner product space over R. andlet f : V — V bea
self-adjoint map. Then there exists an orthonormal basis (v;)!_, of V such that

f(v) =Av; forsomeA; € R.
Proof. Let (e;) be an orthonormal basis of V. Setting
f(ei) = aijej’

then A = (aV) is a real symmetric matrix. By proposition 4.2, there exists P € O(n) such
that PT AP is diagonal, there exists another orthogonal basis (v;) such that

f(v;) =A,v; forsome; € R.
We are done. OJ

Remark 4.4. For f € End(V), the set of its eigenvalues is called the spectrum of f.
Corollary 4.3 can be regarded as a so-called spectrum theorem.

et (e;) bea basis. Then the corresponding matrix C = (c¢'/) of a linear map T with respect to (e;) is given
by T(e;) = cVe;.
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4.B. Elementary symmetric functions. The spectrum of an endomorphism is very
important.’® In the next, we introduce the elementary symmetric functions to help us
analyze it.

Specifically, elementary symmetric functions can help us compute the characteristic
polynomial of an endomorphism T' € End(V'), and we have feasible algorithms for the
computation.

Moreover, in subsection 5.B, we will analyze some important geometric quantities,
which are related to the spectrum, via elementary symmetric functions.

Definition 4.5 (Elementary symmetric functions). Let (1,,---,4,) € C". We view the
elementary symmetric functions as functions on C",

oy ) = D Ay Ay,

i <<y
Moreover, if T € End(V) for some real vector space V, then
0(T) = 0,44, ,4,) Where Ay, -+, A, are the eigenvalues of T,
and if A € M(n X n,C), then
0 (A) =044, ,4,) Wwhere Ay, -+, A, are the eigenvalues of A.
Proposition 4.6. It holds that

H(/l — ) = D (=DFoy(Ay, -+, AAK,
i=1 k=0
where we set o, = 1. Moreover, if A € M(n X n,C), then
det (A — A) = Y (=g (A)A".
k=0

Proof. The first assertion is trivial. The second assertion follows from the first assertion
and the fact that

n

det(I —A)=[[(A-2)

i=1
where 4,, ---, 4, are the eigenvalues of A. OJ

To compute o0, (A) directly, we introduce the following new concepts.

Definition 4.7. Let V be a real vector space, and let T € End(V). Define AT € End(AFV)
on simple tensors by

(ASTY(y A - AvE) = Tog A == ATy

and expand the definition linearly to all tensors. More generally, we can define A'T* €
End(APV) (1 > k) on simple tensors by

(/\lTk)(Ul/\"'/\Ul)z Z Ul/\"'/\TUil/\"'/\Tvik/\"'/\vl

1<iy << <l
and expand the definition linearly to all tensors. If 1 < k, define AIT* = 0.

16Some important geometric quantities are related to the spectrum. See subsection 5.A.
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In particular, since A"V = span{e; A --- A e, } where (e;) is a basis of V, we can identify
ATk with the unique number x satisfying"’

(A"T¥) (e; A -+~ Ae,) =x(ey A=+ Aey).

Proposition 4.8. Let V be a real vector space, and let T € End(V); then

(4.1) 0 (A) = tr (AKT) = A"TE.

In particular,

(4.2) 0,(A) = tr(A) = A"TH,

(4.3) 0,(A) =tr (A"T) = A"T" = detT.

Proof. Let (e;) be a basis of V, and we write
Te; = cYe;.
Then for i; < -+ < i} we have
k _
(AT)(e;, A= Ae) = Te A ATe,
= chhi...cld
= ci.cilke; A Aeg
— UrJi) aigl il
— Z Elln-lk cll...ckkejl/\.../\ejk

J1<-<Jk
and hence
tr(AFT) = 37 g Wil ... ik,
i <<y
Note that
(/\nTk)(el/\"'/\en) = Z el/\"'ATeil/\"'/\Teik/\"'/\en
1<i; <---<ip<n
= Z el/\"'/\ciljlejl/\"'Acikjkejk/\"'/\en
1<ip<--+<ip<n
= Z gl(li%::lik)cilll Ciklke1 Ao A €,»
1<i) < <ij <n
that is,
nk (i) i1 il
APTH = Z Ellmlk chhtr ... etk
i <<y
Also note that
det(AI —A) = ¢, (/15111 — c”l) (/15n1n — cnl,,)
2 2
1l nl,
= Z Z Elln-lnball ...ban
a=1 a,=1
where

i, 0 il 0
b’ =28 and b = —clh.

7Clearly «x is independent of the choice of (¢;). This definition is well-defined.
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and hence the coefficient of 1% % is
j j inl; inl; L )
IR ARSI MG

TUI=(1--n),|I|=k n B <<
Then proposition 4.6 yields that
o(T)= 3, g et cid,
iy <<y
Hence we get formula (4.1). Formula (4.2) follows directly from formula (4.1). By the
above computation we know

AT =gy 't e = det(T).
Then formula (4.3) follows from formula (4.1). O

Remark 4.9. By the proof of we know that the entries of the corresponding matrix of
AFT are k x k-minors of the corresponding matrix of T.

Remark 4.10. (1) The fundamental theorem of symmetric polynomials is another
important property of elementary symmetric functions. One can refer to https:
//en.wikipedia.org/wiki/Elementary_symmetric_polynomial.

(2) For more properties of A'T¥, one can refer to https://en.wikipedia.org/wiki/
Exterior_algebra.


https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
https://en.wikipedia.org/wiki/Exterior_algebra
https://en.wikipedia.org/wiki/Exterior_algebra
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5. APPENDIX — POINTWISE ESTIMATES OF GEOMETRIC QUANTITIES

5.A. First and second geometric quantities of symmetric (0,2)-tensors. Let h be
a symmetric (0, 2)-tensor, and define H € I'(M, End(TM)) by

h(X,Y)=(H(X),Y), VX,Y eT(M,TM).
Corollary 4.3 shows that & is determined by the spectrum and eigenvectors of H. Clearly,
the spectrum of H has a close relation to the properties of h.

Moreover, some important geometric quantities of h are exactly given by the spectrum
of H. Here we introduce the following first and second geometric quantities.
Definition 5.1. Let h be a symmetric (0, 2)-tensor, and define H € I'(M, End(TM)) by

h(X,Y)=(H(X),Y), VX,Y eT(M,TM).
By linear algebra, let A, -+, A, € R be the eigenvalues of H.
(1) The k-th trace of h by

tr(h) = D> A, 4.

i <ee <
(2) The first geometric quantity of h is defined by
Gpin(h) = min A,.
i=1,---,n
(3) The second geometric quantity of type (n, p) of h is defined by
p n
Grp) = min {1 =p) 23 +p 2 4,
i j=1 j=p+1
where (iy, -+, i,) is a permutation of (1, --- , n).

Remark 5.2. Some applications:

(1) G, (Ric) leads to the estimates of Ric;
(2) G, ,(P) and the Bochner technique lead to vanishing theorems (see subsection 2.C).

Our basic idea is making estimates of G,,;;, and G,, , via adding restrictions on tr,(h).
This idea is natural. We have showed in subsection 4.B that elementary symmetric
functions can help us analyze the spectrum of H.

5.B. Estimates of geometric quantities.

Definition 5.3. Here are some basic notations:

(5.1) Ii={A=,-,2,) €R" : g;(A) >0, Vj <k},
(52) Al.] = (ﬂ'l""ai\ja"'/‘ln) where A = (/111""/111)’
(5.3) a, = (a,---,a) € R" where ae€R.

Remark 5.4. The cone F; represents the proper restrictions.



36 Introduction to conformal geometry

First, let’s try to give some appropriate estimates of the first geometric quantity

(5.4) Gpin(A) = min 4, where A= (44,:--,4,).
i=1,---,n

Remark 5.5 (Background). Our geometric background is as following: A represents the
spectrum of Ric, and the restriction are imposed on Schouten tensor, whose spectrum
can be represented by
2 a.(AN)
n-2" (mn-1Dn-2)"

Therefore, we introduce the following new notations:
¢ 1(A)

2(n—1)
and, roughly speaking, our aim is that

(5.5) Ap = 1, where A=4,,,4,),

(1) Adding appropriate restrictions on A,;
(2) Finding the lower bound of G,,;;,,(A).

Our idea is the continuity method: we find a standard model case A, and A, , and
consider the continuous transformation

A =tA+(1—-0)A, and A, :=A, =tAy+(1-1A, Vte]0,1]
If each A, satisfies the restriction, and G,,;,(A,) : [0,1] — R satisfies
Gmin(Al) Z Gmin(AO)’
then we get the conclusion.

—+
People find the appropriate restriction as A, € I';, which has two good properties
—t —t
(1) T is convex, which ensures A, € T, forallt € [0,1];

—+
(2) There exists A, such that A, € ', with 0,(A4,) = 0. Moreover we have

5420 = | (A4) 20 = Gun(N) 2 Gun(Ay)
t=

Specifically, we have the following estimates.
Proposition 5.6. Assume k > 1.
—+
(1) IfA\ €Ty, then

2k —n
a;(M).

(5.6) Guin(A) > m

—+
(2) IfAy €Ty and k > n/2, then

(2k —n)(n —1) ;m\~& :
(5.7) Goin®) 2 25— (0) T (A,

3) IfA, € f: and k = n/2, then either 1; > 0 for any i, or
A= (A'”/‘LO)

up to a permutation. If the second case is true, then we must have O'%(A A) =0.
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Proof. Setting

_ _ Rk—n)(n-1)
Ny = (1,.4,0,) Wwhere 9, = ok — 2k =
then we have
n—1+4; n—1+4;
Ay = ,b h =1—-— b= — ——

—+
ApeTly and o (A4y)) =0.
Suppose A = (4,-++,4,) and A, = (a,, -, a,). WLOG we assume that'®
o,(A) =0,(A,) and A, = min 4,.
i=1,-,

RERN 7}

Setting

tA+ (1 —-1t)A,, Vte]lo,1],
Ay =tA N+ (1 —-DA,, Vie€0,1],

> >

~

then we have

ok (A) 20 ok(A) >0

d
ri

n—1

Z(ai — a)oy_1(Apli) + (a, — b)oy_1(Ag|n) 2 0

i=1
(an = b) (0y-1(A|n) = 01c_1(A4[1)) 2 0
ay >b ie. Gmin(A) 2 Gmin(AO)-

Lol

Then formula (5.6) follows. Moreover, Maclaurin’s inequality yields that

1

1 1 -=
>0, (4)(}) © Vi<k<n

Ul(AA)Gl)

If 2k > n, we have

2k — n 2k —n)(n — 1) 2k —n)(n —1) ny"i _°
G (A)> —0a,(A) = Ap) > “(Ap).
mn(8) 2 3o (W) = e 2 e () o (A
Hence we get formula (5.7).
The proof of point (3) is omitted. One can refer to [GVW02, lemma 2]. O

Second, let’s try to give some appropriate estimates of the second geometric quantity

p n
(5.8) Gn,p(A)z(_mm) (n—p)Q A, +p D, A f where A=(d,-,4,).
o

j=p+1

The geometric background of the second geometric quantity is introduced in subsection
2.C. Namely, G, , is a geometric quantity arising in the Weitzenbdck form for p-forms.
The process of giving the estimates of G, , is similar to giving the estimates of G;,.

811°g easy to see o1(A) > 0. Since (5.6) is invariant under the transformation from A to sA for s > 0, clearly
we can add the hypothesis without loss of generality.
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Our idea is still the continuity method: we find a standard model case A,, and
consider the continuous transformation

A =tA+(1—0A, Vtelo,1].
If each A, satisfies the restriction, and Gn’p(At) : [0,1] - R satisfies
Gn,p(Al) > Gn,p(AO) > 0’
then we get the conclusion.

—+
Roughly speaking, people find the appropriate restriction as A € I';, which has two
good properties

—t —t
(1) T is convex, which ensures A, € T, forallt € [0,1];
—+
(2) There exists A, such that A, € T with 0,(Ag) = G,, ,(/Ag) = 0. Moreover we have

d
(M) 20 = —|  0u(A) 20 = G, ,(A) 2 Gy y(Ag) =0.
t=

Specifically, we have the following estimates.

Proposition 5.7.

-
(5.9) E),€T,, s>0 = E’

+ s +
n1p €13 and E el

n—2,p—1 k-1

—+
(5.10) El’l,p € Fk — El’l—z,p—l (S FZ.

Proposition 5.8.

)
p<n/2, 2<k, 0<s<l1
—+
(5.11) 1Esp €T, or(ES,) =0, = G,,(A) >0.
—+
AET,
\
(
p<n/2, 2<k, 0<s<l1
—+
(5.12) 1Esp €T, or(E5,) =0, = G,,(A) > 0.
—+
ANeT,, o)>0

\
Proposition 5.9.

1<p<n/2, 2<k<n/2
—+
(5.13) E,, €L, o(E,,) =0 = G, ,(A)20
—+
AET,
The equality holds if and only if A = uE, , for some p > 0. In particular, if A € T}, then
G, p(A) > 0.
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Proposition 5.10.

-

2<p<n/2, 2<k<n/2
(5.14) 10 (Enf) <0 = G,,(AN) >0 Vp<qg<n/2
AET,
2<p<n/2, 2<k<n/2
(5.15) 10% (E”f) <0 = G,,(AN)>0 Vp<qg<n/2
A€T,, o,(A)>0
)
2<p<n/2, 2<k<n/2
—+
(516) 3 En,p €+Fk’ Ok (En,p) =0 il Gn,q(A) >0 vp < q < n/z
AET,
2<p<n/2, 2<k<n/2
—+
(5.17) 1Enp €Tk, 0x(Enp) =0 = G, (AN)>0 Vp<g<n/2
AeT]

Proposition 5.11. The followings are true.
— — —+

(D) k=2 andg >p> [%] thenE, , &€ I3. If p = # is an integer, then E,, , € T,

with o, (E, ,) = 0.

_ _ —+

(2) p=2andk > [" 2\/5]’ thenE,, ¢ T} Ifk = # is an integer, then E,, , € ', with

Uk (En,Z) = 0

—+

(3) For the general case, E,, , € T, if 3< p <n/2,and

k> n—2p+4—\/n—2p+4'
— 2 b

orif3<k<n/2, and

>n—k+2—\/n—k+2
> }

—+
In particular, ifn > 4and k = ["TH] +1—p,thenE, , & I.

One can refer to [GLWO5] for their proofs.
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6. APPENDIX — GEOMETRY

6.A. Schur theorem.

Theorem 6.1 (Schur). Let (M, g) be a Riemannian manifold with dimension n > 3. If
R=fgng

then f is constant.

Proof. By definition 1.5, we know

Riji = f (gilgjk - gikgjl) .
Therefore,

Rijis = Gsf) (gilgjk - gikgjl) .

The third Bianchi identity says that

Rijkl;s + Rijls;k + Rijsk;l =0.
Hence

©Gf) (gilgjk - gikgjl) + (Orf) (gisgjl - gilgjs) + (0.f) (gikgjs - gisgjk) =0

that is,

ouf of of
det| g &k & [=0, Vi j,k,Is.
8jis 8jk 8;ji

Since n > 3, the subsequent lemma 6.3 yields J,f = 0 for all s. Hence f is constant. []

Remark 6.2. By proposition 1.6 we know
Ric=(m—-1)fg and scal=(n-—1)nf.
Moreover, the sectional curvature K = f, since

R(X,Y,Y,X) = fg 0 g(X,Y,Y,X) = f (IXPIY] - (X, Y)).

Lemma 6.3. Let H be an inner product space over R with dim H > 3. Let (e;)!"_, be a basis
of H, and letgl-j = <ei,ej>. Ifa,b,c € R satisfy
a b ¢
det| gy 8» &:|=0, Vi,j
81 82 8j3
thena=b=c=0.

Proof. Note that the Gram matrix with respect to e;, e, and e;

81 812 &13
81 82 823
831 832 833
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is positive definite since

811 812 813)(X
(x y Z) 81 &» & ||y |=(xe +ye, + zes, xe; + ye, + ze;).
831 83 833/\2

Now set

a = (gn 8i2 gi3) i=123.
Then (ocl-)f=1 is a basis of R3. The condition says that

(a b c¢) € spania;,a,} ﬂ span{a,, a;} ﬂ span{a,, a;}

Clearly, a = b = ¢ = 0, since the unique expression

(a b ¢)=ca +ca, +cyas
must have coefficients ¢; = ¢, = ¢; = 0. O
6.B. Derivations — (1,1)-tensors, curvature derivations.

Definition 6.4. A map T — DT on tensors is called a derivation if it preserves the type of
the tensor; is linear; commutes with contractions; and satisfies the product rule

D(T,®T,) =DT,))QT,+ T, DT,.
The curvature derivation is an important example:
Proposition 6.5. The operator Ry y is a derivation for any X,Y € I'(M, TM).

Proof. 1It’s clear that Ry y preserves the type of the tensor; is linear; commutes with
contractions (V, commutes with contraction). It suffices to show that Ry y satisfies the
product rule. Note that

VxVy(6,®6,) = (VxVy0,) ® 6, + (Vy6,) ® Vx6, + (Vx0,) ® V0, + 6, ® V4 V46,
It follows that

[Vx, Vy](6: ® 6,) = ([Vx, Vy]6,) ® 6, + 6, ® [Vx, Vy]6,.
Then we know Ry y = [Vy, Vy] — V|x v satisfies the product rule. OJ
Remark 6.6. Note that

RyyT = (V?*T)(X,Y) — (V?T) (Y, X).

It follows that
(6.1) Ryyf =0 VfelC*M)
since Hessf is symmetric.
Proposition 6.7. Let D be a derivation. Then

D(wAn)=[Dw)An+wADy, YoeQ¥M),ne Q(M).
Proof. Recall that

1
(6.2) Alta= [ Z(—l)lﬂl (a) where “a(vy, -+, v) = AUy, 5 Ugr)
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and that
(6.3) = (kk'l') Altlw ® 1), Yw € Q¥(M), n € Q/(M).
It follows that

DlwAn) = o Z( DFID (@ ®n),

Do)An = Z( P (Dw) @ 1)),

wADy = o 2( DFI ¢ (@ ® D).

It suffices to show the stronger claim:
D(E(T,®T,)=°((DT)) ®T,)+° (T, ® DT,) VTy, T».
By linearity, WLOG we assume that T, =y, @ .-y, and T, = 741 ® -+ ® ¥i41- Seeting

7 =07}, then

DC(T®T)) =D ¥ay®@ = ® Vutn) = D, ¥2y ® ** ® (D¥ ) ® *** ® Vix(y»

i=1

and

(DT RT,)+°(T,®DT,) = (DT)RT,+T,DT,)=°(D(T, ®T,))

= ”(Zh Q- QWDy)® - ®7/n)

i=1

= D7 @ ® (DY o)) ® *** ® Yty

i=1
= 270 ® @ (DVr) ® -+ ® V(uy-
i=1

We are done. O

Remark 6.8. Here we use the definitions (6.2) and (6.3). We don’t say that Dw must be
a differential form.

One should note that any derivation is determined by D f and DX:

Proposition 6.9. Let T — DT be a derivation. If we know Df for all f € C*(M) and
know DX forall X € T(M,TM), then we know DT for all tensor T.

Proof. By linearity and the product rule, it suffices to show that we know Dw for all
w € I'(M,T*M). Note that

DCX®w)=COXQw)=C((DX)Q®w)+C(X®Dw)

where C is the contraction. Hence we know C (X ® Dw) for any X € I'(M, TM) and for
any w € I'(M, T*M). Let (E;) be a local frame, and let (E") be its dual. Then

C (E; ® Dw) = E,(E/) - (DCU)(EJ) = (Dw) (E)).
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Hence we know Dw for any w € T'(M, T*M). O

Conversely, we want to construct a derivation by D f and DX. But this is not easy, since
except the linearity, the derivation D satisfies D(fX) = Df - X + f - DX. However, we
have a easy model that D f = 0 and D is tensorial:

Proposition 6.10. For any (1,1)-tensor L, which is also regarded as an element in
(M, End(TM)), there exists a unique derivation D such that Df = 0 forall f € C*(M)
and DX = LX forany X € '(M,TM).

Proof. See [Pet16, section 2.3.1] for the existence of such D. The uniqueness follows from
proposition 6.9. U
Remark 6.11. For convenience, we write L = D. For any (0, k)-tensor T, we have

(6.4) L)X, -, X)) = = 2T (X, LY+, X))

Remark 6.12. Since L is tensorial, we can consider L pointwisely. One should note that
L, coincides with the action of an endomorphisms on tensors [Pet16, section 2.3.1].

An important thing is that we can study the properties of Ry y via such derivations
of (1, 1)-tensors, since Ry y, as a derivation, is just the induced derivation by itself as a
(1, 1)-tensor. (This accords with the fact that Ry y f = 0 for all f € C*(M).)
Proposition 6.13. If there exists (1, 1)-tensor L such that

RyyZ =LZ YZ € T(M,TM),
then Ry y = L as derivations. In fact, such L uniquely exists, and L = Ry y as (1, 1)-tensors.

Proof. Since Ry y is a derivation and Ry y f = 0 for any f € C*(M) (see proposition 6.5
and remark 6.6), the conclusion follows from proposition 6.9. O

The above proposition gives us a new perspective to deal with curvature tensors; that
is, we regard it as a derivation induced by a (1, 1)-tensor.
Finally, we introduce some basic properties of L.
Proposition 6.14. If L is skew-symmetric, then we have
(LT,S) = —(LS,T) VS,T € I(M,(®'TM) ® (®'T*M))

Proof. By the product rule, it suffices to verify it on T(M, T*M) (on I'(M, TM) it holds by
condition). Let (E;) be a local orthonormal frame. Then for w,n € I'(M, T*M) we have

(Lw,n)y = (Lw)E),n(E)) = —(w(LE),n(E)))
= —(LE, E;){w(E),n(E)) = (LE;, E;) {w(E)), 5(E)))
= <CU(Ej)a77(LEj)> =- <w(Ej)a (Ln)(Ej)) = —(w,Ln).
We are done. O

For general properties of L, one can refer to [Pet16, section 2.3.1].
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6.C. Ricci idendity.

Theorem 6.15 (Ricci identity for covariant derivatives). Let (M, g) be a Riemannian
manifold. For the tensor

0
dxJs’

T = Tijl..-...l_jsdxil R - Qdxr® ai R - ®
1" xXNh

we have the following Ricci identity:

VkvlTiJll.’-'-'J V V TJl 'Js — Z Rkp Jl “Jm-1PJm+1*"Js ZR lltq Jl -Js

Ipeely Iy -y Byl Qg iy

In particular, one has
Vklei —_— VleXi = RklpiXp
and

ViVin = ViVin = =Ry’ ns.

Proof. We use the following convention in this problem:
o} d

O = (52 5

Then it follows from proposition 6.5 and formula (6.1) that

VI = ViV T

iyee+iy

= (Vﬁva%T)(D)—(vvi% )(D)—(Vava )(D)+(leik )(IZI)

a a

dxll ,dxjs) .

= (ViViT—ViViT—Vii )(D)
axk ax! axl axk [axk L ]

— a a P1°*Ds 1 r
= (R (ﬁ, 7) (qu -q dxt @ - @ dx4 ® e ® - ® ﬁ)) (D)
- (e oo R (2 2 )dx%® L R P [(m)

“ q1°-qr dxk’ dx! Oxh

0 d 0 0 0
D1+ Ps Ch . qr _ e _ e —_—
+ Z (T‘h qr dx ®dx ® dxp: ® ®R<axk’ axl) 0xPm ® ® axps)(D)

o}
= —Z (Té’ll ékdx‘h R - @Ry Udx' @ --- @ dx¥r ® _— ® C® _) (=)

S
0 0
+Z:(T§l1 Ddxt Q - ®dxqr®ﬁ®“'®Rklpm a0 O ®_)(D)
_ Tt dme1PmsaJs s
- Z RkP lll i, 1 : ZR lltq 111 A AR A
We are done. O

6.D. Abriefintroduction to Bochner technique. We start with a basic computation.
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Lemma 6.16. For a general tensor s, we have
(6.5) A%lsl2 = |Vs|* — g(V*Vs,s).
Proof. Recall the basic formula
(6.6) X(T,,T,) =(VxTy,T,)+(T,,VxT,) if T, and T, are tensors of the same type.
Then given any local coordinates (x'), it follows that
A%lsl2 = %gijViVj (s,8) =gV, (Vs,s)
(8YV,V;s,5) + g7 (V;s,V;s) = |Vs|* — g (V*Vs,s).

We are done. U

Then our basic ideas are as follows.

Lemma 6.17. Tensor T if parallel if it satisfies the following two conditions:

(D) |T| admits its maximum at some point;
(2) g(V*VT,T) <0.

Proof. 1t follows from formula (6.5) and the maximum principle [Pet16, theorem 7.1.7].
O

Definition 6.18. Define the Weitzenbéch curvature operator Ric on T(M, @“T*M) by"”
RIC(T) (Xb ’Xk) = Z (R(EJ’XI)T) (Xl’ ’Ej’ an)

where (E;) is a local orthonormal frame. Then we define the Lichnerowicz Laplacian A;
on T(M, @“T*M) by

AT = V*VT + cRic(T)
for a suitable constant ¢ > 0. The Hodge Laplacian Ay, is of this type with ¢ = 1.
Lemma 6.19. Given T € T(M, @“T*M). If T satisfies
(6.7) A T=0 and g(Ric(T), T) >0,
and if |T| admits its maximum at some point, then T is parallel.
Proof. This follows from the preceding lemma and the definition of A;. OJ

Ifatensor T satisfies A; = 0, T may represent some property of M, such as the topology
property. If we add some constraints to the curvatures, g (Ric(T'), T) may hold. Thus we
can apply the Bochner technique to T,*° and then derive some vanishing theorems or
other estimates.

6.E. Flat manifolds.

Definition 6.20. A (pseudo-)Riemannian manifold is called flat if is it locally isometric
to a (pseudo-)Euclidean space.
Proposition 6.21. A (pseudo-)Riemannian manifold M if flat iff R = 0.

19We use the “Ric” notation since Ric(w)(X) = w (Ric(X)).
20For the good case that M is compact, |T| always admits its maximum.
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Proof. If M is flat, clearly R = 0. In the next we suppose that (M, g) has vanishing
curvature tensor.

First, we show that g shares one important property with (pseudo-)Euclidean spaces:
it admits a parallel orthonormal frame (E;) in a neighborhood U of each point. Let p €
M, and choose an orthonormal basis (e;) of T,M. By solving ODEs, there exist a local
frame (E;) such that E;|, = e; for each i. Bacause parallel transport preserves inner
products (see [Leel8, proposition 5.5]), the frame (E;) is orthonormal.

Second, we show that (E;) induces the desired coordinates. Since each E; is parallel
on U, we have

and hence by [Leel3, theorem 9.46], there exist local coordinates (x') on V' C U such
that

E, = Vi onV.

axi
Clearly, (x") gives the local isometry. OJ

Problem 6.22. Being flat is special, and having constant curvature is special. How about
the general cases? To what extent does curvature R determine the Riemannian metric g?

One can refer to [Yau74]| for the above problem.
6.F. Hodge theorem.

Theorem 6.23 (Hodge). Let (M, g) be a closed Riemannian manifold. Then dim J < oo,
and there exists a bounded linear operator G : Q*(M) — Q*(M) with

(1) kerG = ¥;
2) G(QI(M)) Cc QI(M), and

G x=xG, Gd=dG, Gd&=04G.

(3) G is compact with respect to the norm (e, »);
(4) Forany w € Q*(M) we have

w = w, + Ay(Gw)
where w, € K.
Proof. See [Meil3, theorem 5.2.12]. d

Corollary 6.24. Let (M, g) be a closed Riemannian manifold. If K € C®(M) satisfies
Jy, K dvol = 0, then there exists [ € C*(M) with Af =K.

Proof. By Hodge theorem 6.23, K = K;, + Af for some harmonic function K, and some
f € C*(M). By the maximum principle, the harmonic function K, is constant. Taking
integration we get f,, K), dvol = 0, it follows that K, = 0. O
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7. APPENDIX — FIRST ORDER PDES

7.A. Frobenius theorem.

Definition 7.1. Some basic concepts for '(M,TM):

(1) A (smooth) distribution on M of rank k is a rank-k (smooth) subbundle of TM;

(2) We say that a distribution D is involutive if given any pair of smooth local sections of
D, [X, Y] is also a local section of D;

(3) For a distribution D, a non-empty immersed submanifold N C M is called an integral
manifold of D if T,N = D, at each point p € N;

(4) A distribution D on M is said to be integrable if each point of M is contained in an
integral manifold D;

(5) For a rank-k distribution D C TM, we say that a smooth coordinate chart (U, p) on
M is flat for D if (U) is a cube in R", and at points of U, D is spanned by the first k
coordinate vector fields 8 /dx*, ---,3 /9x*;

(6) A distribution D is said to be completely integrable if there exists a flat chart for D in
a neighborhood of each point of M.

Some basic concepts for I(M,T*M):

(1) IfDis a rank-k distribution, any n—k linearly independent 1-forms o', --- , w"* defined
on an open set U are said to be local defining forms for D if

— —k
D, =kerw'|,n--nkerw" ™|, VgeU.
(2) Let D be a rank-k distribution. We say that w € Q'(M) annihilates D if
w(Xy,-++,X;) =0 whenever Xy, ---, X, are local sections of D.
Remark 7.2. Sometimes we may construct some special functions via 1-forms. By
Poincaré lemma, X f = g can be reduced to that X(w) = g and dw = 0.
Remark 7.3. Clearly for a distribution we know
completely integrable — integrable — involutive.

Lemma 7.4 (Local coframe criterion for involutivity). Let D be a smooth distribution of

rank k on a smooth n-manifold M, and let U C M be an open subset. TFAE:

(1) D is involutive on U.

(2) All (or some) local defining forms w', ---,w"™* for D, which are defined on U, satisfy
that dw', --- , dw"* annihilates D.

(3) All (or some) local defining forms w?, ---,w"™* for D, which are defined on U, satisfy
that there exist 1-forms {ocj. ciL,j=1,---,n—k}with

n—k
do' = Z w! A oc;..

j=1
Proof. (1) < (2) easily follows from the formula
do(X,Y) =X (w(Y)) - Y (X)) —w ([X,Y]).
(2) < (3) follows from [Leel3, lemma 19.6]. O
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Definition 7.5. Any subbundle A C T*M is called integrable if for any local frame
(!, -+, ") of A, there exist 1-forms {oc;'. CiLj=1,-, Bwith

I
do' = Z wl A ocj.
j=1

which is denoted by

do'=0 mod (!, -, w).

Corollary 7.6. For any distribution D, the colletion
A= U A, where A,={neT;M :n)=0,VveD,}.
peEM
is a subbundle of T*M. Conversely, for any subbundle A C T*M, the colletion
D= U D, where D,={veT,M :n)=0,VneA,}.
peEM

is a distribution. Moreover, A is integrable iff D is involutive.

Proof. Given a distribution D, let (X i)f;l be a local frame of D on U. In a neighborhood
of each point in U we can complete the k-tuple (X l-)le to a smooth local frame (X;);_, of
TM by [Leel3, proposition 10.15]. Let ('), be the dual of (X;)",. Then («**!, -+, w")
is a local frame of A. Then by the local frame criterion ([Leel3, lemma 10.32]) for
subbundles, A forms a subbundle.

Similarly given a subbundle A C T*M, D forms a distribution.

The final assertion then follows from lemma 7.4. O

Theorem 7.7 (Frobenius theorem). Every involutive distribution is completely integrale.
Proof. See [Leel3, theorem 19.12]. O

Corollary 7.8. Let A C T*M be an integrable subbundle of rank r. Then for any p € M,
there exist a neighborhood U and smooth functions f*,---, f" on U such that A is locally
spanned by (df')_,.

Proof. By corollary 7.6, the colletion
D= U D, where D,={veT,M :n()=0,Vn€EAL}.

peEM

is the corresponding involutive distribution, and hence there exist local coordinates (x*)
on U such that

{ d 0
span {—

axl q,"',w‘q}:Dq quU

Then clearly we have
A, = span{dx**!| ,---,dx"|,} VqeU

We are done. U

Remark 7.9. In other words, we have the following conclusion:
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Letw!, .-+, " be smooth 1-forms defined on a neighborhood U of p in M. If w!, ---, "
are linearly independent on U and if *!
dw’ =0 mod (!, -, w"),

then there exist a smaller neighborhood V of p and smooth functions f*,---, f" on V'
such that

= Zhidf" forj=1,---,r,

k=1

where each hi is a smooth function on V.

7.B. First order PDEs. First, we review Frobenius theorem from the perspective of
PDE. Given p € U and given a local chart (U, (x')) centered at p. Suppose that the
involutive distribution D is locally spanned by X, ---, X; where

X~—ai Vi<i<k.
L oxJ

If (V, (u')) is a flat chart for D near p, then X; = —, and hence

l

X(ul)—algj 0 Vi<i<k, VIi>k.

Therefore, we know the following PDEs (where X, ---, X, are linearly independent and
satisfy the compatibility condition of being involutive)

i ou
| —
X,(u) = q Fp
(7.1)
i ou
— ) _
X (w) = a, I
have local solutions u**1, ---, u" such that Vu**!, ..., Vu" are linearly independent.

More generally, we consider the non-homogeneous cases. I.e. we solve the first order
non-homogeneous overdetermined linear PDEs.

Proposition 7.10. Let W C R" be an open subset, and let X,,---,X,, be linearly
independent smooth vector fields on W. Suppose that there are Clk, fi € C®(W) for
1 <1i,j,k,l < m,such that the following compatibility conditions are satisfied:

(7-2) [Xl’X ] ka’

(7.3) Xifi—Xifi= ijfk-
Then for each p € W, the following PDEs

Xw=al2t =7,
(7.4)
ou

Xm(u) = amﬁ = fm

21The following integrability condition holds under invertible transformations and hence is a constraint
for the local subbundle.
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have local solutions near each pointin W.

Moreover, suppose we are given an embedded codimension-m submanifold S C W such
that T,S is complementary to the span of (A;)!2, ateach p € S. Then foreach p € S, there
is a neighborhood U of p such that for every ¢ € C®(S N U), there exists a unique solution
u € C*(U) to the following overdetermined Cauchy problem:

i ou

l—=f, VI<i<m,
| 3 fi <i<m
Ulsau = ¢-

(7.5) Xiw) =a

Remark 7.11. Compatibility condition (7.2) exactly means that (X;,---,X,,) is an
involutive distribution; compatibility condition (7.3) is the natural added constraint for
non-homogeneous cases, since

(X0, X;lu = cfiXeu=cfi

Proof. The idea is as follows: via Frobenius theorem, find w such that

and show that w has some closedness to a certain degree; then w will induce u just like
what we do for proving Poincaré lemma.

We find a flat chart (U, (v,w) = (v, -+, 0™, w?,---,w"™)) for D centered at p by
Frobenius theorem 7.7, so

4 g
span{X,, -+, X} = Span{ﬁ’ . av_M}

Note that (X,,---,X,,,0/0w?,---,8/06w"™™) is a local frame of TM on U; then let
(al, -, a™ B, .-+, B""™) be its dual. Setting

w = w,dv* := f,ak,
and hence

(7.6) wX;)=f ViI<i<m, and w(%):O Vi<j<n—-m.

Moreover, we have

dow (X, X;)

X (X)) = X; (@(X) - @ (X, X)])
= Xifi—-X;fi—w (CZXk)
= Xifi—Xjfi—Cka = 0.

It follows that

o_dw(i i) - i(w(i))_i<w<i)) _ 9% _ do
- dvi’ dvi) A dvJ ovJ dvi//  duvi  dvi’

and hence

. Ow;
Ow _ %% i <ij<m.

(7.7) dvi ~ Avi
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Then we define (the construction is in analogy with [Leel3, theorem 11.49])

1 1
u,(v,w) = fco = f w'(t)) dt = f w, (tv, w) v* dt
Y 0 0
where y(t) = (tv, w). Clearly u, € C*(U), and by (7.7) we know
0 ow
30 (o (to, W) V¥) = ta—U’: (tv, w) v* + w; (tv, w)

Jw;
ovk

d
= 7 (ta;(tv,w)).

t— (tv,w) V¥ + w; (tv, w)

Setting h;(v, w) = j;)l aa—j (@ (v, w) V¥) dt, it follows that

du,(v,w) = (/ %(twi(tv, w)) dt) dv' + h;(v, w)dw’

= w;(v,w)dv’ + h;(v, w)dw’ = w(v,w) + h;(V, w)dw’
and hence
Xiu)=duy (X)) =wX)=f Vi<i<m

Therefore, we find a desired local solution.
For the Cauchy problem (7.5), by [Leel3, corollary 19.13],”> WLOG we assume that
S N U is the slice where v! = --- = v™ = 0. Then setting

uy(v,w) = (0, w) and u=uy,+ u,,

we get the solution to the Cauchy problem (7.5).

Let & be any other solution to the Cauchy problem (7.5), then X; (i — u) = 0 for each
1 <i < m,and hence ¥ := u — u is independent of v. Therefore, P(v,w) = P(0,w) =
(0, w) — (0, w) = 0, and hence u = u. O

More generally, we apply Frobenius theorem to first order overdetermined quasi-
linear PDEs.

Proposition 7.12. Let W be an open subset of R" x R™, and let « = (oc;.) W -
M (m X n, R) be a smooth matrix-valued function. If the following compatibility conditions
da’ da’ Al dott
S N Al SN Nt S
(7.8) Txk + o, 32 = Ix +a; 3 Vi, j, k
hold,” then for any (x,,z,) € W, there is a neighborhood U of x, in R" such that the
following overdetermined PDEs (with initial condition)

(7.9) Sfj; (%) = & (x,ul(x), -+, u™(x)), Vi, j

u(xy) = zo

admit a unique local solution u € C*°(U,R™).

22This is a nontrivial corollary of [Leel3, theorem 9.46] and Frobenius theorem 7.7.
Bwhere we denote a point in R” x R™ by (x,z) = (x1, ---, x", 21, -+, 2™)
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Proof. The idea is as follows:

(1) Finding u is equivalent to finding I'(u) = {(x, u(x)) : x € U};
(2) Setting F(x) = (x,u(x)). The overdetermined PDEs are equivalent to that
(7.10) dF <i

B ; 3
oxt x> N oxt + ai (X,U(X)) (x,u(x))

(x,u(x)) 0z
which shows the geometric meaning of the quasi-linear first order PDEs: the
tangent space of im(I") is spanned by

1<i<n

~ 0
+oal (x,2) — on W.

Xi‘(xz) "~ Bxilx) 0zJ l(x.2)’
(3) To show (7.10), it suffices to show that the distribution D spanned by X, ---, X, are
involutive, which is guaranteed by the compatibility conditions. Therefore, we can
find I'(u) by finding the integral manifold of D.

Define X; and D as above. Note that D is involutive since we have
0 ,ud B L0
dxi  i9zl’dxi  Idzs
S S 1 1
i I s NI NI A
Oxidzs 19zl dzs dxJjdz! Jdzsdz!
! ! ! !
oa; asaocj ~ % _asaoci 9 _
dxi 19zs dxJ Jdzs|az

[Xi’Xj] =

So given any point p = (x,z) € W, there is an integral manifold N of D containing
p. More precisely, by Frobenius theorem 7.7, we suppose that there is a flat chart
(V, (0!, -+, v, wh, .-+, w™)) centered at p such that N = ®~1(0) where ® = (w?, -+, w™).

To show the existence of u, by the implicit function theorem [Meil0, theorem 12.5.2]

Jw'

and what we said in the idea, it suffices to show that ( ) is of rank m. For the sake
mxm

0z/
of convenience, we set

P:V->M(mxm,R) where Pijzgwj,
z
dw'

Q:V ->M(@mxn,R) where Qij=ﬁ.

Then we know
rank (%) =rank(P) and rank([Q,P]) = rank (dw?,---,dw™) = m.
Note that
®|y =0 and TN =D|y = do'(X;)=0, Vi,j.

Then we know

a—wi = —ocsa—wi thatis, Q=—-P- -«

dxi — Iazs’ ’ B '
Therefore

[Q,P]=[-P-a,P]=P-[—a,l].
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dw'

Hence we know rank(P) = rank ([Q, P]) = m. It follows that (

hence we prove the existence.
The uniqueness follows immediately from the local structure of integral manifolds
[Leel3, proposition 19.16]. O

) is of rank m, and
mxm

dzJ

Corollary 7.13. Let (M, g) be a (pseudo-)Riemannian manifold, and let A : T*M —
®*T*M be a smooth map satisfying the following compatibility condition: [where A(w) €
I'(M, ®°T*M) forallw € T(M,T*M)]

(711) A(w)ij;k - A(Co)ik;j = Rjk,-la)l, Yo € F(M, T*M)

Then foy any p € M and every covector 1, € T,M, the overdetermined system of equations

admit a smooth solution on a neighborhood of p with w, = 7.

Remark 7.14. The following is a wrong edition:

“Foy any p € M, there exists a neighborhood U of p such that for any covector 5, €
T,M, the overdetermined system of equations Vw = A(w) admit a smooth solution on
U with w, = 1,.”

Remark 7.15. If U is a sufficiently small neighborhood U of p (such that the local
solution exists), then the solution on U is also unique.

Proof. For p € M, let (x") be local coordinates on U centered at p. Then (7.12) becomes
Jw;
where we use the fact that
k _ k . .
(7.13) I =T Vi, j, k.

Moreover, it’s equivalent to

dw; ;
%(x) - O(j (xy CUl(X), Tty COn(X))
where
Olj. (x, (Zl, ) Zn)) = Ffj(X)ZS +A (stxs)ij .
By proposition 7.12, it suffices to show
dot oot Fole%
7.14 A A 3
(7.14) axt gz T an

The idea to verify it is as follows:

i
5ock

l
+ a; 37

Vi,j,k onU X R".

(1) If we compute terms like docj. /dz! directly, it will be hard to connect the results to our
conditions.
(2) In fact, ocj. is easy to analyze only when we consider oc; (x,w,(x), -+, w,(x)), since

& (3, @, (x), -+, 0,(x)) = T, (1), () + A@)y (x).
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(3) The derivative of o] (x, w;(x), -+, @,(x)) with respect to x* will also produce the
terms like 60(5. /0z:
3 i aocl. 60(3. dw,
axk | (o‘j (%, @0y(%), -+ @ (x))) T e (00 ) | Dm0 X
(4) Any point (x, z;, -, 2z,) € U X R" can be expressed as (x, w,(x), ---, w,(x)) for some
w € I'(U, T*U). Moreover, for a fixed point (x, z;,---,z,) € U X R", we can choose
w e I'(U, T*M) with

dw; .
(7.15) w(x) =2z, Vk and a—i);(x) = ocj.(x,z) Vi, j.

It follows from the idea that

(aﬁwz 5“3>(x 2y, 2,) = %‘ (T30, + A);)

dxk k gzl
ow
I k(x) = a; (X, @1(X), -+, @0,(X)) = T (X)), (X) + A(w)gc(X).
Therefore,
ao{l} 1 i S mis S
ot |z z) = (00 + T, ) @+ TA@)y + 6 Ay ) ()

and hence using (7 13) we have

ooy, O
ka ] (x Zla"'szn)_ E"'aja I (X Zl,"-,Zn)

= (8T, + 0TS, — 4,T%, — T3, ) o,

+ (FlSJA(a))sk + akA(CU)ij - kaA(w)sj - ajA(w)ik> ix

T (A(a))ij;k - A(w)ik;j) |x = Ryji*wy N
We are done. O

j— S —
= Ryji'wy = 0.

s
+Rjkl' Wy

Via the proof, we know that although our condition is natural, it’s still too strong.
Specifically, to show the conclusion, it suffices to show that for any point (x, z, .-, z,) €
U x R", there exists w € I'(U, T*U) such that

(7.16) A(w)ij;k|x - A(w)ik;j|x = Rjkilwl|x
and that
(7.17) w(x) =2z, Vk and = F:'J?(x)com(x) + A(w);;(x) Vi, j.

Clearly, there exists w € I'(U,T*U) satistying (7.17). It suffices to show that any
w € T'(U,T*U) satistying (7.17) also satisfies (7.16). Therefore, we have the following
conclusion:

Proposition 7.16. Let (M, g) be a (pseudo-)Riemannian manifold, and let A : T*M —
®>T*M be a smooth map such that A(w) € T(M, ®*T*M) forallw € T(M, T*M). Suppose



Zhiyao Xiong 55

that for any x € M and for any w € T(M, T*M) with
w;;;(x) = A(w);;(x)

it holds that
A(w)ij;kix - A(w)ik;j
Then foy any p € M and every covector n, € T,M, the overdetermined system of equations

Wi.; = A(w)ij

=R; -lco| :
X Jjki lx

admit a smooth solution on a neighborhood of p with w, = 7).

Proof. We keep the notations in the proof of corollary 7.13. By conditions it is clear that
for any (x, z, -+, z,) € U X R", there exists w € I'(U, T*U) satisfying (7.16) and (7.17).
Then by the proof of corollary 7.13 again, we get the conclusion. 0J

Example 7.17. Let P be the Schouten tensor, W the Weyl tensor, and C the Cotton tensor
(see definitions 1.11, 1.24). Let A : T*M — ®>T*M be a smooth map given by

A(w)=§+w®w—%(a),w)-g Yo € T(M,T*M).

If W = C = 0, then foy any p € M and every covector 7, € T,M, the overdetermined
system of equations

Wi, = A(a))ij

admit a smooth solution on a neighborhood of p with w, = 7,.

Proof. By proposition 7.16, it suffices to show that for any x € M and for any w €
(M, T*M) with

(7.18) wi;j(x) = A(w)ij(x)
it holds that
A(w)ij;klx - A(C‘))ik;j|x = Rjkilwl|x'

Note that
Pij 1 .
A(w);; = > + ww; — 50" 8-
It follows that
Pij;k m
A(w);j = N t W@ + W) — WV Wy 8
and hence
A(@)ij — A = Cij + 0@ + 0004 — O™ 0p4 83

m
—Q;, i@ — W;Wy;j + WDy i G-
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By formula (7.18), we know

P

1
+ w0, — —w'w )co‘
2 ik s8ik Jx

A(w)ij;k|x - A(w)ik;j|x = C(x)+ ( )

P 1
- <—r2”k + W, W — zwswsgmk) wmgij‘
X

— i + ww; — lcuscu W ’
P ivj 2 Sglj kx
ij 1
+ (T +w,w; — za)sa)sgmj wmgik‘
X

= (Cijk — (PO Qpijew™) ‘x-
Since W = C = 0, it follows that
A(w)ij;k|x - A(w)ik;j|x = _Rmijkwm|x = Rjkilwl|x-
We are done. O

Remark 7.18. It’s easy to see that dw = 0 for the local solution w, and hence we actually
get a local solution of the following second-order PDEs:

P—2Hessf+2df@df —(Vf,Vf)-g=0.
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8. APPENDIX — FUNCTIONAL ANALYSIS AND REAL ANALYSIS
8.A. Lagrange multiplier on Banach spaces.

Definition 8.1. Let V and W be normed vector spaces, and U C V be an open subset of
V.Amap f : U — W iscalled Fréchet differentiable at x € U if there exists a bounded
linear operator A : V — W such that

Ilf(x + h) — f(x)— Ahl,
1m =
[kl =0 11

or equivalently
f(x+h)=f(x)+ Ah + o(h).

If there exists such an operator A, it is unique, sowewirte D f (x) = A and call it the Fréchet
derivative of f at x.
A map f that is Fréchet differentiable at any point of U is said to be C* if the function

Df : U— B(V,W), xw Df(x)

is continuous, where B(V,W') denotes the normed vector space of all bounded linear
operators form 'V to W.

Theorem 8.2. Let X and Y be real Banach spaces, let U be an open subset of X, let f :
U — R be continuously differentiable function, andletg : U — Y be another continuously
differentiable function. Then

fuy) = inf f(u) forsomeu, €U
ueg1(0) = Df(uy) = AoDg(u,) forsomeld € Y*.
Dg(uy) : X = Y issurjective

Proof. See [Zei85, theorem 43.D]. O
8.B. Sobolev inequalities and Poincaré inequality on domains.

Theorem 8.3 (General Sobolev inequalities on domains). For R", we have the following
conclusions:

(1) (Gagliardo-Nirenberg-Sobolev inequality) Assume 1 < p < n. There exists a constants
C = C(p, n) such that

l|lullLo ey < ClIDU||Lo@ny VU € Co(R™).
In particular, since C}(R") is dense in W'P(R"), we have
(8.1) llullo @ny < ClIDUllLowny  Yu € WHP(R™)

which implies the continuous embedding WP(R") < LP"(R™).
(2) (Morrey’s inequality) Assume n < p < oo. Then there exists a constant C = C(p,n)
such that

[ullcor@n < Cllullwrs@e  Yu € CH(R™),

where
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In particular, since C1(R") is dense in WP(R™), we have
(8.2) [ullcor@n < Cllullwiegn  Yu € WHP(R™),

which implies the continuous embedding WHP(R") & CO7(R™).
Let U be a bounded open subset of R" with a C! boundary.
(D If

S|

k<2 and l=
p q

S|

then we have a continuously embedding
WkP(U) < LI(U).
Specifically, we have the estimate
[ullzoy < Cllullwer  Yu € WEP(U)

where C = C(k, p,n,U) is a constant.
) If

n n .o . .
n [—] +1— -, if-isnotan integer
k>— and y=4LlP p p .
p any positive number < 1, if - is an integer
p

then we have a continuously embedding

WhP(U) < c"‘[i]‘”(ﬁ).
Specifically, we have the estimate
o qep, < Cliwlhsoy Vu € WeP(U)
c eI (@)
where C = C(k, p,n,y,U) is a constant.
Proof. See [Evalo, section 5.6 — theorems 1, 4, 6]. O

Remark 8.4. In particular, for n > 3, Gagliardo-Nirenberg-Sobolev inequality (8.1)
implies the Sobolev inequality

(8.3) ||u||L%(Rn) < 0,||Dullpwny  Yu € WHP(R")

where the smallest such constant o, is called the n-dimensional Sobolev constant.

Theorem 8.5 (Poincaré inequality). Assume U is a bounded open subset of R". Suppose
1 < p < n. Then we have the estimate

1,
ltllzawy < ClIDUllLoy  Yu € WP(U)
foreach q € [1, p*], where C = C(p, q,n,U) is a constant.
Proof. See [EvaloO, section 5.6 — theorem 3]. O

Theorem 8.6 (Rellich-Kondrachov compactness theorem). Assume U us a bounded
subset of R™ and dU is C'. Suppose 1 < p < n. Then we have the compact embedding

WP(U) & LY(U)
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foreach1 < g < p*.
Proof. See [Evalo, section 5.7 — theorem 1]. O

Remark 8.7. Observe that since p* > p and p* — o0 as p — n, in particular we have
the compact embedding

WLP(U) & LP(U)

forall 1 < p < o0. Note also that we have the compact embedding
W, (U) < LP(U)

even if we do not assume dU to be C'.

Theorem 8.8 (Poincaré-Wirtinger inequality). Let Q be a domain in R" with C* boundary
0Q. Assume 1 < p < oo. Then there exists a constant C = C(n, p, Q) such that

= gl gy < ClIDUl ) Vit € WH(Q)
where ug = (Judx)/(f, dx).
Proof. See [Evalo, section 5.8 — theorem 1]. O
8.C. Some basic real analysis.

Lemma 8.9. Let Q be a domain in R". Assume 1 < p < co. Ifu; — u pointwisely, and if
lu;| < g forsomeg € LP(Q), then u; — u in LP(Q). In particular, on a compact manifold
M, if each u; is bounded, and ifuj — u pointwisely, then u; — u in LP(M).

Proof. 1t follows from Lebesgue’s dominated convergence theorem. OJ
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9. APPENDIX — SECOND ORDER PDE
Throughout this section we shall denote by Lu = f tbe equation
Lu = a'D;ju + b'(x)D;(u) + c(x)u = f(x),

where the coefficients and f are defined in an open set Q C R”" and, unless otherwise
stated, the operator L is strictly elliptic; that is,

a’& € > A7, VxeqQ, feR”

for some positive constant A.

9.A. Introduction. Roughly speaking, we consider the problem

L:B->7V
where we have some basic cases:
(9.1) B=W2?P(Q) and V =LP(Q),
(9.2) B=C*(Q) and VPV =C%Q),
(9.3) B=HYQ) and V =H1(Q).

First, we put forward a basic method to deal with cases (9.1) and (9.2).

(1) Using priori estimates and continuity method, we show that L(B) = 7V is
equivalent to A(B) = V. [L(B) = V means that the equation always has a solution.**]
(2) By Perron process and priori estimates, A(B) = V follows.
Specifically, Perron process helps us find the solution, and priori estimates shows
that the solution has some regularity.

Second, we put forward a basic method to deal with case (9.3).

(1) Setting a(u,v) = (Lu,v), then by Lax-Milgram theorem [Xio, corollary 4.20], the
Dirichlet problem has a (unique) solution if a is coercive.

(2) Viaintegration by parts, we can write down a exactly. Then by Poincaré inequality
and basic estimates, we know L + u : H (Q) — H '(Q) is an isomorphism for
sufficiently large u, since the corresponding bounded bilinear form is coercive.

Note that up to now we have considered sufficient conditions for L(B) = V. Generally,
this doesn’t hold, but elliptic operator L still has the alternative property:

either one can always solve Lx =y,
or else 0 < dimker L* < oo, in which case a solution exists iff y L ker L*.

Both the above two methods can show the alternative property:
(1) For cases (9.1) and (9.2), the priori estimates show that
L(B) is closed and ker L is fintie dimensional.

Then the alternative conclusion follows from [Xio, theorem 3.15].
(2) For case (9.3), by compact embedding we know (L + u)~! is compact, and hence the
conclusion follows from Fredholm alternative.

24By the maximum principle, L is a positive operator, and hence the solution must be unique.
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9.B. Continuity method.

Theorem 9.1 (Continuity method). Let B be a Banach space, let V be a normed vector
space, and let L,, L, : B — V be bounded linear operators. For each t € [0,1], set

L, =(1—t)Ly+tL,
and suppose that there is a constant C such that
(9.4) x|l < ClLx|l,, Vxe€B, Vtelo,1]
Thenim(L,) = Viffim(L,) = V.
Proof. Condition (9.4) shows that L, is injective for each t € [0,1]. Suppose that L; is

onto for some s € [0, 1]. Therefore, L, is bijective. Then given any ¢t € [0,1] and given
any y € V, we have

Lx=y << ((1-t)Ly+tL)(Xx)=Yy
= ((A=9Ly+sL)(x)+(s—)(Ly—L)(x) =y
= L)+ -0 —L)X) =y
= x=L7'(y) = (s = L7 (Ly — L(x).

To show such x exists (for L,x = y), by Banach fixed point theorem [Xio, theorem 2.14]
it suffices to show that

T:B-B, x~L'(y)—(s—tL7(Ly— L))

is a contraction mapping. By condition (9.4), clearly, T is a contraction map if

Is—t] < 1
C (IILoll + |IL,])
By compactness of [0, 1], the conclusion follows. O

9.C. Schauder estimate on domains, solving PDE on Holder spaces.

Remark 9.2. A C** (0 < a < 1) domain is already bounded. One can refer to [GTO1,
section 6.2] for its detailed definition.
Theorem 9.3 (Schauder estimate). Let Q be a C** domain in R". Suppose that

AlEPP <a¥&é; VxeQ, & eR,

|aij|0,a ’ bilO,a ’ |c|0’°‘ <A

for some positive constants A and A. If

Lu=f in Q

where u € C*%(Q), f € C*(Q), ¢ € C>%(Q)
u=¢ on 0Q
then

(95) |u|2,oc;0 S C (lulo;Q + |¢|2,a;Q + |f|0,a;Q)

where C = C(n,a,A, A\, Q) is a constant.

Proof. See [GTO1, theorem 6.6]. O
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Theorem 9.4. Let Q be a C** domain in R", and let L be strictly epplitic in Q with
coefficients in C*(Q) and with ¢ < 0. Then if the Dirichlet problem for Poisson’s equation

Au=f in Q
u=¢ on 0Q
has a C2*(Q) solution for all f € C*(Q) and all € C>*(Q), the problem
Lu=f in Q
u=¢ on 09Q
also has a (unique) C>*(Q) solution for all f € C*(Q) and all ¢ € C>*(Q).

Proof. By setting v = u — ¢, it suffices to restrict consideration to zero boundary values.
In the next we apply the continuity method 9.1. For ¢t € [0, 1] we set

L =tL+(1—-1A: B, > B,
where Banach spaces B, and B, are given by
B, = {u eC**(Q) : u=0on Q} and B, = C%(Q).
By hypothesis we may assume that the coefficients of L, satisfies
AEP <adi()EE, vxeQ, EeR, te]o,1],
||, - PO, - @l <A VEE0,1],

for some positive constants A and A. Clearly by (9.6), we know L, : B, — B, is well-
defined and bounded for each t € [0, 1].
By the maximume-estimate theorem [GTO01, theorem 3.7], we know furthermore that

(9.6)

luly < Cysup [Lu| < C|Luly, Vite][0,1]
Q

where C, = C; (4, A, diam(Q)) is a constant. By Schauder estimate (9.5) we know
[ulpe < ClLaulo, Vt €[0,1]
where C = C(n,a, A, A, Q) is a new constant. That is,
lulls, < ClILaull, Vit €[0,1].
Then the conclusion follows from the continuity method 9.1. O

Then by the conclusion for the model case L = A, we have the following conclusion:

Theorem 9.5. Let Q be a C>* domain, and let L be strictly epplitic in Q with coefficients
in C*(Q) and with ¢ < 0. Then the Dirichlet problem,

Lu = in Q — —
u=J i where f € C*(Q), ¢ e C**(Q)
u=¢ on 0Q
has a (unique) solution lying in C2*(Q).
Proof. 1t follows from theorem 9.4 and subsequent theorem 9.11. O

9.D. L? estimate on domains, solving PDE on Sobolev spaces.
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Remark 9.6. A C** (0 < a < 1) domain is already bounded. One can refer to [GTO1,
section 6.2] for its detailed definition.

For the sake of convenience, given a domain Q and a function f : Q — R, we denote
the moduli of continuity of f by

|flmeo = 1nf {u 2 [f(0) = fOWI < ulx —yl, Vx,y € O}

Theorem 9.7 (L? estimate). Let Q be a domain in R" with a C! boundary portion T C
0Q. Suppose that

a’ e C'(QUT), bl,celL=(Q),
AlEI? < aijgigj V¢ e R",
laV], [b'], || <A
for some positive constants A and A. If 1 < p < oo and if
Lu=f in Q [strongsolution]

where u € W*P(Q), f € LP(Q)
u=0 on T [inthesenseof W-P(Q)]

then for any domain Q' cC QU T, we have

(9-7) ”u”Z,p;Q’ <C (”u”pﬂ + ”f”pQ)
where C = C(n, p,A, A, ', Q, |aV|,,..qy) is a constant.

Proof. See [GTO01, theorem 9.13]. O

Corollary 9.8. Let Q be a C*! domain in R". Suppose that
al € C%Q), bl,ceL™(Q), c<0
AP <a§E; VEeER?,
for some positive constant A. Then for 1 < p < oo, we have
(9:8) [tllo 0 < CllLullpo  Yu € W>P(Q) n W, F(Q)
where C = C(n, p, A, A, Q, ) is a constant, where*

p =max |aV|,.q and A =max{sup|a|,sup |b'|,sup|c|}.

Proof. By L? estimate 9.7, it suffices to show that
lullpo < CllLullpo  Yu € WP(Q)N W37P(Q)

for some constant C. Suppose for contradiction that there exists a sequence (v,,) C
W2P(Q)N W;’p (Q) satisfying

[Vmllpe =1 [ILUnllpe = 0, Ym EN.

Then via LP estimate 9.7, the weak compactness of bounded sets in W>P(Q), and the
compact embedding Wé’p < LP(Q), there exists a subsequence, which we relabel as
(v,,,), converging weakly (both in WP and in Wé’p ) to a function v € W>P(Q)N Wé’p Q)

ZSince Q is compact, u and A are finite.
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satistying ||v|| .o = 1. Since

f gD%,, — f gDh%, V|a| <2, Vge LP/CP-D(Q),
Q Q
we must have

f gLv =0, Vge LP/?PD(Q),

Q

and hence Lv = 0. By uniqueness we know v = 0 (using the maximum principle), which
contradicts the condition [[v]|, = 1. O
Theorem 9.9. Let Q be a C'! domain in R". Given1 < p < co. Suppose that
ai € C%Q), bi,ceL®(Q), c¢<0
Al§)? < aijgigj V¢ eR”,
for some positive constant A. If the Dirichlet problem for Poisson’s equation
Au=f in Q [strongsolution]
{u —pew,?
has a W*P(Q) solution for all f € LP(Q) and all $ € W>P(Q), the problem
Lu=f in Q [strongsolution]
lu —pew,?
also has a (unique) W*P(Q) solution for all f € LP(Q) and all § € W*P(Q),.
Proof. By setting v = u — ¢, it suffices to restrict consideration to zero boundary values.
In the next we apply the continuity method 9.1. For t € [0, 1] we set
L =tL+(1-0A: B, > B,
where Banach spaces B, and B, are given by
B, =WQ)NW,P(Q) and B, =L!(Q)

where B, is equipped with the norm |||l .. By hypothesis we may assume that the
coefficients of L, satisfies

ali(t) € C°(Q), bi(r),c(t) € L=(Q), Vt e [0,1],
&P < a¥()g§; vEeR", Vielo,1],

la ()], b (D), le®)| < A, VYt e[0,1],

1@ ()| e < M, c(t) <0, Vte[0,1],

(9.9)

for some positive constants 4, A and u. Clearly by (9.9), we know L, : B, — B, is well-
defined and bounded for each ¢ € [0, 1]. By the L? estimate (9.8) for W(l)’p (Q)NW2P(Q),
we know that

lullopo < CliILiullpe Yu € B, Vt€[0,1]
where C = C(n, p, 1, A, Q, 1) is a constant. That is,
lulls, <C ||L,u||1;2 Yue B, Vte]lo,1].
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Then the conclusion follows from the continuity method 9.1. l
Then by the conclusion for the model case L = A, we have the following conclusion:
Theorem 9.10. Let Q be a C*! domain in R". Suppose that
al € C%Q), bl,ceL™(Q), c<0
A€ <a§E; vEER?,
for some positive constant A. Then for 1 < p < oo, the Dirichlet problem
iu_:(;bfe I;/’E,p Q [strong solution] where f € LP(Q). ¢ € W(Q)
has a unique solution u € W>P(Q).

Proof. 1t follows from theorem 9.9 and subsequent theorem 9.11. OJ

9.E. The model case: L = A. For the model case L = A, Perron process helps us find
the solution, and priori estimates shows that the solution has some regularity.
Theorem 9.11. Here are two basic conclusions for the existence of Poisson’s equations:
(1) If Qis a C*>* domain in R", then the Dirichlet problem for Poisson’s equation

Au=f in Q
u=¢ on 0Q

has a C2%(Q) solution for all f € C*(Q) and all $ € C>*(Q).
(2) If Q is a C! domain in R", then the Dirichlet problem for Poisson’s equation
Au=f in Q [strong solution]
u—¢ew,”
has a W>P(Q) solution for all f € LP(Q) and all p € W>P(Q).
Proof. Point (1) follows from [GTO01, theorem 6.11, lemma 6.12, remarks in section 6.3].
In the next we prove point (2). By setting v = u — ¢, it suffices to restrict consideration
to the case ¢ = 0. Then let (f,) € CZ(M) satisfying f, — f in LP(Q), and let (u,,) be the
solutions to
Au,=f, in Q
u, =0 on Q\supp(f,).
By point (1), it’s clear that u, € C*(Q). By L? estimate (9.8) for W(l)’p (Q) NW?P(Q),”° we

know (u,) converges in W>P(Q). Say u € W>P(Q) with u, - u in W>P(Q). Clearly u is
the solution as desired. 0

9.F. Lax-Milgram theorem, solving PDE on H'!(Q).

Theorem 9.12 (Lax-Milgram theorem). Let H be a Hilbert space, and let ¢ be a bounded
and coercive bilinear form. Then for all f € H*, there exists a unique y € H such that

f(x)=¢(x,y), Vx€H.

26This property uses the condition that Q is a C-! domain.



66 Introduction to conformal geometry

Proof. See [Xio, corollary 4.20]. O
Theorem 9.13. Let Q C RY be open and bounded. Given the elliptic operator
L:HY(Q) - H(Q), uw —3;(aYdu+ d/u)+b'du+ cu,

where a/t = a¥, a'/ € L*(Q) and there exist constants 0 < 1 < A such that

(9.10) AP <a¥(x)E€; < A€ VEER" Vxeq,
(9.11) Zl ‘ bt o + Zl Hdl @) + ||C||L”/2(Q) <A.

Suppose that v € H1(Q), g € H'(Q). Then there exist u > 0, such that for u > u, the
Dirichlet problem

Lu+ pjiu=v
u-—geH|Q)
has a unique solution u € H'(Q), where
i: Hé(Q) < LA(Q) is the compact embedding.
J i LAQ) > HN(Q), uw U, )pq):
Proof. Note that the Dirichlet problem can be transformed into finding u € H (Q) such
that Lu + ujiu = w, where w € H~1(Q). Since
(=0, (adu + d'u) + b'du + (¢ + wu,v)
= (adu + d'u,d;v) + (b'du + (c + wu,v)

(Lu + pjiu,v)

the equation is equivalent to finding u € H,(Q) such that a(u, -) = w, where

a:Hy(Q)XxH)(Q) - R
(u,v) - f (a8ud;v + d'ud;v + b'(du)v + (¢ + wuv) dx
Q
is a continuous bilinear form.”” Now we claim that
(x) : There exists u > 0 such that a is coercive for u > u.

Note that the conclusion will follow from (%) by Lax-Milgram theorem 9.12. Thus it
suffices to prove (x).

Claim () is easy if the coefficients are in L*(Q), but we only have (9.11). Our idea is
to show that the gap between (9.11) and L* can be controlled.

Note that via Poincaré inequality 8.5 there exists ¢, > 0 such that
2¢,
||Vu||L2(Q) > 7 ||u||Hé(Q) Vu € Hé(Q)

2 Continuity (i.e. boundedness) follows from (9.10), (9.11), Holder inequality and

xAYT| < 4xAyT Ay DT = [xA0THAXT = yVrAAXT = LVGATIAXT) < Al
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Then we choose 0 < € < ¢, and find b, b., d}, d, c;, ¢, and k via the subsequent lemma
9.14 such that

n n
Z “bll L>(Q) + Z ||dll||Loo(Q) + ||c1||Loo(Q) < k,
i=1 i=1
Z ' b; Ln(Q) + Z HdIZ L(Q) + ||c2||Ln/2(Q) < ¢
i=1 i=1
Set
ane) = f Ua ud;v + dyud;v + bj(Guv + cluv) dx,
Q
a,(u,v) = / d’ua v+ bl S(Gu)v + czuv> dx,
Q
as(u,v) = (k ) ) fuv dx.

Then by Holder inequality we know that™

2
0 w) 2 ANVl =k (el gy V8l + 1l IVl + il 2l )

2 2
= 1 ||vu||L2(Q) -k ||u||L2(Q) -2k ||Vu||L2(Q) ||L£||L2(Q)

A 2 2k? A 2 2k? 2
= SVl = (4 25 Il + 5 IV, + 2 ) = 2K 13y il

v

A 2 2k?
e - [

2k2
ol = (Je + 2 ) Tl

v

and that
2
|a2(us u)l S € ||u||Hé(Q) .
Therefore,
2
a;(u,u) + ay(u, u) + as(u,u) > (¢, —€) ||u||H(])(Q)
which proves claim (x). Hence the conclusion follows. O

Lemma 9.14. Given f € LP(Q) and € > 0. Then we can find f = f, + f, such that
sup | f1(x)] < k() ||f2||LP(Q) <¢€

X€Q
Proof. PutA, ={x € Q : |f| <k},B,=Q\ A and
flk:f)(Ak fzk:f)(Bk

Then we know

Juut+tfu=7r sup | f1(x)| <k

xeQ

BIfwe use ¢, ||Vu||i2(m +c, ||u||22(9) to controll — ||Vu||L2(Q) ||u||L2(Q), we can use a small ¢;. But if we use

1 ”V”HEZ(Q) and Poincaré inequality to controll — || Vu|| 12Q) [|ul| 12(q)» We can’t use an arbitrarily small ¢;.
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for all k. Note that f € LP(Q) implies that m(B;) — 0 as k — o0, and then via the
Lebesgue dominated convergence theorem [Xio, theorem 9.25] we know

lim =0
Bim el

Thus for any ¢ > 0, we can find an appropriate k such that f,, and f,, satisfy the
requirements. 0

Corollary 9.15. In theorem 9.13, if 1 > p, the operator L + uji : Hy(Q) — H™'(Q) is
actually an isomorphism.

Proof. Note that L + uji : Hy(Q) — H~'(Q) is continuous since the corresponding
bilinear form a is continuous. Thus the conclusion follows from theorem 9.13 and
theorem [Xio, theorem 3.22]. O

Example 9.16. The operator —A + cji : H,(Q) — H™*(Q) is an isomorphism, where
c>0a.e. and c € L'3(Q).

Proof. The corresponding bilinear form is
a(u,v) = /(6iu - 0;U + cuv)dx
Q
Then via Holder inequality we have

2 2 2 2
|a(u1 U)l S ||Vu||L2(Q) ||VU||L2(Q) + € ||u||Hé(Q) ||v||Hé(Q) S G ||u||H(1)(Q) ||v||Hé(Q) ’
and via Poincaré inequality we have

a(u,u) 2 [[Vull g = cs lull

2 2
LX(Q) H)(Q) "

Hence the conclusion follows. O

9.G. General cases on W>P(Q). The idea has been introduced in subsection 9.A.

Lemma 9.17. Let E and F be Banach, and let L . E — F be a bounded linear operator
Then the following properties are equivalent:

(1) im(L) is closed.

(2) im(L) = ker(L*)*.

Proof. See [Xio, theorem 3.51]. O

Lemma 9.18. Let X, Y, Z be reflexive Banach spaces with X < Y a compact embedding,
and let L : X — Z be a continuous linear operator. Then the following properties are
equivalent:

(1) im(L) is closed and ker L is finite dimensional.
(2) There are constants ¢, and c, such that

(9.12) lIxllx < cillLx]lz + coflxlly

Proof. (1) = (2): Since ker L is fintie-dimensional, by [Xio, lemma 3.46] there exists
a closed linear subspace X; C X with X = X; @ ker L, and by [Xio, theorem 3.15] there
exist positive constants b, and b, with

by[lvfly < lvllx < byflvfly, Vv €kerL.
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Moreover, since L[y, is injective and im(L|y,) = im(L) is closed and hence Banach, by
[Xio, theorem 3.22], there exists positive constant b, with

Ivllx < bsl|Lv]ly, Vv € X;.

Therefore, for any x € X, we write x = Xx; + X, in a unique way due to the direct sum
X = X, @ ker L; then we have

Ixllx < [lxllx + l1xllx
bs||Lx:|ly + by||x,lly = bsl|Lx|ly + by||x — x4y
bs||Lx|ly + b,[[x|ly + byl[x:|ly

IA A

IA

b,
bs|ILx[ly + bollx[ly + =[x llx
1

IA

b,b
bs|[Lx[ly + bolx[ly + %IILXIly-
1

(2) = (1): Condition (9.12) implies that
lIxllx < cllx|ly, Vx € kerL.

By the compact embedding X < Y, it follows that||+||, and |||, are equivalent norms on
ker L. Moreover, with ker L equipped with the norm ||«[|,, the compact embedding X <
Y and the norm equivalence imply that the unit ball in ker L is sequentially compact.
Therefore, by [Xio, corollary 3.19], ker L is finite-dimensional.

In the next we prove that im(L) is closed. By [Xio, lemma 3.46] we decompose X =
X, @ ker L where X is a closed linear subspace. By [Xio, theorem 3.32], we know X, is
also a reflexive Banach space. Suppose Lx; — z for some (x;) C X;.

(1) First we prove that (x;) is bounded. Suppose not; there exists a subsequence, which
we relabel as (x;), satisfying ||x;||x — co. Setting
X ;
= , Vi=1,2,---.
1l

then (y;) is a bounded sequence in X; and

Vi

Ly, —»0 in Z.

By [Xio, theorem 3.41], there exists a subsequence, which we relabel as (y;), satisfying
y; = ¥ in X, for some y € X;. By compact embedding X < Y and [Xio, proposition
3.55], we know

y;,—y in Y.

Then condition (9.12) implies that y; — y in X;. Therefore, Ly, — Ly and hence
Ly = 0;i.e. y € kerL. Sincey € kerL N X;, y = 0. However y; — y also implies
ll¥|| = lim; ||y;]| = 1. A contraction.

(2) Then we show that (x;) has a convergent subsequence. Since (x;) is bounded, by
[Xio, theorem 3.41], there exists a subsequence, which we relabel as (x;), satisfying
x; = x in X, for some x € X;. By compact embedding X < Y, [Xio, proposition
3.55], and condition (9.12), we know x; — x in X;.

Therefore z = lim; Lx; = Lx, which implies im(L) is closed. O
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Since Ck%(Q) is not reflexive,” we only apply lemmas 9.17 and 9.18 to elliptic PDEs
on W2P(Q).

Theorem 9.19 (Solvability of elliptic PDE on W2P(Q)). Let Q be a C*!' domain in R",
Given 1 < p < oco. Suppose that

al € C°Q), b,ceL=(Q)
AEPP < aijgigj V€ e R",
for some positive constant A. Then
LP(Q) = L (WZ’P(Q) n Wg’P(Q)) @ ker L*

Proof. Since we have the compact embedding W>P(Q) < LP(Q), the conclusion follows
from LP estimate 9.7, lemma 9.17 and lemma 9.18. O

9.H. General cases on H'(Q). The idea has been introduced in subsection 9.A.

Theorem 9.20 (Solvability of elliptic PDE on H'(Q)). Let Q C RY be open and bounded.
Consider the elliptic operator

L : HY(Q) » HY(Q),u » =8, (a0u + d/u) + b'du + cu,
where a’' = aV, a¥/ € L®(Q) and there exist constants 0 < A < A such that
AE1P < aij(x)‘figj <AIEP VEER" VxeQ;

n n
20 [0y + 221
i=1 i=1

Suppose that v € H™'(Q). Then for the Dirichlet problem
Lu=v, ueH|Q),

A.

we have

(1) either for every v € H™1(Q) the equation has a unique solution,

(2) or the homogeneous equation Lu = 0 admits n linearly independent solutions, and in
this case, the inhomogeneous equation Lu = v is solvable iff v satisfies n orthogonal
conditions; that is, v € N(I — T*)*, where T = u(L + p)™" : Hy(Q) - Hy(Q) and p is
an appropriate constant with L + u being an isomorphism.

Proof. Note that the equation is equivalent to finding u € H,(Q) such that
(L + pju — ujiv = v,
where 4 € R and
i 1 Hy(Q) & L*(Q) is the compact embedding;
JiLA(Q) - H'(Q), uw- (u, r2(Q)-

By corollary 9.15, we find an appropriate u with L+u ji being an isomorphism. Therefore,
the elliptic equation is equivalent to finding u € H,(Q) such that

u—Tu=w,

See https://math.stackexchange.com/questions/388129.
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where
T = pu(L+ pji)yji, and w=(L+ uji)y™(v) € H)(Q).
Since T is compact by proposition [Xio, proposition 3.55], then the conclusion follows

from Fredholm alternative theorem [Xio, theorem 5.1]. O

Remark 9.21. Fredholm alternative [Xio, theorem 5.1] also implies that any eigenspace
of a elliptic operator is finite-dimensional. If L is self-adjoint, we can apply spectral
decomposition theorem to get more interesting conclusions.

9.I. Regularity of weak solutions. In Schauder estimate 9.3 and L? estimate 9.7, we
require u to belong to Cz’“(ﬁ) or W>P(Q). These priori estimates ensures the regularity
of solutions, as we showed in preceding subsections.

In subsection 9.F, we considered H'(Q)-weak solutions. In fact, such weak solutions
also have regularity. Specifically, if u is a solution to Lu = f in the sense of LIIOC(Q)—weak
solution, where f and the coefficients of L have good regularity, then u also have good
regularity.

First, we deal with the relatively easy cases, the interior regularity of H'(Q)-weak
solutions.

Theorem 9.22 (Interior regularity). Let Q C R" be a bounded open subset. Suppose that
L has the divergence form

Lu = —9; (a"d,u) + b'd;u + cu.
D If
a’ € CH(Q), bl,ceL>(Q),
and if u € H'(Q) is a weak solution to
Lu=f in Q, where f€L*Q)
then
ueH; (Q)
and for each open subset U CC Q, we have the estimate
ullizwy < C (1 2 + 1ll2@)
where C = C(Q, U, d", b', c) is a constant.
@ If
a’,b',c € C'm + 1(Q),
and if u € HY(Q) is a weak solution to
Lu=f in Q, where f & H™Q)
then
u € H"(Q)

loc

and for each open subset U CC Q, we have the estimate

[[ullmeawy < C (1 Nl + el o)
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where C = C(Q, U, d", b, c,m) is a constant.
Proof. See [Evalo, section 6.3 — theorems 1, 2]. O
More generally, we introduce the general conclusions.
Theorem 9.23 (Weyl’s lemma). Let Q be a bounded domain in R". Suppose that
ail € C*%(Q), b, € C*(Q), c¢eCYQ).
Thenifuisa LIIOC(Q)—weak solution to
Lu=f in Q, where f € Cc*(Q)
then u coincides almost everywhere with a function u € Cz’“(ﬁ) in Q.
Proof. See [Hel60, section 4.2]. O

Theorem 9.24. Suppose QO C R" is an open subset, and L is an elliptic operator of order
k with smooth coefficients on Q. Let u and f be distributions on Q satisfying Lu = f. If
f € H: (Q) for some s € R, then u € HS™*(Q).

loc loc

Proof. See [Fol95, theorem 6.33] O
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10. APPENDIX — TRANSFER THE RESULTS TO TO COMPACT MANIFOLDS

10.A. Differential operators for vector bundles.

Definition 10.1. Let E, F be smooth vector bundles over a smooth manifold M. We say
thatamap L : T(M,E) — T'(M, F)* is a differential operator if over any affine chart U
trivialising both E and F, the map

C*°(U,R"Y)Y=T(U,E) - T'(U,F) = C®(U,R™)

is a classical differential operator.

Moreover, L is linear if any local expression of L is a classical linear differential operator.
The order of L is the highest order of all its local expressions.

A differential operator on a manifold M is a differential operator from I'(M,M X
R) - I'(M, M X R), i.e. a differential operator form C*(M) to C*(M).

Remark 10.2. (1) The regularity of L is characterized by its local expressions. Unless
otherwise stated, the differential operator P is smooth (i.e. all its local expressions
are classical smooth differential operators).

(2) If L is linear, then locally, given (U, (x*)) and a local frame (e;) of E, P is expressed by

(10.1) Lu = L(u'e,) = Z o%u' - a%(e;)

|a|<m
where a* € I' (U, Hom(E, F)).
(3) By local computation, it’s easy to see the linearity is well-defined.

Remark 10.3. In [Kaz16] the author shows that

(1) Generally, for a differential operator, the linearized differential operator may reflect
its properties.

(2) For a linear differential operator with variable coefficients, the corresponding linear
differential operator with constant coefficients derived by freezing the coefficients at
one point, will reflect its properties. (We use the continuity method 9.1.)

An important characterization of linear differential operator is its principal symbal,
which is motivated by remark 10.3 (2).

Definition 10.4. Let E, F be smooth vector bundles over a smooth manifold M, and let
L : T(M,E) —» I'(M,F) be a linear differential operator of order m. At any point p € M,
and for every § € T,M, the principal symbol c,(L; p) [or simply o,(L)] is defined as
follows:
Given any affine chart (U, (x*)) containing p, then for any local frame (e;) of E near p,
the principal symbol is given by’'
o(L;p) = D, &,a%(p) € Hom(E,,F))

la|=m

where a* is given by (10.1) and

=5 (5) ¢ (5

30Some people say that L is a morphism between the sheaves of smooth sections of E and F. This is
equivalent to that L is a map from I'(M, E) to (M, F).
3Ipeople usually write Zlcx|=m a*(p)&*
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Remark 10.5. This definition is well-defined. For any compatible (V, (y")) and (g;),
Lu = L(ule)= ), d%u'-a%(e,)

la|<m

= L@'e) = Y, - &)

[Bl<m
It follows that
Lu = Z d%u' - a*(e;) + lower order terms
|x|=m
181 a ﬁm
- Z Z dz“ "'aya aﬁu - a%(e;) + lower order terms
1
lot|=m |B|=m
ﬁl a 6m .
- Z Z di“ aia afﬁl-a"‘('e”i)+lower order terms
1 m
la|=m |B|=m
= N - — --- ——a%(e;) | + lower order ter
|6|Z=:m yu lo;::m Gxa e e (€) | + lower order terms
= Z afﬁi - @*(¢;) + lower order terms
|Bl=m
and hence
B B
2 A
loc|=m ox® 9xtm
Therefore

) §(ayﬁl)' (ayaﬁm)aﬁ = 2 X Siﬁgfg(ajﬁ)g(ajﬁ)a

I‘ | |B| 1 |C(| m
( )
ax m

- 2 8(5m)

la|=m

ie.
z é—(y)~5 z g(x) ,
|Bl=m la|=m
which implies that o;(L; p) is well-defined.

Definition 10.6. A linear differential operator P : C*®(E) — C®(F) is elliptic at a point
X € M if the symbol o (P; x) is an isomorphism for every § € TyM \ {0}.

Moreover, for Hermitian vector bundles, we can define the formal adjoint of a linear
differential operator.

Definition 10.7. If E and F are smooth Hermitian vector bundles over M and if P
['(M,E) — I'(M, F) is a linear differential operator, then one can use the L* inner product
to define the formal adjoint, P*, by the usual rule

j(Pu, V), dvol = f(u,P*v)E dvol, VYu e C{(M,E), Yve Cl(M,F).
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Remark 10.8. Since the supports of u and v can be assumed to be in a coordinate patch,
one can compute P* locally using integration by parts.

10.B. Sobolev spaces and Holder spaces on manifolds.

Definition 10.9 (John Lee’s version). Let (M, g) be a Riemannian manifold.

(1) Let P be a linear differential operator on M. If u and f are locally integrable functions
on M, we say u is a weak (or distribution) solution to the equation Pu = f if

f uP*¢ dvol = / fedvol Y € CX(M)
M M

where C®°(M) denotes the set of all compactly supported smooth functions, and P* is
the formal adjoint of P.
(2) If g > 1, the Lebesgue space Li(M) is defined by

1/q
LI(M) = {u is locally integrable : ||u||, = (f |u|? dVOl) < o0
M

(3) Ifq > 1 and k is a non-negative integer, the Sobolev space L(M) is defined as*

the set of u € LI(M) such that Pu = f € LI(M) (in the weak sense)
whenever P is a smooth differential operator of order < k.

We define the Sobolev norm || ||q’k on LZ(M ) by:
1/q

k
lullge =D | 1V'ul?dvol

where Vi = Vo --- oV.

————
i times
(4) The space C*(M) is defined by
k

CK(M) = Ju is k times continuously differentiable : ||u||cx = Z sup |Viu| < oo
i=0 M

(5) The Hélder space C**(M) is defined for 0 < a < 1 by

|V"u(x) — V"u(y)|
Ck*(M) = Ju € C*(M) : ||ul|cka = ||t4]|ck + sup <
X,y |X - yla
where the supremum is over all x # y such that y is contained in a normal coordinates
neighborhood of x, and V¥u(y) is taken to mean the tensor at x obtained by parallel
transport along the radial geodesic from x to y.
(6) C*(M) and C (M) denote the spaces of smooth functions and smooth compactly
supported functions on M, respectively.

Remark 10.10. The Sobolev space LZ(M ) is a reflexive Banach space, and C(M) is
dense in L] (M).

*2Some people write WEP(M) = LI(M).
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For compact manifolds, people can simply define Sobolev space and Holder space via
partition of unity.

Definition 10.11 (Kazdan’s version). Let (M, g) be a Riemannian manifold.

(1) Let A C R" be the closure of a connected bounded open set and 0 < o < 1. Then
f A — R is Holder continuous with exponent « if the following expression is
finite

_ |f(x) = fF)I
[flaa = xs:;lfg TRFE
xX#y

The Holder space Ck«(Q) is the Banach space of real valued functions f defined on Q
all of whose k-th order partial derivatives are Holder continuous with exponent a. The
norm is

Flise = flles + max(a' 1,5

On M, one obtains the space C*%(M) by using a partition of unity. Specifically, let (B;)
be an open cover of M where each (B;, ¢;) is a regular coordinate ball, and let (p;) be a
partition of unity subordinate to (B;); then the norm is

lullcsa = 23| Cow) o7,

and the Hélder space C**(M) is
C**(M) = {u is k times continuously differentiable : ||u||cra < co}.

(2) For f € C*(M), 1 < p < oo, and an integer k > 0 define the norm
1/p
1 lliep = 2, IVifIP
M o<|1|<k
The Sobolev space L,f (M) is the completion of C*(M) in this norm; equivalently, by
using local coordinates and partition of unity, one can describe Li(M ) as equivalent

classes of measurable functions all of whose partial derivatives up to order k are in
LP(M).

Remark 10.12. For compact manifolds, any open cover has a fintie sub-cover (Ul-)fi -
Suppose each (U;, ¢;) is a coordinate ball. Let (pl-)fi , be a partition of unity subordinate
to (U,); then

N 1/p N
> (j llosull” dvol) ~ 2. |[Geiw) o
i=1 M i=1

’
p

1/p N 1/p
N(f |u|P dvol) > Z (f |piu|P dvol) ,
M i=1 \YM
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1/p N » N b N 1/p
(f |ul? dvol) = (/ ‘Zpiu' dvol) < (Zf |piu§p dvol) < Z(f |,ol-u|p dvol)
M M i=1 i=1YM i=1 M

where the red inequality follows from p > 1. Therefore, for compact manifolds, two
definitions coincide (the norms are equivalent).

For non-compact manifolds, two definitions are not equivalent, so people should
be careful with the basic definitions. In fact, non-compact situations need special
treatment, and we won’t discuss them for the time being.*

1/p 1/

10.C. Transfer the results to compact manifolds. In the next we focus on compact
manifolds, and we will transfer the results in subsection 8.B and section 9, to a compact
manifold M by covering M with small coordinate patches, applying the results in normal
coordinates, and summing the results with a partition of unity.

Theorem 10.13 (Sobolev embedding theorem for compact manifolds). Suppose M is a
compact Riemannian manifold of dimension n (possibly with C* boundary).

D If

S| =

k
> —
n

b

Q| -

then LZ(M ) is continuously embedded in L' (M).
(2) Suppose strict inequality holds in (1). Then the inclusion LZ(M ) C L'(M) is a compact
operator.
(3) Suppose0 < a < 1, and
k—a
-

<

Q| =

Then LZ(M ) is continuously embedded in C*(M).
Ahead of giving a proof, we consider the special case, the Sobolev inequality (8.3).

Theorem 10.14 (Aubin). Let (M, g) be a compact Riemannian manifold, and let o, be the
best Sobolev constant defined in (8.3). Then for every € > 0, there exists a constant C, with

|I¢|I§S(1+e)on/ |V¢|2dvol+CE/¢2dvol V¢ € C2(M)
M M

whereq =2n/(n — 2).
Proof. Fix ¢ > 0. For each point p € M, we choose a normal coordinates chart (U, (x))
centered at p such that the eigenvalues of g are between (1 + €)™ and (1 + ¢), and

furthermore dvol = fdx where (1 + €)' < f < (1 + €). By compactness we choose
a finite subcover (U;) and a subordinate partition of unity, which we may write as (ociz),

30ne can see https://en.wikipedia.org/wiki/Sobolev_inequality for some related discussions.
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where a; € C*(M) and ) a = 1. Then we have

2/q
< Z(f |oci¢|qdvol)
i M

q/2 .

2/q
< (1+£)2/q2(/ |oci¢|qu) .
. \Ju,

1

81, = llg?ll,, = ||z o2

By Sobolev inequality (8.3) and our restriction on the deviation of g and dvol from the
Euclidean metric, we have

2/q
( f |oci¢|qu> <o, f |d(e;p)| dx < (1 + )0, / |d(et;)|” dvol
U; U; Ui

where |¢|, denotes the Euclidean metric in normal coordinates. Therefore,
2 2
1617 < @ -+07255, 3 [ V@) dvol
i Ju

Note that by Holder inequality and 2ab < €a? + ¢ 'b* we have
V)| = a?|VPI* +2a:¢(Va, V) + ¢*| Ve, |2
< (1 +9a?|Ve? + (1 +e ) Va2
It follows that

||¢||z < (1+¢)**4g, Zf (A +)a?|VPI? + (1 + e H)¢p?| Ve |?) dvol
T Ju

A

= 1+ 5)3+2/qan/ |ch>|2 dvol + (1 4+ £)**%4(1 4+ ¢ Vo, Z/ ¢?| Ve, |2dvol
M i YU;

< (1+¢)**ig, f |V@|* dvol + C, f $*dvol
M M
where the last inequality uses the finiteness and the compactness. By taking ¢ sufficiently
small we get the conclusion. O

Therefore, to a certain degree, the Sobolev inequality holds with the same constant on
any compact manifold M.

Moreover, by a technique similar to the proof of theorem 10.14, one can give a proof
of the general cases (theorem 10.13) via theorem 8.3.** The proof is omitted.

Now we turn to the results for PDE.

Theorem 10.15 (L? estimate). Let (M, g) be a compact Riemannian manifold M. Suppose
L =A+c, wherec € C*(M). Assume 1 < p < 0.

(1) We have the L? estimate for L = A + c:

(10.2) ||u||L§+2(M) <C <||Lu||L£(M) + ”u”LP(M)) Yu e L;€+2

(M).

34Clearly, this technique doesn’t work for Poincaré inequality. We will introduce a new method to deal
with Poincaré inequality in the next subsection.
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(2) Suppose in addition that c < 0 and ¢ Z 0. Then the equation
Lu = f [strong solution] where f € LP(M)
has a unique solution u € W*P(M). Moreover,

(10.3) ullez on < ClILullpgy, Vi € L, (M).

k+2

Proof. By a procedure similar to the proof of theorem 10.14, point (1) easily follows from
L? estimate 9.7.
In the next we prove point (2). By lemma 9.17, lemma 9.18 and point (1), we know

LP(M) = L(L¥(M)) & ker L*.

By the maximum principle [Pet16, theorem 7.1.7], clearly we have ker L = 0 and ker L* =
0.%° Therefore, in this case, the bounded linear operator

L : W?P(M) - LP(M)
is bijective. Then formula (10.3) follows from [Xio, theorem 3.22]. O

Theorem 10.16 (Schauder estimate). Let (M, g) be a compact Riemannian manifold M.
Suppose L = A + ¢, where ¢c € C®(M).

(1) We have the Schauder estimate for L = A + c,:
(10.4) ltllcrszaqrny < C (ILtlluaqyyy + 1ullesun) ¥t € CHH25(M).
(2) Suppose in addition that ¢ < 0 and c # 0. Then the equation
Lu=f where f e€C*M)
has a (unique) solution lying in C>*(M). Moreover,
(10.5) lullcksay < CllLullgragy, Yu € Ck+22(M).

Proof. By a procedure similar to the proof of theorem 10.14, point (1) easily follows from
Schauder estimate 9.3.

In the next we prove point (2). Note that C*(M) C LP(M). By theorem 10.15 (2), for
any f € C*(M), there exists u € W*P(M) such that

Lu = f [strong solution].

By L? estimate (10.15), we know u € Lf (M) for arbitrarily large k. Then by Sobolev
embedding theorem 10.13, u € C*(M). Then by Schauder estimate (10.16) we know
u € C**(M). Hence we know the bounded linear operator

L : C**(M)— C*(M)
is bijective. Then formula (10.5) follows from [Xio, theorem 3.22]. O
Remark 10.17. By L? estimate (10.2) and Schauder estimate (10.4), for L = A + ¢, if
Lu=f where fe&C®WM)

has a solution u in Lé’ (M), then u € C*(M). Moreover, weak solutions also have
regularity. Via subsection 9.1, people can show that:

35For general p, one use the definition of adjoint operator and and regularity of weak solutions to guarantee
that we can apply the maximum principle for ker L* = 0.
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(1) Ifu € L} (M) is a weak solution to Lu = f and if f € L)(M), thenu € L; (M);

k+2

(2) Ifu € L] (M) is a weak solution to Lu = f and if f € C**(M), then u € C¥*>*(M).

More generally, for acompact manifold M, and for a linear elliptic differential operator
P : C®(E) — C*(F) of order k, we also have elliptic estimates (Schauder estimate and
LP estimate), and we also know the existence and regularity of solutions to Pu = v. One
can refer to [Kaz16, chapter 2].

10.D. Poincaré inequality on compact manifolds. To prove the Poincaré inequality,
the technique for proving theorem 10.14 doesn’t work.
In the next we use the method of Rayleigh quotient to prove the classical version.

Lemma 10.18. Let (M, g) be a closed Riemannian manifold M. Consider the Laplacian
A 1 HA(M) — LA(M).
Then

im(A) = iqb e L*(M) : f ¢ dvol = 0}.

Proof. By lemma 9.18 and L? estimate (10.2), we know im(A) is closed. By lemma 9.17
and the fact that A is self-adjoint, we know

im(A) = ker(A)*.
By the maximum principle [Pet16, theorem 7.1.7], ker(A) = spang{1}. Then

im(A) =1+ = {qb e L*(M) : f ¢ dvol = Oz.
M
We are done. OJ

Theorem 10.19. Let (M, g) be a closed manifold. Consider the eigenvalue problem
(10.6) — Au = Au.
Then the eigenvalues of (10.6) can be represented as 0 = A, < 4, < A, < ---. Moreover,
given the Rayleigh quotient
Ju IVo|? dvol
Q : H'(M)\ {0 R, -
OD\{O} - R ¢ T
Then we have
A =9w,)=inf Q for A := §¢ e H'(M) : / ¢ dvol = 0;
A\{0} v
where u, is an eigenfunction corresponding to A,.

Remark 10.20. One should pay attention to the choice of A.

(1) We can’t choose A = H'(M). Otherwise, considering u = 1 we know inf aop = 0.
Therefore, in this case we get nothing.
(2) Also, we can’t choose

A ={¢ € H'(M) : uis not constant}.
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It seems like that the variational method shows that the minimizer of inf 4, ;; Q must
be the first eigenvalue and then we get the conclusion. But, in fact, in this case
inf 4\ @ doesn’t admit a minimizer!*® Hence the approach is wrong.

Proof. Set

AozzueLP(M):fudvolzol and AlziueLf(M):fudVOI:OI.
M M

By lemma 10.18, we know the bounded linear operator
A A - A,
is invertible. Sobolev embedding theorem 10.13 yields that the operator
ATV Ay > AL S A,

is compact. Clearly, A™! is self-adjoint, EV(A) \ {0} = EV(A™!) \ {0}, and 0 ¢ EV(A™1).
By Fredholm alternative [Xio, theorem 5.1], each eigenspace is finite-dimensional.
Since LP(M) is infinite-dimensional, [Xio, theorem 5.12] and spectral decomposition
[Xio, theorem 5.24] yield that EV(A™!) = EV(A™') \ {0} is a sequence converging to
0. Since L? estimate 10.15 implies that EV(A) C R, the first assertion easily follows.
In the next we prove the second assertion. First we show that the minimizer of Q
exists. Suppose (¢;) is a sequence in A \ {0} such that
QA¢i) = Jnf Q.
Setting

po= — D

llz2any
then O(¥,) = Q(¢,) for each k, and (¢, ) is a bounded sequence in H*(M). Since H'(M)
is reflexive, by [Xio, theorem 3.41], there exists a subsequence, which we relabel as (),
satisfying

Vk,

Y —=u in H'(M)
for some u € H'(M). By Sobolev embedding theorem 10.13, ¢, — u in L>(M), and hence

lul|r2om = %Lm [[¥e]l =1 and / udvol = lim | ¥, dvol = 0.

M k=co Jpy

Moreover,

f Vul? = f Vil = V@ = W] = 2(V (e — ), V)
M M

< f Vil = 2 (V@ — w), Va

36Consider ¢, = C + g € A\ {0}, where C # 0 is a constant and u € A. Then Q(¢,,) — 0but ¢, — C,
where C ¢ A \ {0}.
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and hence by ¢, — u in H'(M) we know
f|Vu|2 < liminff|Vzpk|2.
M k M

9(u) < liminf Q(y,) = inf Q
k A\{0}

It follows that

Therefore, u is a minimizer of inf 4\, Q.
On the other hand, for any u € A \ {0}, consider

Ju IV(u + tv)|* dvol
Jy(u +tv)?dvol

f i RxA->R, (t,v)+

Then
fl(t,v) = (2 Sy (Vu, Vo) + 2t fi, [VOP?) (fy, (u + t0)?) = (fy, [V + t0)) (S, 20(u + tv))
(f,(u+ tv)2)2
and hence
10,0y = 2 VI V) g4 = i IVl - v
(fM “2)2
Note that

f'(0,v)=0 = /(Vu,Vv)-/u2=f|Vu|2-/uv
M M M M

2
= f (div (vVu) — vAu) = M—VZ' . f uv
M fMu M

/(jjl\;_l—vzzlzu+Au)v=O.

Therefore, if u is a minimizer of inf 4, Q, then

Vul?
f(M—|u+Au>v=0 Yve A
M

S 2
and hence
Sor 1 Vul?
S 2

Since u € A, we know

u+ Au=C for some constant C.

f (—folvulzlzu + Au) =0

and hence C = 0. Therefore, any minimizer u must be an eigenfunction. Since
u € A\ {0}, the minimizer u is not constant, and hence u must be an eigenfunction
corresponding to 4, for some k > 1. Moreover, note that

Sy IVul®> [, —uAu

Q(u) [ = T = A.
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Then the second follows from the first assertion. OJ
Remark 10.21. Furthermore, we can compute 4, by min-max principle in a similar way.

Remark 10.22. We say that a function J : W'’(M) — R is weakly lower semi-
continuous on W1P(M) if

J(u) < lilkn inf J(uy,)
whenever u, — u in WtP(M). Clearly, by red inequalities, we know that the function
J(u) = f |Vu|? dvol
M
is weakly lower semi-continuous.

Corollary 10.23 (Poincaré inequality). Let (M, g) be a compact Riemannian manifold of
dimension n. Then we have the Poincaré inequality

”u - uM”LZ(M) < C”Vu”LZ(M) Yu € HI(M)

where C™1 is the first (positive) eigenvalue of (10.6), and

Jy udvol
Uy = ——.
M, dvol
Proof. Just apply theorem 10.19 to the function u — u,, € A. O

For more general versions of Poincaré inequalities, one can refer to [Lil2, section 5]
and [Pet16, section 7.1.5].
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