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2 Functional analysis, measure theory and real analysis

2. METRIC SPACES
Metric space is the basic models of spaces. We start with a brief review of it.
2.A. Basic concepts.

Definition 2.1 (Metric space). Let X be a nonempty set. Amapd : X XX — R is called
a metric if it satisfies the following properties:

(D) d(x,y) >0forallx,y € X,and d(x,y) =0iff x = y;

(2) d(x,y) =d(y,x) forall x,y € X;

(3) d(x,y) <d(x,z) +d(z,y), forall x,y,z € X.

We shall call (X, d) a metric space.

The open balls form the base for a topology on the metric space (X, d), making it a
topological space. Next, we will introduce some useful notions of (X, d), many of which
are related to topology.

Definition 2.2 (Basic notations of metric spaces). Let (X, d) be a metric space. There are
some well-known notions:

(1) X is called complete if every Cauchy sequence of points in X has a limit that is also in
X.

(2) For two subsets A and B, we say that A is dense in B if B C A.

(3) X is called separable if there exists a countable dense subset.

(4) A subset A C X is called nowhere dense if its closure has empty interior.

(5) A subset A C X is said to be a meagre subset of X, or of first category in X ifitisa
countable union of nowhere dense subsets of X.

(6) A subset A C X is of second category in X if it is not of first category in X.

(7) A subset A C X is called sequentially compact if every sequence of points in A has a
convergent subsequence convergeing to a point in X.

(8) A subset A C X is called compact if every open cover of A has a finite subcover.

(9) A subset A C X is called bounded if A C B(x,r) for some x € X and for somer > 0.

(10) Asubset A C X iscalled totally bounded if for every e > 0, there exists a finite collection

of open balls in X of radius € whose union contains A.

AmapT : (X,d,) - (Y,d,)iscalled anisometryifd,(Tx,Ty) = d,(x,y) forallx,y € X,

and is called an isometric isomorphism if it is a bijective isometry. Two metric spaces

(X,d,) and (Y, d,) are called isometric if there is an isometric isomorphism from X to Y.

Remark 2.3. There are some trivial conclusions.

(1) A closed subset A of X is nowhere dense iff its interior is empty.
(2) A subset is dense iff every nonempty open subset intersects it.
(3) A subset B is nowhere dense iff for each open subset U, B N U is not dense in U.

Remark 2.4. Being separable makes it possible for us to do induction to a certain extent.
See lemma 3.40.

Example 2.5. There are some basic examples.
d(x.y)

(1) If (X, d) is a metric space, then (X, d,) is also a metric space where d,(x,y) = Trdtr)”
x’y
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(2) Let (s) be the space of all sequences of real numbers, and define

(¢ ]

1 |xj _yjl

dx, )=, =+————
= 271+ [x; =yl

Then ((s), d) is separable and complete.
(3) R"is separable and complete.
(4) LP(X, X, u) (1 £ p < o0) is a complete metric space.
(5) If Qis Lebesgue measurable (1 < p < ), then L®(Q, £(Q), m) is separable.
(6) If Q is Lebesgue measurable with m(Q) > 0, then L*(Q, £(Q), m) is not separable.
(7) ¢P is separable (1 < p < o), but £* is not separable.

Proposition 2.6. The distance function is continuous with respect to each variable.

Proof. Trivial. OJ
In the next we introduce some important properties of metric spaces.

2.B. Completeness, Baire category theorem. Although completeness is a property
of the metric and not of the topology,' it will lead to some important conclusions related
to topology. For instance, we have the Baire category theorem.

Theorem 2.7 (Completion). For any metric space (X, d), there is a complete metric space
(Y,d,) such that there exists a dense subset Y, satisfying that (Y,,d,) and (X,d) are
isometric. Moreover, such (Y, d,) is unique up to isometric isomorphism.

Proof. Well-known. 0

Theorem 2.8 (Cantor’s intersection theorem). Let (X, d) be a complete metric space, and
let (F,,) be a sequence of nonempty closed subsets satisfying:

(1) F,DF,,,n=12--

(2) d(F,) = SUp, e d(x,y) = 0,asn - co.

Then there exists a unique x € ﬂjil F;.

Proof. Since F, # @ for each n, we choose a point x, € F, for each n. It follows
that (x,)7, is a Cauchy sequence and hence converges to some x € X, since (X, d) is
complete. Note that for any fixed n, we have x,, € F,, C F, for all m > n; it follows from
the closedness of F,, that x € F,. Hence x € ﬂ:’:l F,. If there is another y € ﬂ:;l F,,
then d(x,y) < d(F,) — 0 and hence d(x,y) = 0; then x = y. O

Theorem 2.9 (Baire category theorem). There are several editions.

(1) Let (X, d) be a complete metric space. Then for each countable collection of open dense
subsets (U,,):>_ |, their intersection ﬂ:;l U, is dense.

(2) Let (X, d) be a nonempty complete metric space. If X is the union of a countable family
(E,);>, of closed subsets, then at least one of these closed subsets contains a nonempty
open set.

(3) Let (X,d) be a complete metric space. Then X is of second category.

It means that a complete metric space can be homeomorphic to a non-complete one. An example is R,
which is complete but homeomorphic to (0,1), which is not complete.
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Proof. A subset is dense iff every nonempty open subset intersects it. Thus to show (1)
it suffices to show that any nonempty open G in X has a point x in common with all of
the U,. Since U, is dense, G intersect U;; thus there is a point x; and 0 < r; < 1 such
that B(x;,r;) C G N U;. Since each U, is dense, we can continue recursively to find a
pair of sequences x,, and 0 < r,, < n~! such that B(x,,,r,) C B(x,_,r,—_;) N U,. It follows
that (x,) is a Cauchy sequence and hence converges to some x € X. By closedness,
X € B(x,,r,) for each n. Therefore, x € G and x € U,, for each n. We are done.

For (2), suppose for contradiction that each E, is nowhere dense. Then Ej, is dense for
each n, and hence ("_ E5 = (U, En)c = @ is dense by (1); a contradiction.

For (3), suppose for contradiction that X is of first category, and hence X = U:;l A, in
which A, is nowhere dense. Fix x; € X and r; < 1. Since A, is nowhere dense, there is
point x, and 0 < r, < 27! such that B(x,,r,) C B(x;,r;) \ A;. Since each A, is nowhere
dense, we can continue recursively to find a pair of sequences x, and 0 < r, < n~! such
that B(x,,r,) C B(x,_1,7,—1) \ A4,_;- By theorem 2.8, there exists x € ﬂ;o:l B(x,,r,). But
x ¢ A, for each n; a contradiction. We are done. O

Using Baire category theorem we can solve the following interesting problem.

Problem 2.10. Suppose f € C*®(R) satisfying thatV x € R, there exists n, € N such that
f)(x) = 0. Prove that f is a polynomial.

Proof. See [Xio]. O

2.C. Compactness and boundedness, Arzela-Ascoli theorem. Compactness is a
vital topological properties. As in the case of R", compactness is highly related to
boundedness. Generally speaking, this relationship is related to completeness.

Theorem 2.11. Let (X, d) be a metric space.

(1) If a subset A is sequentially compact, then it is totally bounded.
(2) A subset A is compact iff A is sequentially compact and closed.
(3) If X is complete, then a subset A is sequentially compact iff it is totally bounded.

Proof. Well-known. 0

Remark 2.12. By theorem 2.11 (2), when the background space is a metric space,
sometimes we call A a precompact set if A is sequentially compact.

In the next we introduce a characterization of sequentially compact in C([a, b], M).

Theorem 2.13 (Arzela-Ascoli). Assume that M is a complete metric space. Donote all the
continuous maps from [a, b] to M by C([a, b], M). Define
d(x,y) = sup dy(x(t), ¥(1)).

t€la,b]
Then (C([a, b], M), d) forms a complete metric space, and A C C([a, b], M) is sequentially
compact iff the following claims hold.

(a) Ais bounded;
(b) Forallt € [a,b] fixed. A(t) = {x(¢t) : t € A}is sequentially compact in M;
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(c) A is uniformly equicontinuous; i.e. for every ¢ > 0, there exists a § > 0 such that
dy (x(t),x(t")) < eforallx € Aandallt,t’ € [a,b] with |t' —t] <.

Proof. Since d,, is continuous with respect to each variable, f(t) := d,/(x(t),y(t)) is
continuous. Thus f([a, b]) is also compact, and hence d(x,y) < +c0. In the next we
prove that d is a metric.

(1) It’s obvious that d(x,y) = d(y,x) > 0.
(2) Ifd(x,y) = 0, then d,,(x(t), y(t)) = 0, Vt € [a, b], and hence x = y.
(3) Note thatVx,y,z € C([a,b], M),

d(x,y) = sup dy(x(t),y(t))

t€la,b]

< sup [dy(x(t), 2()) + dy(2(0), y(D))]

t€la,b]

< sup dy(x(2), 2(0)) + sup dy(z(0), y(1))

tela,b] t€la,b]

= d(x,z)+d(z,y).

In the next we show that (C([a, b], M), d) is complete. Given a Cauchy sequence (x,,),,>1
in (C([a, b], M), d); then (x,(t)),>; is a Cauchy sequence in M, and hence has a limit
point x,(t) since M is a complete metric space. It suffices to prove that x, : [a,b] - M,
t — x,(t), is continuous.

For all € > 0, there exists N > 0 such that

dy(x,,(t),x,(t) <e Vtela,b] VYm,n> N.

Fix some n, > N, since x,, is continuous on a compact set [a, b], there exists § > 0 such
that

dp(x,, (1), x,,(t) <& V|t —1t'| <6,
and then forall |t — t/| < 6,
dp(x0(8), Xo(t")) < dpy(o(8), X, (£)) + dpg (3,5, (1), X, (1) + g (X1, (1), X(2"))
< €+e+e=3c

Thus x, is continuous. Now the first assertion follows. In the next we prove the second
assertion.
Since (C([a, b], M), d) is complete, we know that the following are equivalent.

(1) A issequentially compact.
(2) A s totally bounded; i.e. for all € > 0, A admits a finite e-net.

113 ”,
——200

(a) Since A is totally bounded, then A is certainly bounded.

(b) Since any finite e-net of A induces a finite e-net of A(t), A(t) is also totally bounded.
Note that M is also complete, and hence A(t) is sequentially compact.

(c) Forall € > 0. A admits a finite e-net {x,, -+, x,,}. For each x; there exists §; such that

dpy (x;(0), x;(1") <e V|t =t']| <6,



6 Functional analysis, measure theory and real analysis

Put § = min, ., §;. Thenforall x € A, there exists i such that x € B(x;, €), and then
for|t—t'| <&

dy(x(£), x(t")) < dp(x(0), x,(0)) + dpg(x;(0), x; (")) + dpy (o, (t"), x(¢"))
< €+e+e=3¢
Hence A is uniformly equicontinuous.
“«=": For all € > 0, these exists § > 0 such that
dy(x(t),x(t')<e VxeA Vt—-t|<d
Find a &-net of [a, b], denoted by {t,---,t,}. Endow M" with the natural metric d =
>, dy, and then put
@ : C([a,b],M) - M", x (x(£),+,x(t,)
Since A(t;) is sequentially compact for all i, H; A(t;) is sequentially compact. Thus
d(A) C H?zl A(t;) is sequentially compact, and hence has a finite e-net, denoted by
{@(x1), -+, @(x,,)}
Note that for all x € M, we can findi € {1,---,m}, j € {1,---,n} such that for all
t €la,b],
dp(x(@), x;(1)) < dp(x(2), x(£;)) + dpy(x(E)), X;(£;)) + dpr (x:(2 ), x,(2))
< e+e+e=3¢

Hence A is totally bounded. 0

2.D. Fixed point theorems. Finally, we introduce the Banach fixed point theorem and
some of its applications.

Theorem 2.14 (Banach fixed point theorem). Let (X, d) be a complete metric space. If a
map T : X — X satisfies

d(Tx,T
(2.1) 1>a :=sup u
X#£Yy d(x,y)

Then T admits a unique fixed point x*. Moreover, for any x, € X, setting x,,,; = Tx, =
T""x,, n=0,1, -, then x, - x* and

n

A%, X7) < 7 E  d(Tx,, x,)

—a
Proof. First we show the uniqueness of the fixed point. If x* and y* are two distinct fixed
points of T', then we have

0 <d(x*,y*)=d(Tx*,Ty*) < ad(x*,y*),

a contradiction. In the next we show the existence of the fixed point. Fix x, € X, setting
Xpt1 = Tx, = T"*'x, for each n, it follows that

d(xn+1’ xn) S and(TxO’ xO),
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and hence

k k
d(xn+ka Xn) < Z d(xn+j’ xn+j—1) < Z an+j_1d(Tx0’ xo)
Jj=1 j=1

&) . o
< jzz;)ocf ad(Tx,, x,) = md(Txo,xo).

Thus (x,,) is Cauchy; then (x,,) converges to some x* € X with

k 1 —_ 1 —_ %
x* = lim x,,,; = lim Tx, = Tx",

n—»oo n—oo

since T is continuous via (2.1).
Finally, letting k — oo in the above formula, the last assertion follows. L]

Corollary 2.15. Suppose that X is a complete metric space, and T : X — X satisfies
d(T"x, T"
inf sup M <1
n x#y d(x, y)

Then T admits a unique fixed point.

Proof. There exists n such that
d(T"x,T"y)
Al=sup ————
X#£Yy d(x, y)

Thus T" admits a unique fixed point x, by theorem 2.14. Since T(x,) is also a fixed point
of T", we get that T'(x,) = x,. If x; # X, is another fixed point of T, then

d(T"x, T"
1 =sup u <A<1,

X#£y d(-x ) y )
a contradiction. O
Remark 2.16. Sometimes T is not contractive but T" is contractive. In this case T also
admits a unique fixed point.
Proposition 2.17. Suppose that X is a compact metric space, and T : X — X satisfies

d(Tx,Ty) <d(x,y) Vx,y € Xwithx #y.

Then T admits a unique fixed point.

Proof. Put f = d(f(x), x). Note that for all x # y
|f() = fF)I lp(T(x), x) — p(T(y), )|
< p(Tx), T(y)) + p(x,y)
< 2p(x,y).

Thus f is continuous. Since X is compact, we can find x, € X with

f(xo) = inf fCx).
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Suppose for contradiction that T'(x,) # x,; then
F(T(x0)) = d(T*(x), T(x)) < d(T(x0), X) = f(Xo),
a contradiction. Thus T'(x,) = x,. If x; # X, is another fixed point of T, then
d(xy,x;) = d(T(x,), T(x;)) < d(xg,%7),
a contradiction. O

Corollary 2.18. Suppose that f : R"Xx[t,—J,t,+ 8] = R"is continuous, and is Lipschitz
with respect to the first variable x € R", i.e. there exists L > 0 such that forall t € (t, —
d,ty+9), x,y € R" we have

G, ) = FQv, DIl < Lj|x = pl|.
Then the following ODE

dx
—_— = t),t
— = (0.0
x(ty) = X
has a unique continuous solution on [t, — 8, t, + ] where 0 < f < min{5,1/L}.

Proof. The above ODE is equivalent to the continuous solution of the following
integration equation:

(2.2) x(t) = x,+ f f(x(s),s)ds.
Setting X = C ([t, — B, ty + B],R") and
T:X->X, xp (Tx)(t)=x, +f f(x(s),s)ds.

then the continuous solution of (2.2) is equivalent to the fixed point of T. We have showed
in theorem 2.13 that X is complete; hence it suffices to show that T is contractive. Note
that

d(Tx,Ty) =  max a I(Tx)(®) = (Ty)Ol

te[ty—PB.to+

= max
t€[to—P.to+4]

fﬂmmm—fmmmm

IA

max / |l f (x(s),s) — f(¥(s),8)| ds

te[ty—P,to+A]

< LB max ﬁ]llx(t)—y(t)ll

telto—B.to+
= LBd(x,y).

Then the conclusion follows from theorem 2.14. O

For more properties, one can refer to any nice related textbook.
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3. NORMED VECTOR SPACES AND CONTINUOUS OPERATORS

In this section we introduce the basic theory of normed vector spaces and continuous
(i.e. bounded) operators.

3.A. Basic concepts.

Definition 3.1 (Normed vector space). A normed vector space is a vector space E
equipped with an R-valued function x — ||x|| satisfying:

(D ||x|| =0 forall x € E, and ||x|| = 0iff x = 0;

2) ||lax|| = || ||x||, forall x € E and ¢ € A;

3) llx +yll < llxll + llyll, forall x,y € E.

We abbreviate “normed vector space” by NVS.

Setting d(x,y) = ||x — y||, an NVS (E, || - ||) becomes a metric space, so the knowledge
of metric space is applicable.

Definition 3.2 (Basic notions of NVS). There are some basic notations:

(1) Two norms || - ||, and || - ||, are called equivalent if there exist C,,C, > 0 such that for
all x € X, we have C||x||; < ||x]l, £ Cylx]|:-

(2) An NVS E is called a Banach space if it is complete.

(3) Let(E, || - ||g) and (F, || - ||r) be two NVSs, then their direct sum E @ F denotes the NVS
whose norm is given by ||(x, )|| = ||x[|z + [|¥[|r-

Remark 3.3. Throughout this section, and unless otherwise specified, the vector spaces
are over C or R. In the next we denote C or R by A.

Definition 3.4 (Unbounded and bounded operators). Let E and F be two NVSs over A.
An unbounded linear operator from E into F is a linear map A : D(A) C E - F
defined on a linear subspace D(A) C E. The set D(A) is called the domain of A.

One says that an unbounded linear operator A is bounded if D(A) = E and if there
exists a constant M > 0 such that

|Ax|| < M||x||, Vx €E.

In particular, a linear functional on E is an unbounded linear operator f . E — A,
and a bounded linear functional on E is a bounded linear operator f : E — A.

Definition 3.5 (Kernel, range, graph and closedness). For a unbounded linear operator
A : D(A) — F, the kernel of A is denoted by N(A) := {x € D(A) : Ax = 0}, the
range of A is denoted by R(A) := {Ax : x € D(A)}, and the graph of A is denoted by
G(A) :={(x,Ax) : x € D(A)}. Moreover, A is called closed if G(A) is closed in E @ F.

Definition 3.6 (Operator spaces). The norm of a bounded operator is defined by

4l = sup 1221
w20 1%l
The space of all bounded linear operators from E to F is denoted by L(E, F), which is
also an NVS.
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In particular, the space of all bounded linear functionals on E is denoted by E*, and is
called the dual space of E.

Definition 3.7 (Adjoint operators). Let A : D(A) C E — F be an unbounded linear
operator that is densely defined. We shall introduce an unbounded operator A* : D(A*) C
F* — E* as follows. First, one defines its domain:

D(A*) ={v € F* : 3c > O such that | (v, Au)| < c||ul|,Vu € D(A)}.

It’s clear that D(A*) is a linear subspace of F*. We shall now define A*v. Givenv € D(A™),
consider the map g : D(A) — R defined by

gu) =(v,Au) Yu € D(A)
We have
lg) < cllull  Vu € D(A)
By Hahn-Banach 3.24 there exists a linear functional f : E — R that extends g such that
|f@l <cllull YueE

It follows that f € E*. Note that the extension of g is unique, since D(A) is dense in E. Now
set

Av=f
The unbounded linear operator A* : D(A*) C F* — E* os called the adjoint of A.

Remark 3.8. In addition to studying the operator itself, the operator is also used to
reflect the properties of NVS. For instance, some information of the topology of an NVS
is embodied by the properties of operators on it, especially the linear functionals.

Remark 3.9. We can study A via A*. This is very useful in solving the operator
equations, since we add topology into our consideration by this way, and the topology
is the key point.

Now let’s introduce some important properties of normed vector spaces and operators.

3.B. Seminorm, balanced and absorbing convex set. Seminorm, a generalization of
norm, is also a means of constructing a norm. Seminorm is highly related to the balanced
and absorbing convex sets. The relevant theory is as follows.

Definition 3.10 (Seminorm). Let X be a vector space. Wecall p : X — R a seminorm if
it satisfies the following two conditions:

(1) (Subadditivity) p(x +y) < p(x) + p(y), Vx,y € X;
(2) (Absolute homogeneity) p(ax) = |a|p(x) forallx € X and a € A;

Proposition 3.11. Let X be a vector space, and let p . X — R be a seminorm. Then p is
anormiff{x € X . p(x) = 0} = {0}.

Proof. Trivial. O
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Definition 3.12 (Balanced and absorbing). Let X be a vector space. A subset M is call
balanced if aM C M for any scalar o with |x| < 1, and is call absorbing if for every
X € X, there exists ¢, > 0 such that ax € M for any scalar o with || < &,.

Theorem 3.13 (Correspondence between seminorms and balanced absorbing convex
sets). Let X be a vector space. We denote the collection of all seminorms on X by P, and
denote the collection of balanced and absorbing convex subsets by M. Let X be a vector
space. If p € P, then M, :={x € M : p(x) < 1} € M with

p(x) =inff{a : a>0,a7'x € M}.
IfM € M, then py(x) :=inf{a : a > 0,a'x € M} € P.
Proof. Well-known. The details are in my handwritten notes. U

Moreover, sometimes we need to construct a subadditive and positive homogeneous
function, such as in the division problem. The following is a basic construction method.

Proposition 3.14. Let X be a vector space. If a convex subset M is absorbing, we define its
Minkowski functional by
pu(x) i=inf{a : a > 0,a7'x € M}.
Then p,, is subadditive and positive homogeneous; i.e. P, satisfies:
(1) (Subadditivity) py(x +¥) < pu(x) + py(¥), forall x,y € X;
(2) (Positive homogeneity) p,,(1x) = Apy(x), forall x € X and forall 1 > 0.

Proof. Well-known. The details are in my handwritten notes. O

3.C. Finite-dimensional NVS, Riesz lemma. In the next we briefly introduce the
properties of finite-dimensional normed vector spaces, and introduce Riesz lemma to
show the difference when we deal with the topology of infinite-dimensional NVS.

Theorem 3.15. Let (X, || - ||) be an n-dimensional NVS, and let e, e,, -+, e, be a basis of
n

X. Then there exist 0 < C; < C, such that for all x = Zj:l x;e; € X, we have

1/2 1/2

n n
C DX <Xl <G| D Ix12
Jj=1

j=1
Proof. Trivial. OJ

Corollary 3.16. Any n-dimension NVS E over R (or C) is homeomorphic to R" (or C"),
and hence is complete and separable. Moreover, any bounded subset of E is sequentially
compact.

Theorem 3.17 (Riesz lemma). Let E bean NVS and let M C E be a closed linear subspace
with M # E. Then

Ve > 0 Ju € E such that ||ul| = 1 and dist(u,M) > 1 —¢
Proof. This conclusion is intuitive. Let v € E with v € M. Since M is closed, then

d = dist(v, M) > 0,
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and hence we can choose m, € M such that

d < |lo—my| <

1—¢
Then
v_mo
u.=———-
lv — myl|

satisfies the required properties. Indeed, for every m € M, we have

v—m
0 >1—¢,

lu —ml| = 22
o —my||

m

llv = myl|
since my + ||[v — my|| m € M. O

Remark 3.18. Riesz lemma 3.17 says that a strictly ascending chain of closed subspaces
has the property of divergence to a certain degree.

Since compactness will lead to convergence, the following corollary is natural.

Corollary 3.19. An NVS E is finite-dimensional iff the unit ball of E is sequentially
compact.

Proof. If E is infinite-dimensional, then there is a sequence (E,,) of finite-dimensional
subspaces of E such that

E,,CE, E,,#E,.

By Riesz lemma 3.17 there is a sequence (u,,) with u,, € E,, such that

. 1
”un“ =1 dlSt(un’En—l) > 5

In particular,
1
IWwﬂmHZE Vm # n.

Thus the sequence (u,) has no convergent subsequence, and hence the unit ball B is
not sequentially compact. Then the conclusion follows from corollary 3.16. 0J

Hence we see that the topology of infinite-dimensional NVS is very different and much
more complicated. In the next we will introduce some basic properties of it.

3.D. Basic topology theorems — Banach spaces. As we mentioned before, we will
introduce the properties of continuous operators to reflect the properties of the topology
of space.

Proposition 3.20. A linear operator L between normed vector spaces X and Y is bounded
iff it is a continuous linear operator.

Proof. =>: Suppose that L is bounded. Then, for all vectors x, h € X with h nonzero we
have

ILGx + k) = LOO|| = [IL(R)I| < M|h]].

It follows that L is continuous at x. Moreover, since the constant M does not depend on
X, this shows that in fact L is uniformly continuous, and even Lipschitz continuous.



Zhiyao Xiong 13

<=: Conversely, it follows from the continuity at 0 that there exists a > 0 such that

LM = [L(R) —~LO)|| < 1, VK € By(0).
Thus, for all non-zero x € X, one has

(- x MY
—L|[6— LId— ||| < — 1= =]|x]|.
5“0 )1 = s |F O || = et sl

This proves that L is bounded. [l

Proposition 3.21. Let (X, ||-||) bean NVS, and let f : X — Abea linear functional. Then
fisbounded iff N := {x € X : f(x) = 0} is a closed subspace of X. Moreover, if f € X*
and f # 0O, then for any x, € X with f(x,) # 0, we have

1]
IILx[| =

X = N +span{xy}.
Proof. Trivial. 0J

Theorem 3.22 (Topology theorem). There are some basic theorems related to topology.
(1) IfX and Y are Banach, A € £(X,Y), and A is bijective, then A™! € L(Y,X).
(2) If X and Y are Banach, and A . X — Y is linear, then A € L(X,Y) iff G(A) is closed
inXeY.
(3) If X is Banach and Y is an NVS, and (A,).c4 is a collection of operators in L(X,Y)
that satisfies
sup [|A.(x)]] < o0, Vx €X.
aEA

Then sup,_, [|A|| < o0.
(4) If X and Y are Banach, A € L(X,Y), and A is surjective, then A is an open map.

Proof. Well-known. The details are in my handwritten notes. O

Corollary 3.23. Let X be a Banach space, and let A and B be two closed linear subspace
with AN B = {0}. Then

A+ Bisclosed < 3IC>0: |la|]| £C|la+b||, Va€ ADbeB
<~ m, . A+ B — Aiscontinuous.
wherem, : A+ B — Ais the standard projection.

Proof. Firstwe note that A and B are certainly complete, and that the second equivalence
is obvious. In the next we prove the first equivalence.
If there exists C > 0 such that

(3.1) lla|| £ C|la+b||, Vae€A,beB.
Then we have
(3.2) IIbll =|la+b—a| <|la+b||+]la|]| <(C+1)|la+b|, VYaeA,beB.

Hence for a Cauchy sequence (a, + b,)7>, in A + B, where a,, € A and b, € B for each
n, it easily follows from (3.1) and (3.2) that (a,,) and (b,) are Cauchy sequences in A and
B respectively. Thus a, — a for some a € A and b,, — b for some b € B. It follows that
a,+b, > a+be A+ B,and hence A + B is closed.
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If A+Bisclosed, then (A+B, ||-||x) is Banach. On the other hand, note that (A+B, ||-||;)
is Banach, where ||a + b||; = ||a||x + ||b||x forall x € X and y € Y, since (A, || - ||x) and
(B, || - llx) are Banach. Note that

id: (A+B,]|-[h) = (A+B,|l-lx)
is bijective and bounded, since
lla + bllx < laflx +[[Dllx-
It follows from 3.22 (1) that the inverse operator
id: (A+B,]|-llx) > A+B] L)
is also bounded, then there exists C > 0 such that
llallx + Ibllx < Clla +Db[lx, Vae€A,beB.

Then the conclusion follows. We are done. O

3.E. Hahn-Banach theorem, division theorems. As we have showed:
(A) The topology of an infinite-dimensional NV is much more complicated.

If we can’t find new tools, it’s difficult to get more powerful results.

Another difficulty with infinite dimension is that we lose the concept of coordinates.
Hence some standard conclusions in linear algebra don’t work (sometimes if we add
some conditions of topology, the conclusions in linear algebra may work). An intuitive
result is as follows:

(B) An operator A . E — F cannot be analyzed componentwise when F is infinite-
dimensional. In other words, it’s difficult for us to analyze from local to global.

In fact, we have the Hahn-Banach theorem, which solves the extension problem, and
hence help us to analyze from local to global. Also, just because of this, Hahn-Banach
theorem becomes the desired new tool that can help us analyze topology.

In the next we will introduce Hahn-Banach theorem and show some of its direct
applications. One will see how Hahn-Banach theorem helps us deal with difficulties
(A) and (B) in following subsections.

Theorem 3.24 (Hahn-Banach-Bohnenblust). There are several editions of extension
theorems.

(1) Let X be a vector space over R, and let p : X — R be a subadditive and positive
homogeneous function; i.e. p satisfies:
(1.1) (Subadditivity) p(x + y) < p(x) + p(y), forall x,y € X;
(1.2) (Positive homogeneity) p(1x) = Ap(x), forall x € X and forall A > 0.
LetY C X be a linear subspace and let f : Y — R be a linear functional such that

F») <pQk), VyeyY.

Then there exists a linear functional F : X — R satisfying:

(1.1) F(y) = f(y), forally € Y;
(1.2) F(x) < p(x), forall x € X.
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(2) Let X be avector space over C, let p be a seminormon X, letY C X be a linear subspace,
andlet f : Y — C be a linear functional such that

lfOI < ply), Vyey.

Then there exists a linear functional F : X — C satisfying:
(2.1) F(y) = f(y), forally € Y;
(2.2) |F(x)| £ p(x), forall x € X.

(3) Let (X, || - ||) be a normed vector space over A, let Y C X be a linear subspace, and
let f :' Y — A bea bounded linear functional. Then there exists a bounded linear
functional F : X — A satisfying:

(3.1) F(y) = f(y), forally € Y;
3.2) IF)l < |If]l

Proof. Use the transfinite induction for (1), and then (2) and (3) follows. The details are
in my handwritten notes. O

Before we deal with difficulties (A) and (B), we introduce some direct applications of
Hahn-Banach-Bohnenblust theorem 3.24 first.

Corollary 3.25. Let (X, || - ||) be an NVS.
(1) Forall x, € X \ {0}, there exists f € X* satisfying
(1.1 f(x0) = |Ixoll;

(12) |Ifll =1
(2) LetY C X beits closed linear subspace, and let x, € X\ Y, then exists f € X* satisfying

2.1 f(y)=0,forally €Y;
(2.2) f(x,) = dist(x,,Y);
2.3) [Ifll =1

To a certain degree, the following division theorems are intuitive representation of
Hahn-Banach-Bohnenblust theorem 3.24.

Theorem 3.26 (Mazur theorem). Let (X, || - ||) be an NVS, and let K C X be closed and
convex. If x, & K, then there exists r and a bounded linear functional F : X — R satisfying

F(xy,)>r, and F(x)<r, VxeK.

Proof. WLOG we can assume that 0 € K. Since x, € K, § = dist(x,, K) > 0. Setting

M = {x € X : dist(x,K) < g}

then it’s easy to see the following properties:

(1) M is a closed and convex subset;
(2) Bs/3(0) € M (and hence M is absorbing);
(3) xo &€ M.

It follows from proposition 3.14 that the corresponding Minkowski functional

pu(x) :=inf{a : a > 0,a7'x € M}
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is subadditive and positive homogeneous, and satisfies
p(x,)>1, and p(x)<1, VxeM.
Setting
Y={x,:ceR}, and f:Y >R, cx,+ cp(xy),
then
fO) <p(y). Vyey,

and hence it follows from Hahn-Banach-Bohnenblust theorem 3.24 (1) that there exists
a linear functional F : X — R satisfying:

(1) F) = f(y), forally € Y;
(2) F(x) < p(x),forall x € X.

In particular, we have
|F(x)| < max {p(x), p(—x)} <1, Vx € Bs;5(0) C M.
Thus F is bounded, and hence is exactly the desired bounded linear functional. OJ

Corollary 3.27. Given a normed vector space (X, ||-||) over R, let K, K, C X be two closed
and convex subsets with

d, = dist(K,,K,) > 0.
Then there exists f € X* such that

sup f(x) < inf f(y).
YEK,

x€K,

Proof. Each pointin K; — K, is of the form a — b, where a € K, and b € K,. Lettinga—b
and a’ — b’ be two points in K; — K,, note that for any 6 € [0, 1],

6(@—b)+(1—0)(d —b)=[6a+1—-0)a']—[0b+(1—-0)b].

Thus K; — K, is convex. Since d, = dist(K;, K,) > 0, we have

d
B (o, 7") & -K)=@.
Setting A = B(0,d,/2) — (K; — K,), then A is also convex for the same reason. Since
do
a= U (8(07)-).
YE(K;—-K5)

we know that A is open. Note that 0 ¢ A, by Mazur theorem 3.26 there is some f € X*
such that

f(z)<0 VzeA,
that is,
fx)< f(y) vxeB(0,dy/2) Vye (K, —K),).
Letting ¢ = % | £1l, it induces that

e<f(y) Vye( —Ky),



Zhiyao Xiong 17

which means
fa@)— f(b)>e Vae€eK, VbeK,.
Thus — f satisfies the requirement. OJ

3.F. Deeper topology theorems — separability, Banach operator spaces,
reflexivity. As mentioned in subsection 3.E, Hahn-Banach-Bohnenblust theorem 3.24
is just the desired new tool that helps us to analyze topology. In the next we introduce
some deeper topology theorems which are derived via it.

Proposition 3.28. Let E be an NVS. If E* is separable, then E is separable.

Proof. Since E* is separable, there exists a sequence (f,);>, in E* such that || f,|| = 1 for
each nand {f,} | is dense in the unit sphere of E*. Choose x,, € X for each n such that
[|x,|]| =1 and

1
|fn (x| > 5 = 1,2,--

o)

Setting Y = span{x,},_,, then Y is separable. It suffices to prove that X = Y. Suppose

for contradiction that there exists x, € X \ Y, then by corollary 3.25, there exists f € X*
satisfying

Ifll=1, f(x,) =d=dist(x,,Y), and f|y =0.
Then note that
If = Fll = SUp [FGO = £o0)] 2 [£C) = Fuin)| > 50 m= 1.2,
[IxlI<1

A contradiction. O

Proposition 3.29. Suppose that X and Y are two normed vector spaces over A. Then
L(X,Y) is Banach iff Y is Banach.

Proof. Suppose that Y is Banach. Given a Cauchy sequence (A4,) in £(X,Y), i.e. for all
€ > 0, there exists N > 0 such that

4, —Anll<e Vm,n>N.
Then for each x € X,
1A, x — Apx|| < [|A, — Apll x|l < ellx|]  Vm,n = N.
Thus (A,x) is Cauchy and hence converges. Put

A:X->Y, x— limA,x.

n—-oo

It follows that A is linear, and

x| = |im 4| = ‘ANx + 1im (A, — Ay)x
< [lAxx]l + %im(Ak — Ay)x
< AnIHIx]] + e llx]l = (AN + &) [1x]] -
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Hence A € £(X,Y). Note that for each x € X, we have
A, x —A,x|| <ellx|]] Vmn>N = ||A,x—Ax|| <¢]|x|]] Vn>N.
Thus
1A, — All = sup [|A,x — Ax|| <e,

llxl|<1

and hence lim,_, A, = A.
Suppose that £(X,Y) is Banach. Given any Cauchy sequence (y,) in Y, i.e. for all
€ > 0, there exists N > 0 such that

”yn_ym” <e¢ Vm,nZN.

Choose 0 # x, € E and via Hahn-Banach theorem 3.24 choose f, € E* such that
fo(xo) = lIxoll and || fol| = 1. Put

A, XY, x fo(xX)y,
It’s clear that A, € £(X,Y). Note that Vm,n > N, we have
”An _Am” = sup ”Anx _Amx” = sup |f0(x)| ||yn _ym” < ”yn _ym” S €.

lIxlI<1 llx|I<1

Hence we know that (A4,) converges to some A € £(X,Y) since £(X, Y) is Banach. Note
that for each x € X we have

|A,x — Ax|| < [|A, — Al [1x]].
Hence (A, x) converges. Letting x = x,, we get that y, — ||x0||_1 AX,. O

An important difference of the topology of infinite-dimensional NVS is that E** may
not be canonically isomorphic to E. Now we introduce the concept of reflexivity.

Definition 3.30 (Reflexive). Let E be an NVS and let J : E — E** be the canonical
injection from E into E**.> The space E is called reflexive if J is surjective, i.e., J(E) = E*".

Remark 3.31. Since J is an isometry and X** is Banach, a necessary condition of being
reflexive is that E is Banach.

Theorem 3.32. Let X be an Banach space. Then X is reflexive iff every closed linear
subspace Y of X is reflexive.

Proof. 1t suffices to show that if X is reflexive then every closed linear subspace Y is
reflexive. For any F € Y**, define

F(f)=F(fly), VfeX-
Then
FCH| < IFI- 116l < I - 1£],
and hence F € X*. Since X is reflexive, there exists X, € X with
J(xp) = x;* =F.

2For v € E,wehave J(v) : E* = A, f = (f,U)p. 5
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Hence

(3.3) X' (f) = f(xo) = F(f) = F(fly), YfeX".
It suffices to show that x, € Y. Suppose for contraction that x, & Y, by corollary 3.25,
there exists f € X* satisfying
Ifll=1, f(x,) =d =dist(xy,Y), and f|y =0.
Then it follows from (3.3) that

d = f(x,) = F(fly) =0,
a contraction. O

We will go deeper for studying the topology of NVS in the next subsection.

3.G. Weak(-*) topology, sequentially weak(-*) compactness, achieving distance.
Now we introduce two aim-oriented concepts, the weak topology and the weak-*

topology.
Definition 3.33 (Weak topology and weak-* topology). Let E be an NVS.

(1) The weak topology o(E,E*) on E is the coarsest topology that makes all the maps
(f)fep~ continuous.

(2) The weak-* topology o(E*,E) on E* is the coarsest topology that makes all the maps
(-, x)),eE continuous.

Remark 3.34. The significance of definition 3.33 is just embodied in “coarsest”. This is
the weakest requirement to achieve the goal. Actually in lots of problems, it suffices to
show the convergence in weak topology, which is the key point.

Remark 3.35. Let X be an infinite-dimensional NVS. Then X equipped with the weak
topology is not metrizable,” and X equipped with the weak-* topology is not always
metrizable.

By the above remark, we need to re-clarify some notions.

Definition 3.36 (Weak(-*) convergence). Let E be an NVS.

(1) We say that a sequence (x,) in E weakly converges to x if (x,) converges to x in the
weak topology o(E, E*), which is denoted by x,, — x.
(2) We say that a sequence (x,) in E weakly-* converges to x if (x,) converges to x in the

weak-* topology o(E*, E), which is denoted by x,, Sx

Definition 3.37 (Sequentially weak(-*) compactness). Let E be an NVS.

(1) A subset A C E is called sequentially weak compact if every sequence of points in A
has a subsequence that weakly converges to a point in E.

(2) A subset A C E is called sequentially weak-* compact if every sequence of points in
A has a subsequence that weakly-* converges to a point in E.

In the next we introduce some basic properties of weak(-*) convergence.

30ne can refer to https://math.stackexchange.com/questions/1381759.
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Proposition 3.38 (Weak(-*) convergence). Let (x,) be a sequence in an NVS E. Then
(D x, >~ x<={f,x,) = (f,x),Vf € E*~

2) Ifx, - x,thenx, = x.

(3) If x, = x, then (||x,||) is bounded and ||x|| < liminf,_ . ||x,].

4 Ifx, = xandif f, — fin E* then{f,,x,) = {(f,Xx).

Also, let (f,) be a sequence in E*. Then

(D) fo = f < (fnx) = (f,x),Vx €E.

Q) Iff, — f,then f, = fina(E*E*). If f, — f in o(E*,E*), then f, — f in
o(E*,E).

3) Iff, A f, then (||f,,|]) is bounded and || f|| < liminf,_ . ||f,Il-

@ Iff, —*\fandifxn — X inE, then (f,,x,) — {(f, x).

Proof. One can refer to [Bre], in which we use the uniform boundedness principle, i.e.
theorem 3.22 (3). O

Theorem 3.39. Let X be an NVS, let x, € X, and let (x,) be a sequence of points in X. If
X, = X,, then x, € Co{x,}, where Co{x,} is the convex hull.

Proof. Set K = Co{x,}. If x, & K, via Mazur theorem 3.26, there exists a bounded linear
functional f : X — R and some constant r such that

f(xy)>r, and f(x)<r, VxeKk.

But it follows from the weak convergence that f(x,) — f(x,); a contradiction. O

The properties of weak(-*) convergence lead to the following properties of sequentially
weak(-*) compactness if we add some conditions of topology.

Lemma 3.40. Let X be a separable NVS. Then any bounded set in X* is sequentially
weakly-* compact.

Proof. Suppose that (f,) C X satisfying ||f,|| £ M, n = 1,2, ---. It suffices to show that
there is a weakly-* convergent subsequence.

Since X is separable, choose a sequence (x,) of points such that {x,} is a dense
subset. Since (f,(x;));>, is bounded, there is a convergent subsequence (f nj,1(x1))}”;1-
Proceeding inductively, for each k we find a subsequence ((n;, k));?‘;l of (n;, k — 1));?‘;1
such that (f nj,k(xk));‘;l converges. Hence (f n, j);?‘;l converges at each Xx;.

Then setting f(x) = lim;_ fnj,j(x), it easily follows that f € X* and Fu.i N f. g

Theorem 3.41. Any bounded subset A of a reflexive space X is sequentially weakly
compact.

Proof. It suffices to show that given a bounded sequences (x,)>> , in X, then there exist
a subsequence (xnj );’;1 and a point x € X such that x, — x.

(¢]

SetY = span{x,} _,, thenY is separable, and is reflexive via theorem 3.32. Then via
proposition 3.28 we know that Y* is separable. Hence, via lemma 3.40, (x;;*|,/) has a
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subsequence (xZ;‘ ly) that weakly-* converges to x;*|, for some x, € Y. It follows that

f(xnj) - f(xo)’ Vf € Y*s

and hence

f(xnj) = le(xnj) - fly(x()) = f(xo), Vf € X*.

We are done. O

After the above detailed analysis of topological properties, we can now prove the well-
known property of achieving distance.

Corollary 3.42. Let X be a reflexive space, and let K be a closed and convex subset. Then
forevery x, € K, there exists y, € K such that

[1%0 = Yol = inf |Ixo — ¥]I.
yeEK
Proof. WLOG we assume that x, ¢ K. Choose a sequence (y,);>, of points in K such
that

1 .
[[Xo = y,ll <d+ —=, where d=inf|x,—yY|.
n yeK

It’s clear that (y,) is bounded, and hence, by theorem 3.41, has a weakly convergent
subsequence (ynj);?’;l that converges to some z € X;i.e. we have

fx=yn) = fx—2), Vfex
By theorem 3.39, we know z € K. By corollary 3.25 there exists f € X* such that
fx—z)=|x—z|| and [f[=1

Hence
. 1 :
e =zl = 1im fx = yn) < Sl = yn [ S d 220 V)
It follows that z is the desired point. 0

The following are some other well-known properties of achieving distance.

Problem 3.43. The following facts are well-known:

(1) If a Banach space E is uniformly convex, then E is reflexive;

(2) The minimiging point in corollary 3.42 is unique when E is uniformly convex;
(3) Every Hilbert space is uniformly convex;

(4) LP(X, X, u) is uniformly convexif 1 < p < oo and X is o-finite.

Proof. See [Xio]. O
Problem 3.44. Let (x,) be asequenceint?!, and x, € €. Provethat x,, = x, < X, = X,.
Proof. See [Xio]. O

For more basic properties, one can refer to [Bre].
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3.H. Complements, orthogonal relations. Next, we will show how Hahn-Banach-
Bohnenblust theorem 3.24 helps us deal with difficulties (B) in subsection 3.E.

Hilbert spaces are typical cases that help us understand the framework. Roughly
speaking, Hahn-Banach-Bohnenblust theorem 3.24 helps us find the orthogonal
decomposition and helps us find a “basis” (i.e. a complete orthogonal system). See
section 4 for the detailed introduction.

For general spaces, we still have the conclusions for complements and orthogonal
relations. One can regard them as the generalization of the theory for Hilbert spaces.

Definition 3.45. Let G C E be a closed subspace of a Banach space. A subspace L C E is
said to be a topological complement or simply a complement of G if L satisfies:

(1) L is closed;
(2) GNL={0}andG+ L =E.

Lemma 3.46. Let (X, || - ||) be an NVS over A.

(D If f1,--+, f, € X" are linear independent, then there exist e,, --- , e, € X satisfying:

(11) f](ek) = 6jk: ]’k = 1727 ceey
(1.2) We have

X = ﬂN(fj) @Span{ej};;l,
j=1

where for every x € X we have

x =3 fix)e; | € [N
j=1 j=1

(2) IfY C X is an n-dimensional linear subspace, then there exists a closed linear subspace
ZofX suchthatX =Y @ Z.

Proof. For (1), we define
X >N, x e (fi(x), f2(x), -, fr(X))

Then it follows easily from the linear independence that ¢ is surjective. Now choose e;
for each j such that
@(ej) = (07 707 1’0 ,0)

————
i-1

then (1.1) follows. Moreover, note that
fi| x =2 Fie; | = i) = 2 F1(0filep) = filx) = fix) =0, Vk.
j=1 j=1

It’s clear that (ﬂ?zl N(f j)> N span {e j};;l = {0}, and then (1) follows.
For (2), setting Y = span {e j};lzl, and then there exist f, -, f, € Y* with

fitee) =63, Jj k=12,
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By Hahn-Banach theorem 3.24, we extend f; to a bounded linear functional F; : X — A
for each j, and then

X = ﬂN(Fj) 9%
j=1

by (1). Then (2) follows from proposition 3.21. O

Proposition 3.47. Let (X, || - ||) be an Banach space over A.

(1) Every finite-dimensional subspace Y admits a complement.
(2) Every closed finite-codimensional subspace M admits a complement.*
(3) Let N C E* be a subspace of dimension p. Then

G={x€E:{(f,x)y=0 VfeN}=N+
is closed and admits a complement of dimension p.

Proof. (1) and (3) follow immediately from lemma 3.46.

For (2), assume that X = M + N for some finite-dimensional space N C X. We may
always assume that M N N = {0} (otherwise by (1) we can choose a complement N’ of
M N N in N). Then the conclusion follows, since finite-dimensional subspace is always
closed. O

Definition 3.48 (Orthogonal). Let E be an NVS. If M C E is a linear subspace we set
Mt ={f € E*: (f,x)=0,Vx € M}

If N C E* is a linear subspace we set
Nt={x€E: (f,x)=0,Yf € N}

Note that, by definition, Nt is a subset of E rather than E**. It is clear that M* (resp. N*) is
a closed linear subspace of E* (resp. E). We say that M* (resp. N*) is the space orthogonal
to M (resp. N).

Proposition 3.49. Let E be an NVS, and let M C E be a linear subspace. Then
(MH = M.
Let N C E* be a linear subspace. Then
(NHL o N.
Proof. 1t is clear that N ¢ (N1)! and since (N1) is closed we have N ¢ (N1)*. It is

also clear that M c (M*)*, and since (M1)! is closed we have M c (M1)L. Conversely,
suppose for contradiction that

X, € (MYt x, ¢ M.
Via Mazur theorem 3.26 we get

(fixy<a<{f,x,) VxeM,

“Let M be a subspace of a Banach space X. M has finite codimension if there exists a finite-dimensional
space N C X such that M + N = X.
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for some bounded linear functional f : E — R and some o € R. Since M is linear space
we get

(f,x)y=0 VxeM,

and hence (f, x,) > 0. Therefore f € M+ and consequently {f, x,) = 0, a contradiction.
O

The following propositions are vital, in which topology also plays an important role.

Theorem 3.50 (Orthogonal relations). Let E and F be two NVSs, and let A : D(A) C
E — F be an unbounded linear operator that is densely defined and closed. Then,

(1) N(A) = R(A*)*;

(2) N(A*) = R(A);

(3) N(A)* D R(A*);

(4) N(A*)" = R(A).

Moreover, if E* is reflexive then N(A)* = m

Proof. One can refer to [Bre]. O

Theorem 3.51 (Equivalence between closedness and orthogonal relations). Let E and F
be Banach, and let A : D(A) C E — F be an unbounded linear operator that is densely
defined and closed. The following properties are equivalent:

(1) R(A) is closed.

(2) R(A*) is closed.

(3) R(A) = N(A")".

(4) R(A*) = N(A)*.

Proof. One can refer to [Bre]. O

Remark 3.52. Coming back to Hilbert spaces again, the theory of complements and
orthogonal relations will be more powerful when we deal with Hilbert spaces. One
can see that theorem 4.5, proposition 4.11, proposition 4.12 and theorem 4.14 give us
a powerful method to prove vital theorems like Riesz representation theorem 4.16.

3.I. Compact operators, Fredholm property. In the next we introduce the compact
operators, which are typical examples of operators that make a good use of the preceding
conclusions.

By adding the property of compactness, compact operators enjoy the Fredholm
property, which is the core topic of this subsection.

Definition 3.53 (Compact operator). Let E and F be two Banach spaces. A bounded
operator T € L(E, F) is said to be compact if T(By) is sequentially compact. The set of all
compact operators from E into F is denoted by K (E, F). For simplicity one writes X(E) =
X(E,E).

Example 3.54. Any finite-rank operator is compact.

Proposition 3.55. Let E, F and G be three Banach spaces.
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(D IfT € L(E,F)and S € X(E,F) (resp. T € X(E,F)and S € L(F,G)), then SoT €
X(E,G).

(2) If T € X(E,F), then T* € X(F*, E*). And conversely.

(3) K(E,F)is a closed linear subspace of L(E, F).

(4) (Completely continuous) If T € X(E,F), and ifu,, — u, then Tu, —» Tuin F.

Proof. One can refer to [Bre]. O

Remark 3.56. Property (4) will produce non-trivial effects if we combine it with compact
embedding theorems. For instance, if QO C R" is bounded and smooth, then a bounded
sequence of functions (u;);»; in H'(Q) has a subsequence (ukj )j>1 that converges
strongly to some u € L*(Q).

Theorem 3.57 (Fredholm). Suppose that E is a Banach space and T € K (E). Then

(1) N(I — T) is finite-dimensional.
(2) R(I —T) is closed.

(3) N(I-T)={0} < R(I-T) =E.
(4) dimN(I —T) =dimN{I —T%).

Proof. We will give the ideas of these conclusions and then solve them.

(1) The conclusion is just a direct corollary of theorem 3.17. Let E; = N(I-T). Then By C
T(Bg) and thus B, is compact. By Theorem 3.17, E; must be finite-dimensional.

(2) The conclusion originate in the fact that compactness will lead to the property of
convergence. Suppose that

Jn=u,=Tu, = f.
We aim to show that f € R(I — T). Our idea is to find a sequence (x; ) such that
fn, =%k —Tx, X—x, and Tx — Tx.
and then we will get f = x — Tx € R — T). Clearly, we only need to find a sequence
(Xi) such that f, = x;, — Tx, and
(3.4) Tx, — Tx.

Note that we can’t achieve this idea directly via (u,,), since (3.4) is certainly supposed to
be derived by the compactness, which requires that the sequence is bounded. Therefore,
in order to find appropriate (x; ), we must make the following transformation first. Note
that ifv, € N(I — T), we have

fn=u,—Tu, where u,=u,—uv,.

Naturally, we want to minimize ||, ||. Set d,, = dist(u,, N(I —T)). Since NI —T) is
finite-dimensional and hence is homeomorphic to some R", we can choose v,, such that
l&, || = d,. Now it suffices to prove that (T, ) has a convergent subsequence, and hence
it suffices to prove that (u1,,) is bounded via the compactness.
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Suppose for contradiction that (i1,) is unbounded. Note that'

(#,) is unbounded <= 3 (i, ) such that ||i,, || - oo

- T,

un
< 3(u, ) such that —— -0

[

i,
such that w;, — Tw, — 0.
Uy,

Since (wy) is bounded, there exists (w,, ) such that Tw, — z, and hence

= El(cok=

w, —z whereze NI -T).

Thus dist (w, ,N(I — T)) — 0. But note that

. . ul’lk 1 . —~
dist (w, , NI —T)) = dlst< —— NI - T)) = ——dist (i, , NI -T)) =1.
Ny

&
Contradiction. Thus we can find appropriate (x;).
(3) Roughly speaking, our idea is that the condition that

NI-T)={0} and RI-T)CE
will give us a strictly decresing chain of closed subspaces which has the property of
divergence (to a certain degree), and this will contradict the fact compactness will lead
to the property of convergence. Besides, the converse propblem is related to the dual
propblem, and hence we can use proposition 3.55.

Suppose for contradiction that E; = R(I—-T) # E; and N(I—T) = {0}. Then letting
E, = —T)"(E), we obtain a decresing chain of closed subspaces since

Eppn=U-T)"(E) cU -T)(E) = E,.

N

Moreover, it’s a strictly decresing chian, since if
E,p=U-T)(E,)=U-T)(E)=E, forsomeneN,

then E;, = E (since (I — T) is injective), a contradiction. Now via Riesz’s lemma, we
may construct a sequence (u,,) such that

u, €E, |lu,ll=1 dist(u,,E,,,)>1/2 VYneN.
Then for n > m we have
Tu, - Tu,, = (-u, + Tu, +u,, — Tu,, +u,) — u,, > dist(u,,, E,,.;) > 1/2.
This is impossible, since T is a compact operator. Hence
(3.5) NI-T)={0} = R(I-T)=E.
Conversely, assume that R(I — T') = E. Via theorem 3.50 we know

N(I —T*) = R(I - T)* = {o}.

'Normalization is the basic method and the following equivalence is natural. One can easily see that the
unboundedness will lead to a contradiction.
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Since T* € K(E*), property (3.5) yields R(1 — T*) = E*. Then theorem 3.50 yields
N(I—T)=R{U—-T*)"* = {0k

Now we get the conclusion.
(4) Setd = dimN({I — T) and d* = dim N(1 — T*). Naturally, we want to shift all the
dimensions into E and then compare them.
By (1) and proposition 3.55 (2) we know d* < +o00, and then via proposition 3.47,
theorem 3.51 and (2) we know that

R(I—T)=N({I-T*)*

has a complement in E, denoted by F, of dimension d*.
(4.1) We will first prove that d* < d.
Suppose for contradiction that d < d*. Then there is a linear map

A:NI-T)>F

that is injective and not surjective.” We will derive the contradiction similarly
as in footnote 2 via (3).

First we define the projection P. Via (1), N(I —T) admits a complement in E via
proposition 3.47. Thus, by corollary 3.23, there exists a continuous projection

P:E->»NI-T).
Then we put’
f=—-AoP+(I-T):E—E, uwr —AoPu+{-Tu.

Clearly, N(f) = {0}. Note that I — f = AoP + T is compact since AoP has finite
rank. Then via (3) we know R(f) = E, which certainly contradicts the fact that
A is not surjective.

(4.2) Applying (4.1) to T*, we obtain

dimN(I — T*) < dimN(I — T*) < dim N(I = T).
Based on the canonical injection from E to E**, we know via theorem 3.50
NI-T*)DNI-T)

and therefore d = d*.
O

Remark 3.58. If we change I into an isomorphism A, the conclusion is also true.
Certainly one can prove this similarly, but this can also be proved by the properties of
composition; that is, using the fact that Ao(I —T) = A— AoT where AoT is also compact.
2 Now our aim is to find the contradiction. Take the simplest situation that E is finite-dimensional as an
example. Then it’s obvious that there doesn’t exist such A, since

fiE->N®R, ur (Pu,(I-T)u)
is an isomorphism and hence together with E = F @R implies dim F = dim N, where P is a natural projection

in the natural isomorphism E SN@ E/N.
3We only know that F and R are complements mutually. Hence we transform f naturally. In another word,
we turn to emphasize the fact that E = F @ R and find the contradiction based on this.
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3.J. Operator equations, spectrum on C. At the end of this section, we make a brief
introduction to operator equations and the spectrums of operators (on C). One can refer
to section 5 for a further study.

Operator equations are the equations about operators and elements, which also give
us a new perspective to show the strength of preceding results. For instance, note that

y € R(A) < Ax =y hasasolution;
N(A) ={0} < if Ax = y has a solution, then the solution is unique.
Then theorem 3.57 yields
T € X(E) : (I — T)x = y has at most one solution Vy
< (I — T)x = y has at least one solution Vy.

Clearly, the preceding theorems correspond to conclusions of solving operator equations.
As we do with linear maps, in the next we focus on the basic operator equation

(A — A)(x) = y.
This leads to the concept of spectrum.

Definition 3.59 (Spectrum on C). Let X be a Banach space over C, and let A € L(X,X).
(1) The resolvent set, denoted by p(A), is defined by

p(A) ={1 € C : (AI — A) is bijective}

(2) The spectrum, denoted by o(T), is the complement of the resolvent set, i.e., o(T) =

C\ p(T).
(3) Furthermore,

o(A) =0,(A)uoc(A)Uc,(A)
where
o,(A) = {1€C:N@I-A)#0};
o.(A) = {/1 €C : NI — A) = 0,R(AI — A) # X,R(AI — A) =X};
0,(4) = {A€C:N@I-A)=0RAI - A)#X].
Remark 3.60. Clearly, C = p(A) U 0,(A)Uac.(A)Uo,.(A).
In the next we introduce some basic properties of spectrums for general operators.

Theorem 3.61. Let X be a Banach space over C, and let A € L(X,X). Then
(1) (c(A) is bounded) If
|A| > r(A) = lim ||A"||/* = inf ||A"||'/",
n—oo n>1

then A € p(A), and

[ Ar
(/1.[ —A)_l = Z W’

n=0

where RHS is the limit of S,, = 3. i

_ with respect to the normal operator norm.
n=0 An+l
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(2) (p(A) is open) If 1, € p(A), then

ri, 2= lim (2] — A)[" < oo,

we have B(4,, r;ol) c p(A), and

(AL =AY = D (Aol — Ay = A, V1A= 4| <717

n=0

(3) (The radius of spectrum) we have

0(A)#@ and sup |1] =r(A).
Aea(A)

(4) (Adjoint operator) We have

o(A) = o(A*) and (AI—A*)"'=((AI—A)7"), ViepA).
Proof. Well-known. The details are in my handwritten notes. 0J
Remark 3.62. For every A € £(X,X), 0(A) is a compact set.

Example 3.63. Let F C C be an arbitrary compact subset, and let {«,,}*° | be an arbitrary
dense subset of F. Then for 1 < p < o0, the operator

A P> fp, (xl,xz, ey Xy, ) — (alxl,azxz’ c L O Xy, )
satisfies that F = g(A).

Proposition 3.64. Suppose that E is a Banach space and that{T,} C L(E)(n =1,2,3,---)
converges to T € L(E). Let A, be a regular value of T. Then A, is also a regular value of T,
when n is sufficiently large, and

Hm (A — T,)" = (AI — 7).

n—oo

Proof. Note that
(3.6) Al =T, =2 =T —(T,—T)= QI —=T)(I - (AI = T) (T, — T))
and note that
1ol = YT, = D < |l =T - |IT, = Tl —> 0.
Hence there exists N > 0 such that
A =T)(T,-T)||<1 Vn>N,
and hence
I—QAJI=T)T,-T)

also has bounded inverse operator by theorem 3.61 (1). Hence for n > N, by (3.6) we
know that 4, is also a regular value of T,,. Moreover,

Al =T,y = (I= @l =T) YT, =T)) " (Aol = )

= (Z [(A] =TT, — m") (A = T)7,

k=0
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and hence

1Al = T)™H = (Al =T)7'|| = (Z
k

=1

[(Aol = T) (T, — T)]") (Ao = T)!

(]

< DAL = T) T, = DI - (A = )|

k=1
(Ao —T)" (T, = T)||
1= | = T)~X(T, — Tl
T, — Tl
1= I =) - 1T, = Tl
We are done. O

NI = T)71|

NI = TP =S 0

We end with a typical example.
Proposition 3.65. Suppose that K(s,t) is a continuous function on [a, b] X [a, b]. Define
A : Cla,b] - Cla,b] by
t
(Ax)(t) = f K(s,t)x(s)ds
IfA # 0, then for all y € C[a, b], the equation
Ax(t) — (Ax)(t) = y(t)

has unique solution.
Proof. 1t’s clear that A is (totally) continuous. It suffices to prove that
r(A) = lim ||A™|Y/"* = 0
n—oo

by theorem 3.61 (1). Put M = max, yjx(q.5; IK(s, £)|. Note that

t
A0 = f K(s, yx(s)ds| < M(t — a)|x]|
and by induction we easily know that
t—a)"M"
o) < LM,
Hence
" (b—a)"M"
A" < ——7—
and then
r(A) = lim [|A7][/" < lim 2=DM _
Done. N

We will go further with the spectrum theory in section 5 by using the conclusions in
subsection 3.1 for compact operators.
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4. HILBERT SPACE

Before we develop the operator theory, we might as well introduce the basic theory of
Hilbert spaces and study some interesting examples.

Hilbert spaces have better properties than Banach spaces. Many important PDE
problems can be solved in the framework of Hilbert spaces.

4.A. Basic knowledge.

Definition 4.1 (Inner product space). Let H be a vector space over A. If a map
(,-):HXH -> A

is called an inner product on H if it satisfies the following properties:

(1) (Positive definite) (x,x) > 0, for all x € H, and (x,x) = 0iff x = 0.

(2) (Conjugate symmetric) (x,y) = (y,x) forall x,y € H.

(3) (Linear in its first argument) (ax + By, z) = a(x,y) + B(y,z) forall x,y,z € H and
a,pB e A

We shall call such a space (H, (-,-)) an inner product space. The induced norm is ||x|| =

(x, x)%, and we call (H, (-, -)) a Hilbert space if H is complete.
Remark 4.2. (z,ax + By) = a(z,x) + E(z, y).

Proposition 4.3. Let H be an inner product space over A. Then
(1) (Schwarz inequality) |(x,y)|* < (x,x)(y,y), forall x,y € H.
) (H, || - ) is an NVS where ||x|| = (x, x):.

(3) (-, -) is continuous with respect to each variable.

(4) (Polarization identity) We have

)= %(||x+y||2—||x—y||2), | A
7 U+ ylP = 1lx = yIP) + 7 (b + iyl = llx —iy[PP), A=C
(5) (Parallelogram law) We have

1 + Y117 + llx = yI* = 2 (|lx[I* + [I]1*) -

Conversely, if a normed vector space satisfies the parallelogram law, it forms an inner
product space via polarization identity.

Proof. Trivial. OJ

4.B. Orthogonal systems, orthogonal relations. In the next we introduce two basic
tools, the orthogonal relations (of subspaces) and the orthogonal systems.

Definition 4.4 (Orthogonal). Let H be an inner product space, and let M be a linear
subspace. The orthogonal complement of M is defined as

Mt ={xeH: (x,y)=0,Vy € M}.
For x,y € H, we say that x and y are orthogonal if (x,y) = 0, which is denoted x L y.
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Theorem 4.5. Let H be a Hilbert space, and let L be a closed linear subspace. Then H =
L@ Ltand (LYYt = L.

Proof. Note that L n L+ = {0}, since if y € (L n L) then (y, y) = 0. Note that
la + b||> ={(a+ b,a+b)={a,a)+(b,b) =||a||* +||b||>, Vae€L,belL'.

Note that L* is closed via the continuity of inner product. It follows form corollary 3.23
that M := L + L' is closed. Suppose for contradiction that there exists 0 # x, € H \ M;
then by corollary 3.42 and problem 3.43, there exists y, € M with

X — = inf ||x, — y||.
|10 — Yol yeM”o vl

It easily follows that 0 # (x, — y,) L M. But it’s obvious that M+ = {0}; a contraction.
Now it follows that H = L @ L+ = Lt @ (LY)*. Since L c (L1)*!, it follows then
ILHr =1L. d

Remark 4.6. An alternative method to show the contradiction: suppose for contradiction
that there exists 0 # x € H \ (L & L'). Via corollary 3.25 there exists f € H* with
f(L®LY) ={0}and f(x) # 0. Via Riesz representation theorem 4.16, there exists y € H
with f = (y,-). Thus y € (L @ L*)*, and hence (y,y) = 0, i.e. y = 0, which contradicts
that (y,x) # 0.

We can also use the conclusions of orthogonal system to prove this theorem.

Corollary 4.7. Let H be a Hilbert space, and let L be a closed linear subspace. Via theorem
4.5, let P, : H — L be the standard projection. Then for x € H,

lIx — Py (x)|| = inf [|x — y]|.
YEM

Proof. Trivial. OJ

Corollary 4.8. Let H be Hilbert and let M C H. Then (M*)* is the smallest closed space
that contains M.

Proof. 1.e. we need to prove that
(M)t = span(M).

It’s clear that LHS is closed since the inner product is continuous. Hence it follows from
M c (M*Y)* that span(M) c (M*)*. Note that
- -1 1\t
M cC span(M) = span(M) Cc M+ = (M1)* c span(M) = <span(M) ) ,

where the last equality comes from theorem 4.5. We are done. U
In the next we develop the theory of orthogonal system.

Definition 4.9 (Orthogonal system). Let H be an inner product space, and let {e;};c; be a
family of pointsin H. {e;};c; is called an orthogonal system if (¢;, ¢,) = & forall j, k € J.

1
An orthogonal system is called normal if (Span {e j}jej) = {0}, and is called complete if
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we have
X = Z(x,ej)ej, Vx € H.
jer
where RHS must be a finite sum or a countable sum that converges.

Remark 4.10. An orthogonal system is normal iff the representation of 0 is unique. Also
note that being complete implies being normal.

Proposition 4.11. For any nonempty inner product space H, there exists a normal
orthogonal system on H.

Proof. Trivial. Use Zorn’s lemma. OJ

Proposition 4.12. Let H be an inner product space, and let{e;};c; be an orthogonal system.
Then for each x € H, theset A :={j €J : (x,e;) # 0} is at most countable, and we have

4.1) 2 1Gee)? = 3 10 epl? < I
jel jeA
Proof. If A is finite, then

n
x—yly, wherey = 2 (x.e;)e,,
=1

and hence
1[I = llx = yII> + 1> = Iyl = kz |(x, €)1
=1
Then (4.1) follows. It follows that
A, = {j €J :|(x,e)| > %}

is a finite set for each n, and hence A = U:;l A, is at most countable. Finally, jsut take
limit to get (4.1) based on the fintie conclusion. O
Example 4.13. Set x; = Z:;l 27"e,, wheree, = (0,---,0,1,0,---),n = 1,2, ---, and set

N————
n—1

m
X = izakewalxl L €Rk = 1,2,...}
k=2

Then X is a linear subspace of £>. Note that {e,}*  is normal but not complete.

Theorem 4.14. Let H be a Hilbert space, and let {e;};c; be an orthogonal system. Then
{e;}jes is normal iff {e;}c; is complete, and we have
Ix]? = D 1Gx. eI,
jel

Proof. “<=" is trivial.

“=" write A = {j €J : (x,€;) #0} = {e;,e5, -} and set x, = Y _ (x,e)e. It
follows from (4.1) that (x,,) is Cauchy and hence converges to some x" € X. Since {e;};;
is normal, it’s easy to see that x = x’. Then the result easily follows. O
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Moreover, we can give a new method to prove theorem 4.5.

A new proof of theorem 4.5: Since L N Lt = {0}, it suffices to show that L + L+ = H.

Given x € H. Since L is a closed linear subspace, L itself is also a Hilbert space. Based
on proposition 4.11 and theorem 4.14, there exists a complete orthogonal system {e;};,
of L. By proposition 4.12 we know that

A :={j €J : (x,e;) # 0}is at most countable, and Z(x, e;)e; converges in M.
jeAa
Then we set
y =2 (xe)e;.
jeA
It follows that y € M and x —y L e; for each j € J, and hence x —y L L. We are
done. O

Corollary 4.15. If H is a separable Hilbert space over A, and let {e;};c; be a complete
orthogonal system. Then J is at most countable, and H is isometrically isometric to A"
or €*(A).

Proof. Trivial. OJ

4.C. Riesz representation theorem, Bilinear forms, Lax-Milgram theorem.
Using the preceding basic tools, in the next we establish the theory of bilinear forms.

Theorem 4.16 (Riesz representation theorem). Let H be a Hilbert space. Then for any
f € H*, there exists a unique y € H such that

f(x)=(x,y), Vxe€H,
and || f|| = [|y]l-

WLOG, in the following proofs we assume that A = R.

Method 1: orthogonal relations. Note that N(f') is closed and is of codimension 1 (for the
case that f # 0). By theorem 4.5, we just choose an appropriate element in N(f)t. [

Method 2: orthogonal system. Let {e;};c; be a complete orthogonal system of H via
proposition 4.11 and theorem 4.14. Setting f; = f(e;), we calim that
(1) A(f) :={j €J : f; # 0}is at most countable;
(2) ZjEA(f) |fj|2 < 0.
One can easily show that
A ={i€d Iflzn

is finite by using the boundedness of f, and hence A(f) = U:;l A, (f) is at most
countable. (2) also easily follows from the boundedness of f. Then settingy = Z]. o fie
we obtain the result. 0

In the next we study the general bilinear forms.
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Definition 4.17 (Bilinear form). Let H be a Hilbert space over A. A map
¢ : HxH — A

is called a bilinear form if it satisfies:

(D) p(ax + By, z) = ap(x,z) + pe(y, z), forall x,y,z € Hand a,f8 € A;
(2) p(z,ax + By) = ap(z, x) + Ego(z,y), forallx,y,z€ Hand a, 3 € A.
Moreover, a bilinear form is said to be

(1) bounded if there exists a constant M > 0 such that

lpCe, I < Mllx[lllyll, Vx,y € H.
(2) coercive if there exists a constant o > 0 such that
e(x,x) > al|x|]?>, Vxe€H.
Proposition 4.18. Let H be a Hilbert space over A, and let ¢ be a bilinear form on H. Then
pisbounded < 3'A € L(H) : ¢(x,y) = (Ax,y)
< 3dBe L(H) : ¢(x,y) = (x,By)
Proof. Trivial. O

Proposition 4.19. Let H be a Hilbert space over A, and let A € L(H). If there exists o« > 0
with

(Ax, x) > al|x|]%,
then A is bijective.

Proof. If Ax = 0, then ||x|| = 0 and hence x = 0. Thus A is injective.
If x L R(A), then ||x|| = 0 and hence x = 0. Thus R(A)! = {0}, and it suffices to show
that R(A) is closed by theorem 4.5. Suppose that y, = Ax, — y, € H. Then

”xn - xm||2 < a_l (A(xn - xm)7 Xy — xm)

IA

a JAGe, = Xl - 11X = Xl
& 1Y = Yinll - 11X = X

It follows that (x,) is Cauchy and hence converges to some x, € H. Then by the
continuity of A we have

Axy = lim Ax, = lim y, = y,,

n—oo n—oo

which implies that y, € R(A). U
To sum up, we obtain the Lax-Milgram theorem:

Corollary 4.20 (Lax-Milgram theorem). Let H be a Hilbert space, and let ¢ be a bounded
and coercive bilinear form. Then for all f € H*, there exists a unique y € H such that

f(x)=oep(x,y), Vx€H.

Proof. 1t follows directly from proposition 4.18, proposition 4.19 and the Riesz
representation theorem 4.16. U
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4.D. Sovling elliptic PDE. An important application of Lax-Milgram theorem 4.20 is
sovling elliptic PDE.

Theorem 4.21. Let Q C RN be open and bounded. Given the elliptic operator
L:H(Q) - HY(Q), uw~ —3;(aYdu+d/u)+b'du+cu,

where alt = a¥, a'/ € L*(Q) and there exist constants 0 < 1 < A such that

(4.2) AEP <a¥(0)&E < AIE]P VEER" Vxe
43 Z; Hbl oy T Z} ‘ d oy T ”C”L”/Z(ﬂ) sA

Suppose that v € H1(Q), g € H'(Q). Then there exist u > 0, such that for i > u, the
(Dirichlet) elliptic equation
Lu + pjiu=v
u-—geH|Q)
has a unique solution u € H'(Q), where
i 1 Hy(Q) = L*(Q) is the compact imbedding.
JiLA(Q) = H'(Q), uwx (U, )

Proof. Note that our (Dirichlet) elliptic equation can be transformed into
« Finding u € H,(Q) such that Lu + ujiu = w, where w € H™(Q).
Note that
(Lu + pjiu,v)y = (=0, (aVdu + d/u) + b'du + (c + pu,v)
= (ddu + d/u,d;v) + (b'du + (¢ + wu,v)
Thus the equation is equivalent to
« Finding u € H,(Q) such that a(u, -) = w, where
a:Hy(Q)XxH(Q) - R

(u,v) — f (a8,ud;v + diud;v + b'(6;u)v + (¢ + puv) dx
Q

is a continuous bilinear form.*
Now we claim that
(i) There exists u > 0 such that a is coercive for u > u.

Note that by Lax-Milgram theorem (corollary 4.20), the conclusion will follow from (i).
Thus it suffices to prove (i). Note that

« Claim (i) is easy if the coefficients are in L*(Q).

4 Continuity (i.e. boundedness) follows from (4.2), (4.3), Holder inequality, Sobolev inequality and

AYT| </ XAYT(RAYTIT = \/xAGTY)AXT = [yIVxAAxT = %x/quT)(xAxT) < AJx][y|
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But we only have (4.3). Our idea is to show that the gap between (4.3) and L* can be
controlled. Note that via Poincaré inequality there exists ¢, > 0 such that

200

||Vu||L2(Q) ||u||H1(Q) Yu € Hé(Q)

Then we choose 0 < ¢ < ¢, and then find bll, blz, di, d;, ¢, ¢, and k via lemma 4.22 such
that

Z ||b11HL°°(Q) + Zl HdIIHLoo(Q) + ||CI||L00(Q) < k
i=1 i=
n . n .
Z ”blz Ln(Q) + Z ||d12 Q) + ||c2||Ln/2(Q) < ¢
i=1 i=1
Put
a,(u,v) = / (auaiuajv + dJud;v + bl (6w + cluv) dx
Q
) = [ (dudo+ biGuw + cuw) dx
Q
as(u,v) = (k + 2—k2> f uvdx
A Q
Then’

2
0 w) > ANVl =k (el IVull + 2l IVl + el el )

2 2
= /IHVMHLZQ _k”u”ng _2kllvu||LZQ ||u||L2Q
(®) (®) ( ) (®)
2k2

2k?
= SVl = (et 25 ) Il + 5 IV + 2 il gy = 26 1Vl

v

2 2k?
IVl (K 2l

2 2k
>yl = (4 2 ) Il

and just like in footnote 4, via Holder inequality and Sobolev inequality, we have

2
|a2(u’u)| <e ”u”Hl

o)
Thus
2
al(u’ u) + a2(ua u) + a3(u’ u) 2 (CO - E) ||u||Hé(Q)
which proves claim (i). Hence the conclusion follows. O

Lemma 4.22. Given f € LP(Q) and € > 0. Then we can find f = f, + f, such that
sup | f1(x)] < k() ||f2||LP(Q) <¢€

xeQ

>Note that if we use ¢, IIVuIILZ(Q) +cy IIuIILZ(Q) to controll — IIVuIILz(Q) ||u||L2(Q), we can use a small ¢;. But
if we use ¢; ||Vul| 12(Q) and Poincaré inequality to controll — ||Vu|| 2Q) [|ul| 12y We can’t use a arbitrarily
small ¢;.

|ul

LX)
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Proof. PutA, ={x € Q : |f| <k},B, =Q\ A, and
f1k=f)(Ak fzk=f)(3k
Then we know

Jutfu=7f sup | f1(x0)| <k

xeQ

for all k. Note that f € LP(Q) implies that m(B;) — 0 as k — o0, and then via the
Lebesgue dominated convergence theorem 9.25 we know

lim =0
KS>+co ||f2k||Lp(Q)

Thus Ve > 0, we can find an appropriate k such that f,; and f, satisfy the requirements.
O

Corollary 4.23. In theorem 4.21, if i > W, the operator L + uji : Hy(Q) - H'(Q) is
actually an isomorphism.

Proof. Note that L + uji : Hy(Q) — H™'(Q) is continuous since the corresponding
bilinear form a is continuous. Thus the conclusion follows from theorem 4.21 and
theorem 3.22. O

Example 4.24. The operator —A + cji : H,(Q) — H™*(Q) is an isomorphism, where
c>0a.e. and c € L'3(Q).

Proof. The corresponding bilinear form is
a(u,v) = f(aiu - 0;U + cuv)dx
Q

Then via Holder inequality, Sobolev inequality and Poincaré inequality we have
2 2 2 2
|a(u, U)l < ||Vu||L2(Q) ||VU||L2(Q) + C ||u||Hé(Q) ”U”Hé(g) < C ||u||Hé(Q) ”U”Hé(g)
and via Poincaré inequality we have
2 2
Cl(u, u) 2 ||Vu||L2(Q) 2 C3 ||u||Hé(Q)
Hence the conclusion follows. O
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5. SPECTRUM THEORY

In this section we revisit the concept of spectrum. For special operators we will go
further by using the preceding conclusions.

5.A. Fredholm alternative, solvability problems. Basic on the preceding theorems,
we make some preparation.

Theorem 5.1 (Fredholm alternative). Let E be a Banach space and T € K (E). Then
(1) N(I — T) is finite-dimensional.

(2) RU —T) is closed, and more precisely R(I — T) = N(I — T*)*.

(3) NI—-T)={0} < R(I-T)=E.

(4) dimN(I = T) = dim N(I — T*).

Proof. Recall that we have proved (1)(3)(4) and that R(I — T') is closed in theorem 3.57.
Note that (I — T)* = I — T*. Hence (2) follows from via theorem 3.51. O

Remark 5.2. Similarly to remark 3.58, if we change I into an isomorphism A, the
conclusion is also true.

An important application of Fredholm is to deal with the solvability problem.

Remark 5.3. The Fredholm alternative deals with the solvability of the equation
u—Tu=f
It says that

(1) either for every f € E the equation u — Tu = f has a unique solution,

(2) or the homogeneous equation u — Tu = 0 admits n linearly independent solutions,
and in this case, the inhomogeneous equation u — Tu = f is solvable iff f satisfies n
orthogonal conditions, i.e.,

feNQ-T*
Again, we take epplitic PDE as a typical example.

Theorem 5.4 (Solvability of elliptic PDE). Let Q C RY be open and bounded. Consider
the elliptic operator

L : HY(Q) » HY(Q),u » =8, (adu + d/u) + b'du + cu,
where a’' = aV, a¥/ € L®(Q) and there exist constants 0 < A < A such that

/1|§|25aij(x)§i§j5/\|§|2 VEER" Vx e Q;

n n
2|y + 22
i=1 i=1

Suppose that v € H™'(Q). Then for the (Dirichlet) elliptic equation
Lu=v, ueH|(Q),

iy + llaay < A

we have
(1) either for every v € H™'(Q) the equation has a unique solution,
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(2) or the homogeneous equation Lu = 0 admits n linearly independent solutions, and in
this case, the inhomogeneous equation Lu = f is solvable iff f satisfies n orthogonal
conditions.

Remark 5.5. Note that any (Dirichlet) elliptic equation can be transformed into finding
ue Hé(Q) such that Lu = v, where v € H™'(Q). Theorem 5.4 is just a direct corollary
of theorem 4.21 and theorem 5.1.

Proof. Note that the equation is equivalent to:
Finding u € H,(Q) such that (L + pji)u — pjiu = v, where u € R and
i: Hé(Q) < L*(Q) is the compact imbedding;
j . LZ(Q) - H_l(Q)’ umr (u’ ')LZ(Q)'

We can find an appropriate u such that L+ ji isisomorphism (corollary 4.23). Therefore,
the elliptic equation is equivalent to:

Finding u € H,(Q) such that u — Tu = w, where
T = u(L + pji)~'ji is compact via proposition 3.55;
w = (L + uji)~'(v) € Hy(Q).

Thus as remark 5.3 claims,

(1) either for every f € H,(Q) the equation u — Tu = f has a unique solution,

(2) or the homogeneous equation u — Tu = 0 admits n linearly independent solutions,
and in this case, the inhomogeneous equation u — Tu = f is solvable iff f satisfies n
orthogonal conditions, i.e.,

feNQQ-T*t
Then the conclusion follows. O

Remark 5.6. In theorem 5.4, Fredholm alternative 5.1 also implies that any eigenspace
of a elliptic operator is finite-dimensional.

5.B. Spectrum on R, eigenvalues of epplitic PDE, compactness of spectrum. In
the next we revisit the concept of spectrum, and show how it helps us analyze the
eigenvalues of elliptic PDE. In this section, our spectrum theory is on R (not on C as
before).

Definition 5.7 (Spectrum on R). Let E be Banach, and let T € L(E).

(1) The resolvent set, denoted by p(T), is defined by

p(T) ={1 € R : (T — Al) is bijective from E onto E}.

(2) The spectrum, denoted by o(T), is the complement of the resolvent set, i.e., o(T) =

R\ po(T).
(3) A real number A is said to be an eigenvalue of T if

N(T — AI) # {0},
and N(T — AI) is the corresponding eigenspace.



Zhiyao Xiong 41

(4) The set of all eigenvalues is denoted by EV (T).

Remark 5.8. It’s clear that EV(T) C o(T). In general, this inclusion can be strict. One
can refer to [Bre] section 6.3 for the example of strict inclusion.

In addition to helping us analyze the operator itself, the spectrum has many uses.
When we deal with the eigenvalues problem of epplitic PDE, the spectrum theory will
play a vital role.

Proposition 5.9. Using the notations in theorem 4.21, then there exists u € R such that
S = (L+ pji)yji

is a compact operator, and then

(5.1) AER : N(L+Aji) £{0} > A% and ﬁeEV(S).

Proof. Theorem 4.21 yields u. By corollary 4.23 and proposition 3.55 (1), for u > u, S is

a compact operator. Note that for u # A and u > u we have

(52) N+ Aji) = N (L + wji + (A — p)ji) = NI + (A — 0)S) = N(s _ M%I)

Then property 5.1 follows. If 1 = y, it’s clear that N(L + 4ji) = {0}. O

Remark 5.10. We will show in the next subsection that o(S) \ {0} = EV(S) \ {0}.

In the next we introduce the compactness of the spectrum, which is derived by the
contraction mapping principle.

Theorem 5.11. Let E be Banach, and let T € L(E). The spectrum o(T) is compact and
o(T) c [= T, +1ITl]-

Proof. We prove it by two steps.
(1) Claim: o(T) c [ |IT][, +[IT][].

Our idea is: the existence and uniqueness of solution is equivalent to the existence
and uniqueness of fixed point, and the fixed point is related to boundedness, since we
have the contraction mapping principle.

Let A € R be such that |[A] > ||T||. It suffices to show that T — AI is bijective. Now
just note that given f € E, the equation Tu — Au = f has a unique solution, since it
may be written as u = A7!(Tu — f) and the contraction mapping principle applies.

(2) Claim: p(T) is open.

We have the similar idea: the existence and uniqueness of solution is equivalent to the
existence and uniqueness of fixed point, and then we try to use the contraction mapping
principle.

Let 4, € p(T), 1 € R (close to 4;) and f € E. We try to solve

Tu—Au=f.
This is equivalent to

Tu—Agu = f + (4 —2A)u,
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i.e.,
u=(T -2 [f+@-2ul.

Via contraction mapping principle again, there exists a unique solution if
1
A=A < —.
" T = 2D
Hence p(T) is open.

O

5.C. Spectrum of compact operator. In the next we introduce the properties of the
spectrum of a compact operator.

In addition to using the preceding theorems for compact operators, another basic idea
is to transform information into properties of convergence (or divergence).

Theorem 5.12. Let E be Banach with dimE = oo, and let T € KX (E). Then we have

(a) 0 € o(D),
(b) o(T) \ {0} = EV(T) \ {0},

(c) one of the following cases holds:
(i) o(T) = {0},
(ii) o(T) \ {0} is a finite set,
(iii) o(T) \ {0} is a sequence converging to 0.
Proof. The first two conclusions are just direct corollaries of the preceding theorems.

(a) Suppose for contraction that 0 ¢ o(T). Then T is bijective and hence I = ToT™*
is compact via theorem 3.22 and proposition 3.55. Thus By is compact and hence
dim E < oo via corollary 3.19; a contradiction.

(b) Let A € o(T), A # 0. We shall prove that 1 is an eigenvalue. Suppose not, that
N(T — AI) = {0}. Then by theorem 5.1 (3), we know that R(T — AI) = E and therefore
A € p(T); a contradiction.

For (¢), it suffices to show that:
Foranyn € Z,,theseto(T) N {1 € R : |4| > 1/n} is either empty or finite.
Via theorem 5.11, it suffices to prove that:
All the points of o(T') \ {0} are isolated points.
Let (4,),>; be a sequence of distinct real numbers such that:
A, €0(T)\{0} VneN, and 4,- A
It suffices to prove:
(5.3) A=0.

Recall that our conditions are T € KX(E) and A, — A where 1, € EV(T) \ {0} for all
n. A natural idea is that we transform both conditions into properties of convergence (or
divergence) and then compare them to get (5.3).
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We first transform the latter condition into some property of convergence by the following
three steps, where the first two steps are a typical method, via using the tool Riesz lemma
3.17, to build a framework of solving problems.

(1) Foreach A, € EV(T) \ {0} we find e, # O with e, € N(T — A,I). Let E, be the space
spanned by {e,, ---,e,}. We claim that E, C E,,,,, for all n.
It suffices to check that for all n, the vectors e, ---, e, are linearly independent.
The proof is by induction on n. Assume that this holds up to n and suppose that

n
€ny1 = Z ;€.
i=1

Then by definitions we have

n n
Te,y, = Z adie; = Ay Z a;e;.
i=1 i=1

It follows that o;(4; — 4,,;) = 0fori =1,---,nand henceo; = 0 fori =1,---,n;a
contradiction. Hence we have proved that E,, ¢ E, ., for all n.

(2) Now via Riesz lemma 3.17 we can construct a sequence (u,),», such that u, € E,,
llu,|| = 1 and dist(u,,, E,_;) > 1/2 foralln > 2.

(3) (Now we use the condition A, — A.) It’s clear that (T — A,I)E, C E,_;. Thus for
2 < m < n we have

|-
1

> dist(uy, By ) 2 5.

Tu, —A,u, Tu, —A,u,

Dl _ Tt - fu, —u
n m

Ay Am

Suppose for contradiction that 4 # 0. Then via 4, — 1 we get a sequence (Tu,),>,
which has no convergent subsequence.

Now note that a compact operator sends a bounded sequence into a sequence that has
a convergent subsequence; a contradiction. Hence we prove (5.3), and (c) follows.  [J

5.D. Case of Hilbert spaces — bilinear forms, self-adjoint. Now let us consider the
better situation that E = H is a Hilbert space and T € £(H). We have more precise
characterizations and have more tools in Hilbert spaces, for which one can refer to
section 4.

For instance, by proposition 4.18, any operator T € L(H) can be represented by the
corresponding continuous bilinear form°

a:HxH->R, (uv)~ (Tu,v),

and we have Lax-Milgram theorem 4.20 to characterize H*. This gives us a good
breakthrough point for a new and better theory.
First of all, let’s make a more precise conclusion than theorem 5.11.

®In Hilbert space H, the continuity of T is equivalent to the continuity of a via Cauchy-Schwarz inequality.
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Theorem 5.13. Let T € L(H) and let a be the corresponding bilinear form. Set

m = inf a(u,u) and M = sup a(u,u)
ueH ueH
lul=1 lul=1

Then max{|m|, |M|} < ||T|| and o(T) C [m, M].
Proof. Note that
la(u, V)] = [(Tu, V)| < ||Tull - |[oll < ITI] - [lull - [V]l-
It follows that max{|m/|, |[M|} < ||T||. Let A > M; we will prove that 1 € p(T). Note that
(Au—Tu,u) > (A —M)||lul|* Vu e H.

Applying Lax-Milgram theorem 4.20, we deduce that AI — T is bijective and thus 1 €
p(T). Similarly, any 1 < m belongs to p(T) and therefore o(T) C [m, M]. O

We have the following natural question:
Question 5.14. Do m and M belong to o(T)?

Consider the problem of M first. By definition we can find a sequence (u,) such that
||lu,|| = 1 for all n and

a(u,,u,) > M asn — .
Now we claim the following lemma, which is a natural sufficient condition.
Lemma 5.15. If a is symmetric, then (T — MI)(u,) — 0, and hence M € o(T).
Proof. We first prove that (T — MI)(u,) — 0. Note that
b(u,v) = M(u,v)y y — a(u,v)
is symmetric and satisfies
b(v,v) >0 Vv eH.

Hence b satisfies the Cauchy-Schwarz inequality

Ib(u, v)| < b(u, w):b(v, ).

Now put
Mu, —Tu,
w, = —.
”Mun - Tun“
It follows that
1 1
[[(T — MI)(u,)|| = bu,,w,) < b(u,,u,)b(w,, w,):.
Note that
b(u,,u,) = M — a(u,,u,) - 0,
and

b(wn, wn) =M - a(wna wn) <M-m.

Thus we get ||(T — MI)(w,)|| — O.
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Now suppose for contradiction that M € p(T). Then
u, = (T — M) (T — MI)(u,)) — 0.
Contradiction. Hence the conclusion follows. O

Here we use the fact that any symmetric bilinear form has Cauchy-Schwarz
inequality. We add the property of symmetry and go on.

Definition 5.16 (Self-adjoint). An operator T € L(H) is said to be self-adjoint if T* = T,
which is equivalent to that the corresponding bilinear form a is symmetric, i.e.

(Tu,v) = (u,Tv) Vu,v € H.
Now we get a deeper conclusion.
Theorem 5.17. Let T € L(H) be a self-adjoint operator. Set

m = inf a(u,u) and M = sup a(u,u).
ueH u€H
lul=1 lu|=1

Then o(T) C [m,M]. Moreover, m € o(T), M € o(T) and ||T|| = max{|m|, |M|}.
Proof. We have proved in theorem 5.13 that
max{|m|, M|} < [|T]| and o(T) C [m,M].

It follows from lemma 5.15 that M € o(T). Similarly m € o(T). Now it suffices to show
that

IT]| < max{|m|, |M|}.
Put u = max{|m|, |M|}. Note that
4la(u,v)| = |a(u+v,u+v)—alu—uv,u—"v)|
< p(llu+ ol + [lu—ol?)
20 (J[ull® + [vlP?).-

This is not homogeneous. Setting v = tw we get

tlau, w)] < 3 (Julf + 2lwl?) Vo€ R.
Hence
la(u, w)| < pllull - [[w|] Yo, w € H.
For u # 0, putting w = (Tu)/||Tu|| we get
ITul| < pllull  Vu € H.
Hence ||T|| £ u, which completes the proof. O

We have the following important corollary.

Corollary 5.18. Let T € L(H) be a self-adjoint operator. Then
e T=0< o(T) ={0}
Let A C H be a linear subspace. Then the following properties are equivalent
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(1) TA)c Aand o (T|,) = {0}
(2) A C N(T).

Proof. Obviously it follows from theorem 5.17. 0J

Remark 5.19. For a self-adjoint operator, the equivalence serves us new methods to
prove that T = 0 or that A C N(T) for a linear subspace A.

5.E. Compact self-adjoint operators, eigenvector spaces, spectral
decomposition. Now let’s put the preceding good properties together. In the
next we will analyze the properties of a compact self-adjoint operator.

Definition 5.20 (Eigenvector space). Based on theorem 5.12, we can let (4,),>, be the
sequence of all (distinct) eigenvalues of T with A, = 0 for a compact operator. Then the
eigenvector spaces are given by

E,=N({T-21,1) VYn>0.
Remark 5.21. Note that via definition and Fredholm alternative (theorem 5.1) we know
0<dmE, <o Vn2>1.
Now we give the first natural conclusion.
Theorem 5.22. The closed spaces (E,),, are mutually orthogonal.

Proof. Since the kernel of a bounded operator is closed, E,, is closed for each n. Note that
foru € E,, and v € E, with m # n we have

a(u, U) = Am(u’ U)H,H = An(u’ U)H,H'
Therefore (u, ),z = 0. O

The second natural conclusion is a property of decomposition, which is derived based
on corollary 5.18. This is a more precise characterization of the spectrum that makes full
use of the typical properties of Hilbert space.

Theorem 5.23. Let F be the vector space spanned by the spaces (E,),»,- Then F is dense
in H.
Proof. Via theorem 4.5, it suffices to prove that F*+ = {0}. Basically, we have
« T(F) C F; obviously this is a direct corollary of definition.
« T(F') c Ft;indeed, given u € F* we have
(Tu,v) =(u, Tv) =0 Vv €eF.
e Ty =T|p : F* — Ftisaself-adjoint compact operator.

It’s very natural to analyze the spectrum of T, notting the definition of F. Actually it’s
obvious that

+ o(T,) = {0},
Suppose not; suppose that some 4 # 0 belongs to o(T,). Then via theorem 5.12 this
implies that there is some u € F+, u # 0, such that

Tu = Au.
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Therefore A = 4, for some n via definition. Thus
uek,CF,

which implies u € F n F*. However F N F+ = {0}; a contradiction.
Now recall corollary 5.18; T(F+) c F* and o(T,) = {0} imply that F* c N(T) C F.
Thus F = {0} since F N F* = {0}. Hence the conclusion follows. O

To sum up, we have the following fundamental theorem.

Theorem 5.24 (Spectral Decomposition). Let H be a Hilbert space and let T be a
compact self-adjoint operator. Then there exists a complete orthogonal system composed
of eigenvectors of T.

Proof. Via theorem 5.22 and theorem 5.23, we just choose in each subspace (E,),> a
complete orthogonal system (the existence of such orthogonal systems follows form
proposition 4.11 and theorem 4.14), and then union of these orthogonal systems is clearly
a complete orthogonal system of H, composed of eigenvectors of T. O

5.F. Epplitic PDE for L = A. Now we introduce an application in PDE. Recall
proposition 5.9 and example 4.24.

Theorem 5.25. Suppose that the (Dirichlet) epplitic PDE
—Au =Au, u€H)(Q)
has a nonzero solution. Then
(1) All possible 1's form a sequence
0<A <4<
where

lim 4, = +00

n—oo

(2) The corresponding eigenspaces E ,1,,/5 satisfy
0<dimE; <oco Vn2>1
(3) There exists a Hilbert basis of H} () composed of eigenfunctions.
Proof. Note that 4 > 0 follows from example 4.24. Besides, we can put
S = (=A)ji
and then via (5.1) and theorem 5.12 we get (1). Moreover, via Fredholm alternative 5.1
and (5.2) we get (2), and via theorem 5.24 and (5.2) we get (3). O

Remark 5.26. Note that N(S) = {0} here. Generally speaking, we have 0 < dimE, <
+00. Theorem 4.21, example 4.24, proposition 5.9, theorem 5.4 and theorem 5.25 are the
main results about PDE in this note.
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6. MEASURABLE SPACES AND MEASURABLE MAPS

In this section we introduce the basic theory of measurable spaces and measurable
maps

6.A. Basic concepts, methods of judging measurability.

Definition 6.1 (Measurable spaces, measurable maps). There are some basic concepts.

(1) A measurable spaces (X,X) is a set X, together with a collection X of subsets of X
which form a o-algebra.

(2) A subset of X is said to be measurable with respect to the measurable spaceif A € X.

(3) We say that one o-algebra XX on a set X is coarser than another X' if X C X'.

(4) Amap f : X — Y from one measurable space (X, X) to another (Y, Y) is said to be
measurable if f~1(E) € X forallE € Y.

Proposition 6.2. Let (X,).c4 be an arbitrary family of o-algebras on X.

(1) Theintersection \ _, X, =) ., Lo of (Xy)aea is another o-algebra on X.
(2) Given any collection F of sets on X, the c-algebra generated by ¥ is defined as the
intersection of all the o-algebras containing F, which is denoted by B|F].

(3) Thejoin\/__, X, of (X)sea is defined as B[, X.].

Remark 6.3. The o-algebra generated by F is also the coarsest algebra for which all sets
in & are measurable.

Example 6.4. The open sets F of a topological space (X, ¥) generate a o-algebra, known
as the Borel o-algebra By of that space.

Example 6.5. The Lebesgue o-algebra £ of Lebesgue measurable sets on a Euclidean
space R" is the join of the Borel o-algebra By, and of the algebras of null sets and their
complements (also called co-null sets). See theorem 8.19.

Example 6.6. Let R = [—o0, +00] be the extended real number system. We define Borel
sets in R by Bz = {E CR:EnREe BR}.

Remark 6.7. It’s clear that Bz can be generated by A; = {[-o0,a) : a €R}, A, =
{[—o0,a] : a eR}L A; ={(a,0] : a € R}, orA, ={a, 0] : a e R}

Remark 6.8. In the next we abbreviate the measurable space (@, Bgz)as R or [—o0, +00],
and we employ the notation “real-valued” to mean “R-valued”.

Example 6.9 (Borel measurable). A map f : X — Y from one topological space to
another is said to be Borel measurable if it is measurable once X and Y are equipped
with their respective Borel o-algebras.

In particular, continuous maps are Borel measurable, since the collection {E &€
By : fTY(E) € By} is a o-algebra that contains all open subsets of Y and hence is By.
But the converse statement is false, and the counterexample can be easily derived via
proposition 6.14.
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Example 6.10 (Lebesgue measurable). A map f : R" — Y is said to be Lebesgue
measurable if it is measurable from R" (with the Lebesgue o-algebra) to Y (with the
Borel o-algebra).

In the next, we introduce some basic methods of judging measurability.

Proposition 6.11. Let (X,X) and (Y, Y) be measurable spaces. If Y is generated by &,
then f : X = Y is measurable iff f1(E) is measurable for all E € &.

Proof. The “only if” implication is trivial. For the converse statement, note that
{EcY : f7Y(E) € X} is a o-algebra that contains € and hence contains Y. O

Corollary 6.12. Let f : (X,X) — Rand Y = f7Y(R). Then f is measurable iff
f (=00} € X, f'({o0}) € X, and f is measurableon'Y.

Proposition 6.13. Let (X, X) and (Y, Y) be measurable spaces. If X = AUB where A,B €
X, thenamap f : X — Y is measurable iff f is measurable on A and on B.

Proof. Forany E € Y, (fl)7'(E) = fTE)NA, (fl)7'(E) = fT(B)N A, and f7H(E) =
(fla) ME) U (f1p) Y(E). The result follows. 0

6.B. Pointwise limit of measurable maps. In the next we introduce some basic
properties related to pointwise limit.

Proposition 6.14. Let (X, X) be a measurable space, let (Y, By ) be a metric space equipped
with its Borel o-algebra, and let f, : X — Y be measurable maps for each n € N such that
the pointwise limit of { f ,} exists. Then f(x) = lim,_, ., f,(x) is measurable.

Proof. Since Y is a metric space, By is generated by the open balls

Gy :={By(y,r) : y €Y,r > 0}.

Consequently, it suffices to show that f~'(G) € X for any G € Gy. For G := By (y,r),
we have

f(x) € By(y,r) = 3k =k(x),N =N(x) €N, Vn 2 N : f,(x) € By (y,r _ l)_

k
Then,
oYyl br-b)
r@=UyUns (B (vr -1
eN NeN n>N
<r
and hence f~1(G) € X. O

Proposition 6.15. Let (X, X)) be a measurable space, let (Y, By ) be a complete metric space
equipped with its Borel o-algebra, and let f,, : X — Y be measurable maps foreach n € N.
Then E :={x : lim,_ . f,(x) exists} is a measurable set.

Proof. Define

A =5 €X 1 11,00 = £ < 5.
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Note that
x€EE=VjeN,IM =M(),N=N{Y)eEN,Vm>M,n>N : X E A, ;.

Hence

E=NUU NN e

j=1 MeN NeN m>M n>N

which is measurable. O

Remark 6.16. After giving the concept of measure, we can show that if f, converges
to f a.e., then f, converges to f almost uniformly. See Egoroff’s theorem 7.7. We will
derive more properties via measures, which will be introduced later.

Remark 6.17. Moreover, a measurable map can be approximated by a continuous map.
In fact, under good conditions (X = R", u* is a Borel regular outer measure, and u*(A) <
o), any measurable map f on A is almost continuous on A. This is Lusin’s theorem. One
can refer to [Evaa] section 1.2.

6.C. Approximation — pointwise limit of simple functions. The above properties
inspire us that we may approximate a measurable map via simple measurable maps. We
will apply this idea to measurable functions.

First we introduce some basic properties.

Proposition 6.18 (Properties of measurable functions). Let (X, X’) be a measurable space.

(D Iff,g : X > [—00,+0] are measurable, then so are

f+g fg |fl, min{f,g}, and max{f,g}.

The function L is also measurable, provided g # 0 on X.

g

(2) If the functions f, : X — [—o0,+o0]| are measurable (k = 1,2, ---), then
inf f,, supfy, liminf f,, and limsup f;
k>1 k>1 k— o0 k— oo

are also measurable.

Proof. Trivial. Note that
hm 1nf fi= sup i 1nf fr, limsup f, = 1nf sup f
m>1 = k—o0 21 g>m

for the last assertion. 0]

Remark 6.19. If f is measurable, then the positive part f*(x) := max{f(x), 0} and the
negative part f~(x) := max{—f(x),0} are measurable. If f* and f~ are measurable,
then f = f* — f~ is measurable.

Now we show that any measurable functions is a pointwise limit of some
sequence simple functions. This approximation is like doing a finer and finer division
of the space, and the process of refinement needs to use the property of f, not just the
property of the space.
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Definition 6.20 (Simple function). Let (X, X)) be a measurable space. A simple function
on X is a finite linear combination of characteristic functions of sets in X.

Remark 6.21. A function f : X — R (or C) is simple iff f is measurable and the range
of f is a finite subset of R (or C).

Theorem 6.22 (From simple functions to measurable functions). Let (X,X) be a
measurable space.

(D If f : X — [0, 0] is measurable, there is a sequence (¢,,) of simple functions such that
0<¢, <9, << f, 9, = f pointwise, and ¢, — f uniformly on any set on which
f is bounded.

2) If f : X — C is measurable, there is a sequence (¢,) of simple functions such that
0 <|p| £ lpal £+ < |fl, ¢ — f pointwise, and ¢, — f uniformly on any set on
which f is bounded.

Proof. Suppose that f is real-valued. Forn = 0,1,2---and 0 < k < 22" — 1, let
Ey = f7'((k27",(k+1)27"]) and F, = f((2",+oo])

and define
221

Pu= D, k27 xp +2"xp,

k=0
Then0< ¢, <p,<--- < fand

if f(x) <2" then0 < f(x)—¢,(x) <2™"

Then (1) follows.

Suppose that f is complex-valued. If f = g + ih, we can apply part (1) to the positive
and negative parts of g and h, obtaining sequences ¢;", ¥, ¢}, ¢, of non-negative simple
functions thatincrese tog*,g~, h*,h™. Letp, = ¥, —;, +i({;—¢;); then (2) follows. [

Remark 6.23. Let’s make a simple summary of approximations of measurable functions.

(1) In the pointwise sense, we have the above theorem and Egoroff’s theorem 7.7. On the
other hand, if X is LCH and f is LSC and non-negative, we have proposition 11.14
(5).

(2) We can approximate a measurable map by a continuous map. One can refer to [Evaa|
section 1.2 for Lusin’s theorem.

(3) In the sense of convergence in measure, we have theorem 7.10.

(4) In the sense of convergence in L?, any f € L? can be approximated by continuous
functions, which will be showed in section 11. See corollary 11.10.

6.D. Pullback — Borel c-algebra, product measurable space. In the next we
introduce pullback and use it to study more spaces, such as the product spaces. Pullback
is a typical example that embodies the interaction between spaces and maps on these
spaces.

Definition 6.24 (Pullback). Givenamap f : X — Y from a set X to a measurable space
(Y, Y), the pullback f~(Y) of Y is defined as the o-algebra f~1(Y) :={fX(E) : E € Y}.
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More generally, given a family (f, : X — Y.).ea Of maps into measurable spaces
(Y, Y,), we can from the o-algebra \/aE WS 1(y,) generated by the f,’s.

Remark 6.25. Pullback is a basic tool to describe the relation between different o-
algebras and to construct new o-algebra. From another perspective, f~'(Y) is the
coarsest o-algebra on X that makes f measurable, and \/ae WS 1(y,) is the coarsest o-
algebra on X that makes f, simultaneously measurable.

Example 6.26 (Restriction). If E is a subset of a measurable space (Y, Y), the pullback of
Y under the inclusion map ¢ : E — Y is called the restriction of Y to E, and is denoted

by Y.

Proposition 6.27. Let M be a topological space and let N be its open subset. Then By C

Proof. If E C N is open in N, then E is open in M and t'(E) = E. Hence By C B, and
By C Byly- On the other hand, the collection {E € B, : '(E) € By} is easily seen to
be a o-algebra on M that contains the open subsets of M and hence B,,. In other words,
1y (E) € By forall E € By, and hence By,|y C By. Thus By = By|y- O

Example 6.28 (Cartesian product). Let (X,,X,),c4 be a family of measurable spaces,
then the Cartesian product Hae . X, has canonical projection maps 7 : Hae A Xo
X for each B € A. The product o-algebra J]_ ca Xy is defined as the o-algebra on
11, X. generated by the 74’s as in definition 6.24.

Proposition 6.29. Let (X,,X,).ca be a family of measurable spaces, and let X, be
generated by ¥, € A. Then I __, X, isgenerated by X, = {n;(E,) : E, € F,,a € A}.
If A is at most countable and X, € #, for all a, HaeA X, is generated by X, =
1o, Eo @ Eo € Fo}:
Proof. Obviously B[X;] C []__, X.. On the other hand, for each «, the collection {E C
X, : 7w (E) C B[X,]}is easily seen to be a o-algebra on X, that contains &, and hence
X,. In other words, 7;'(E) € B[X,] forallE € X, « € A, and hence []__, X, C
BlX,].

Now suppose that A is at most countable. Note that if E, € X, then 7;'(E,) =
HﬁGA Eg where Eg = X for 8 # a. Hence []__, X, C B[X,]. Alsonote that []__, E, =

ﬂaeA ' (E,) € HaeA X,,s0 B[X,] C HaeA X,. O

Proposition 6.30. Let X, ---, X, be metric spaces and let X = H;=1 X, equipped with the
product metric. Then H?zl By, C By. Ifthe X;’s are separable, then H;.lzl Bx, = By

Proof. By proposition 6.29, H;.lzl By, is generated by the sets 7T]._1(UJ-), 1 < j < n,where
U, is open in X ;. Since these sets are open in X, we get H';:l By, C Bx.

Suppose now that C; is a countable dense set in X ;. Let F; be the collection of balls in
X; with rational radius and center in C;. Then it’s clear that By, is generated by F; and

By is generated by {H?ﬂ E; . E; € fj}. Hence H';:l By, = By by proposition 6.29. U]

Corollary 6.31. B, = H;lzl Bg.
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Remark 6.32. More generally, let (X,).c4 be an at most countable family of second
countable topological spaces. Then the Borel o-algebra of the product space (with the
product topology) is equal to the product of the Borel o-algebras of the factor spaces.

Remark 6.33. The Lebesgue o-algebra on R” is not the product of n copies of the one-
dimensional Lebesgue o-algebra, as it contains some additional null sets; however, it is
the completion of that product. See theorem 8.19.

Proposition 6.34. Let (X,X) and (Y., Y,) (o« € A) be measurable spaces. Then f :
X, 2) = (Il,cq Yoo I1,c4 Yo) if measurable iff f, = m o f is measurable for all a.

Proof. If f is measurable, so is each f, since the composition of measurable maps is
measurable. Conversely, if each f, is measurable, then for all E, € Y,,, f~ (7' (E,)) =
f2'(E,) € X. Hence f is measurable via proposition 6.11 and proposition 6.29. O

Corollary 6.35. Let (X, X) be a measurable space. A function f . X — C is measurable
iff Rf and S f are measurable.

Proof. This follows since B = By X By by proposition 6.34. O

6.E. Measurability of sections. In the next we introduce some basic properties of the
sections.

Definition 6.36 (Sections). Let (X, X)) and (Y, Y) be measurable spaces. IfE C X XY, for
x € X and y € Y, we define the x-section E, and the y-section E” of E by

E.={ye€eY :(x,y)€E}, and E’={x€eX : (x,y) €E}.
Also, if f isa map on X X Y we define the x-section f, and the y-section f” of f by
[0 = f1(x) = f(x, ).

Proposition 6.37. Let (X,X) and (Y, Y) be measurable spaces. If E is measurable with
respect to X' X Y, then the section E,, is measurable in Y for every x € X, and similarly the
section E” is measurable in X foreveryy € Y.

Proof. We only prove that E, is measurable in Y for every x € X, and the other is similar.
Given x € X, we define

A Y 5 XXY, yeo(x,)).
Via proposition 6.29, X' X Y is generated by {A X B : A € X, B € Y}. Note that

B, x € A;
VAeX,VBeY : A;'(AxB) =
g, x¢&A.
It follows that A, is measurable, and hence E, = A;!(E) is measurable. 0J

Corollary 6.38. Sections of Borel-measurable sets are again Borel-measurable.

Remark 6.39. Sections of Lebesgue-measurable sets are not necessarily Lebesgue-
measurable.

Corollary 6.40. Let f be measurable map on (X X Y,X X Y).T Then f is Y-measurable
forallx € X, and f? is X-measurable forally € Y.
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Proof. Note that (f,)"%E) = (f~Y(E)), and (f*)"Y(E) = (f~Y(E))’. Then the desired
result follows from proposition 6.37. OJ

7. MEASURES

Now we endow measurable spaces with a measure, turning them into measure spaces.
We will introduce the basic theory of measures in this section.

7.A. Basic knowledge.

Definition 7.1 (Measures). A (non-negative) measure p on a measurable space (X, X) is

a function u : X — [0, +oo] such that

(D W(@) =0; N N

(2) (Countable additivity) u(|J _, E,) = >, _, u(E,) whenever (E,), is a sequence of
disjoint measurable sets.

We refer to the triplet (X, X, u) as a measure space.

Definition 7.2. A measure space (X, X, u) is finite if u(X) < oo; it is probability space
if u(X) = 1 (and then we call u a probability measure). It is o-finite if X can be covered
by countably many subsets of finite measure.

A measurable set E is a null set if u(E) = 0. A property on points x in X is said to hold
for almost every x € X (or almost surely, for probability spaces) if it holds outside of a
null set. We abbreviate almost every and almost surely as a.e. and a.s. respectively. The
complement of a null set is said to be a co-null set or to have full measure.

A measure space is said to be complete if every subset of a null set is measurable (and
then we call u a complete measure).

If X is a topological space, then measures on By is called Borel measures.

Example 7.3. Let (X, X) be a measurable space.

(1) (Dirac measures) Given a point x € X, we define the Dirac measure §, to be the
measure such that § (E) = 1 when x € E and 6,(E) = 0 otherwise. This is a
probability measure.

(2) (Counting measures) We define the counting measure # by defining #(E) to be the
cardinality |E| of E when E is finite, or +oc0 otherwise.

(3) Anyfinite non-negative linear combination of measures is again a measure; any finite
covex combination of probability measures is again a probability measure.

Example 7.4 (Push-forward). If f : X — Y is a measurable map from one measurable
space (X, X) to another (Y, ¥), and u is a measure on X', we define the push-forward
fum o Y = [0, +00] by the formula f,u(E) := u(f~'(E)); this is a measure on (Y, ¥).

Proposition 7.5. Let (X, X, u) be a measure space. Then

(1) (Monotonicity) If E C F are measurable sets, then u(E) < u(F).

(2) (Countable subadditivity) If E,, E,, --- are a countable sequence of measurable sets,
then /,L(U:ozl E,) < 2:;1 U(E,). (Of course, one also has subadditivity for finite
sequence.)
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(3) (Monotone convergence for sets) IfE, C E, C --- are measurable, then ,u(U;o:lEn) =

lim,,_, o u(E,).
(4) (Dominated convergence for sets) If E;, O E, D --- are measurable, and u(E,) is

finite, then u((_, E,) = lim,_, u(E,).
Proof. Trivial. 0
Remark 7.6. (4) can fail if u(E,) is infinite. Just consider E, = (n, +o0).

7.B. Approximations — Egoroff’s theorem, convergence in measure. In the next
we make a little more approximations of measurable maps via the measure. (We not only
use pointwise limit as before.)

Theorem 7.7 (Egoroff’s theorem). Let (X, X, u) be a measure space with u(X) < oo, letY
be a metric space, and let f, f,,--- and f be measurable functions from (X, X) to (Y, By)
such that f, — f X-almost everywhere. Then for every ¢ > 0 there exists E C X such that
U(E) < eand f, = f uniformly on E°.

Proof. For j,k =1,2,--- define

e

Civ = JIx eX 1 I1ful®) - f0)] > 27}

n=k

Then C; x4, C Cji for all j, k; and so, since u(X) < oo,

lim p(Cj) = p (ﬂ Cjk) =0,
k=1

and hence there exists an integer N(j) such that u(C;y;) < €27J. Putting E :=
U, C; n(;)» then we have
j=1 —J:NG)

M(E) < ZM(Cj,N(j)) <g,
j=1

and for each j,each x € E¢,and alln > N(i), we have | f,(x)—f(x)| < 27/. Consequently
fn — f uniformly on E°. O

Now, via the measure, we introduce a new mode of convergence.

Definition 7.8 (Convergence in measure). A sequence (f,) of measurable complex-valued
functions on a measure space (X, X, u) is called Cauchy in measure if for every € > 0,

,u({x . |fn(x) _fm(x)l > E}) — O0asm,n — oo,
and that (f,) converges in measure to f if for every ¢ > 0,
px | fu(x) = f(X)| 2 €}) »> 0asn — oo.

Remark 7.9. Some people also talk about local convergence in measure, and the
corresponding topology of (local) convergence in measure.

Theorem 7.10. Let (X, X, u) be a measure space. Suppose that (f,) is Cauchy in measure.
Then there is a measurable function f such that f, — f in measure, and there is a
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subsequence (f n,-) that converges to f a.e. Moreover, if also f, — g in measure, then g = f
a.e.

Proof. We can choose a subsequence (g;) = (f nj) of (f,) such that u(E;) < 27/ where
E; :={x€X :|gj(x)—gj(x)| >27}. SetF, = U;';k E;and F = (), F. It follows
that u(F,) < ijk 27/ = 2%, and hence u(F) = 0. Note that for x € F{ and for
h > j > k we have

h-1 h-1
(7.1) |gn(x) — ()] < D I (x) — gi(x)| < Y, 27 < 217,
I=j I=j
It follows that (g;) is pointwise Cauchy on F*.
Set f(x) = lim;_ g;(x) for x € F° and f(x) = 0 for x € F. It easily follows from
proposition 6.14 that f is measurable, and g; — f a.e. It follows from (7.1) that [g;(x) —
f(0)| <2 for x € F}. Since u(Fy) = 0O ask — 0, g; — f in measure. Note that

(10,00 — F@l 2 e € o s 17,00 g/l 2 e} U fr £ 10— £001 2 3¢l

It follows that f, — f in measure. Likewise, if f, — g in measure, note that

1 1) —g0l 2k fx 2 10— £, 2 35 U b+ 17,00 - g1 2 3¢},
Hence u({x : |f(x) — g(x)| > €}) = 0 for all £ > 0. It follows then f = g a.e. O

Remark 7.11. One can refer to [For| for more relations among different modes of
convergence, such as the convergence in L.

7.C. Completion, completele spaces. In the next we introduce the completion of a
measure and the complete measure spaces.

Theorem 7.12 (Comple_tion). Let (X,X,u) be a measure space. Let N o=
INeX : u(N)=0tand X ={EUF : E€ X and F C N forsomeN € N'}. Then X isa
o-algebra, and there is a unique extension u of u to a complete measure on X.

Proof. To show that Xisa o-algebra, it suffices to prove that X is closed under countable
unions and complements. Since X' and )V are closed under countable unions, so is X.If
EUF € XwhereE€e XandFC N € N, we can assume that E N N = @ (otherwise,
replace F and N by F\E and N\ E). Then (EUF)‘ = (EUN)‘U(N\F)where (EUN)* € X
and N\ F C N € N. Hence (EUF)° eXx.

IfEUF € X as above, we set U(E UF) = u(E). It’s obvious that u is well-defined and
is the only measure on X that extends u. O

Remark 7.13. The completion is the unique minimal complete refinement. See the next
proposition. In particular, the completion of the Borel o-algebra with respect to Lebesgue
measure is known as the Lebesgue o-algebra.

Proposition 7.14. Let (X, X, u) and (X, X, u;) be measure spaces satisfying X C X, C
X and py = Wly,. Then the completion of (X, Xy, uy) is still (X, X, u), and (X, Xy, u,) is
complete iff (X, X, 1) = (X, X, ).
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Proof. Trivial. U

Proposition 7.15. Let (X, X, u) be a complete measure space, and let f,g,f, : X - R
(or C).

(1) If f is measurable and f = g a.e., then g is measurable.

(2) If f,, is measurable forn € N and f, — f a.e., then f is measurable.

Proof. Trivial. O

Proposition 7.16. Let (X, X, u) be a measure space and let (X, X, 1) be its completion. If
f is an X'-measurable function on X, there is an X'-measurable function g such that f = g
u-a.e.

Proof. If f = yy where E € X, then the conclusion just follows from the definition of
u. For the general case, choose a sequence (¢,,) of X -measurable simple functions that
converges pointwise to f by theorem 6.22. For each n let 3, be an X-measurable simple
function with ¢, = @, except on a set E,, C X with u(E,) = 0. Choose N € X such that
U(N) = 0 and U:;l E, C N, and set g = lim,_,, ¥, xx\n- Then g is X'-measurable via
proposition 6.14 and g = f on N°. OJ

7.D. Outer measure, elementary sets. In the next we introduce the concept of outer
measure, which can be regarded as the predecessor of measure in the following sense:

Take R? for example. One draws a grid of rectangles in the plane and approximates
the area of E from below by the sum of the areas of the rectangles in the grid that are
subsets of E, and from above by the sum of the areas of the rectangles in the grid that
intersect E. The limits of these approximations as the grid is taken finer and finer give
the “inner area” and “outer area” of E, and if they are equal, their common value is the
“area” of E.

Definition 7.17 (Outer measure). An outer measure on a nonempty set X is a function
u o P(X) - [0, +o0] that satisfies

(D u*(2) =0.

(2) (Monotonicity) u*(A) < u*(B) if A C B.

(3) (Countable subadditivity) u*(lJ,_, A,) < 25 _, 4*(A,).

The most common way to obtain outer measures is to start with a family & of
“elementary sets” on which a notion of measure is defined (such as rectangles in the
plane) and then to approximate arbitrary sets “from the outside” by countable unions of
members of €.

Proposition 7.18. Given £ C P(X) and p : £ — [0, +0] that satisfies

(1) @ € Eand p(@) = 0;
(2) There exists (E,)>, C EwithX = U,o;l E,.
Forany A C X, define

w(A)=inf]y p(E,) : E, € Eand A C | | E,f.

n=1 n=1

Then u* is an outer measure.
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Proof. Obviously, u* : P(X) — [0, +oco] makes sense, u*(@) = 0, and u*(A) < u*(B) if
A C B. To prove the countable subadditivity, suppose that (4,)7> ; C P(X)and e > 0. For
each n there exists (Ef)®, C & such that A c |J,_, Ef and that ), p(EX) < p*(A,) +
27" Since | A, C U:kzl EX, we have u*(A) < Y, u*(A,) + €. Since ¢ is arbitrary,
we are done. O

7.E. Correspondence between outer measures and measures. The fundamental
step that leads from outer measures to measures is as follows.

Theorem 7.19 (Carathéodory’s theorem). If u* is an outer measure on X, the collection
X ={ACX:uE)=uEnA)+u(EnA),VE CX}
of w*-measurable sets is a o-algebra, and the restriction of u* to X is a complete measure.

Remark 7.20. Some motivations for the notion of u*-measurability can be obtained by
referring to the discussion above for R?. If E is “well-behaved” set such that A C E, then
the derived equation u*(A) = u*(ENA) = u*(E)—u*(ENA°) says that the outer measure
of A, u*(A), is equal to the “inner measure” of A, u*(E) — u*(E N A°).

Proof. Obviously XX is closed under complements. By subadditivity it’s clear that XX is
closed under finite intersections and unions and is finite additive. To show that XX is a
o-algebra it suffices to show that XX is closed under countable disjoint unions. If (4,)

is a sequence of disjoint sets in X, let B, = UI;=1 A,andB=J _ A, ThenforE C X,
M(ENB) = u(ENB.NA)+u(ENB,NAY)
= WENA)+u(ENB_;)
and hence u*(E N By) = Zﬁzl U (E N A,). Therefore,
w(E) = p(ENB)+u(ENB)

k )
> Y UHENA)+RENB) > D w(ENA,)+uENB)

n=1 n=1

> u (U(E n An)> + u*(E N B°)

n=1

= W(ENB)+u(ENB)zu(E)

Hence B € X'. Moreover, taking E = B we get u*(B) = Zzo:l w(A,), so u* is countably
additive on XX. Finally, if u*(A) = 0, for any E C X we have

WH(E) < w(E N A) + w(E N A% = w*(E N A°) < u*(E)
so that A € X. Therefore u*|, is a complete measure. U

Remark 7.21. Let (X, X) be a measurable space. Via proposition 7.18 we see that any
measure u on XU will also induce an outer measure u*, and we will see in proposition 7.24
that u*|, = u. So some people regard measures and outer measures as the same things.

7.F. Premeasure on algebra, from premeasure to outer measure. More precisely,
we can construct an outer measure from a premeasure on a algebra.
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Definition 7.22 (Algebra). An algebra of sets on X is a nonempty collection A of subsets
of X that is closed under finite unions and complements (and hence is closed under finite
intersections and contains @ and X).

Definition 7.23 (Premeasure). If A C P(X) is an algebra, a function u, : A - [0, +0]
is called a premeasure if

(1) po(@) = 0: i}
(2) (Countable additivity) If (A,,)3 | is a sequence of disjoint setsin A such that ] _ A, €

A’ then I’LO(U‘::l An) = Z::l IuO(An)

Proposition 7.24 (Premeasure induces outer measures). Let A C P(X) be an algebra,
and let u, be a premeasure on A. Define

W PX) > [0,+00], E = inf]> (A, : A, €AEC UAN .

n=1 n=1

Then
(D 1lq = Ho;
(2) Every set in A is u*-measurable.
Proof LetA€ A. IfA C U:;l A, with A, € A, setting B, = AN(A;\ Ui: A,) then the
By’s are disjoint members of A whose union is A, so y,(A) = Z;il u(By) < Z:’zl Uo(Ap).
It follows that yy(A) < u*(A), and the reverse inequality is obvious.

IfA € A E CX and ¢ > 0, there is a sequence (B,), C AwithE C U:ozl B, and
> Ho(By) < p*(E) + e. Since y, is additive on A, we have

WHE) +€ > D) po(B, NA) + D pto(B, N A°) > u*(E N A) + w*(E N A°) > ().

n=1 n=1

Since ¢ is arbitrary, A is u*-measurable. O

7.G. From premeasure to measure — extension comparison. Since outer measure
induces a measure, we get a extension for a premeasure. Moreover, we can compare the
extensions, and in many cases the extension is unique.

Theorem 7.25 (Extension comparison). Let A C P(X) be an algebra, let u, be a
premeasure on A, and let X be the o-algebra generated by A. It follows that the outer
measure u* given by proposition 7.24 extends u, to a measure u on X. If v is another
measure on X that extends u,, then v(E) < u(E) for all E € X, with equality when
U(E) < oo. If u, is o-finite, then u is the unique extension of u, to a measure on XX.

Proof. The first assertion follows from Carathéodory’s theorem 7.19 and proposition 7.24
since the o-algebra of u*-measurable sets includes A and hence X.

As for the second assertion, note that if E € X and E C U:ozl A, where A, € A,
then »(E) < Z:o:l v(A,) = Z:;l Uo(A,). It follows that v(E) < u(E). Also, if we set
A= U::l A,, we have

v(A) = %ijg v (U An> = %Lrgo % (U An> = u(A).
n=1 n=1
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If u(E) < oo, we can choose the A,’s so that u(A) < u(E) + ¢, and hence
M(E) < u(A) =v(A) = v(E) +v(A\E) < v(E)+ A\ E) <v(E) +¢
Since ¢ is arbitrary, u(E) = v(E).
Finally, suppose that X = U;o:l A, with u,(A,) < oo, where we can assume that the
A,’s are disjoint. Then for any E € X,

(]

WE) = 2, WENA,) = ) w(ENA,) =v(E),

n=1

SO U = . U
Remark 7.26. The same statements of course apply for the completion X of X.

Remark 7.27. The uniqueness of extension in theorem 7.25 can convince us that the
constructed measure via the above methods is unique.

7.H. From elementary family to algebra, product measure. In the next we
introduce a basic method to generate an algebra.

Definition 7.28 (Elementary family). An elementary family G is a collection of subsets of
X satisfying the following properties.

(Doeg

(2) IfE,F € G,thenENF € G;

(3) IfE € G, then E° is a finite disjoint union of elements in G.

Theorem 7.29. The collection A of finite disjoint unions of elements in an elementary
family G forms an algebra.

Proof. One can refer to [Rai]. O

Remark 7.30. Two premeasure 4 and v on an algebra A generated by an elementary
family G coincide iff they coincide on G.

Now we give a direct application, constructing the product measure.

Corollary 7.31 (Product measure). Let (X;, X, 4;), -, (X,, X,, 4,,) be measure spaces,
and let (H;;l X;, H;Ll X;) be the product measure space. Then

(1) (Rectangle algebra) We define a rectangle to be a set of the form H;:l A;with A; €
X, and then the collection G of rectangles forms an elementary family, and hence the

collection A of finite disjoint unions of rectangles is an algebra. Clearly, the c-algebra
generated by A is H;lzl X;;
n n
(2) (Premeasure) Then we define a premeasure u, on A by u, (Hj=1 A j) = Hj=1 Mo(A;)
and linear extension.
(3) (Product measure) Finally, we get a product measure u on H;.lzl X; as in theorem
7.25. The measure is referred to as the product measure of the u,, --- , u, and is denoted
n
by Hj=1 lu]
Moreover, if the u;’s are o-finite so that the extension from A to H';zl X; is uniquely
determined via theorem 7.25.
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7.1. From algebra to o-algebra. Finally, we introduce a lemma to show how to
generate a o-algebra via an algebra.

Lemma 7.32 (The monotone class lemma). We define a monotone class on a space X
to be a subset D of P(X) that is closed under countable incresing unions and countable
decreasing intersections. Clearly, the intersection of any family of monotone classes is a
monotone class, so for any & € P(X) there is a unique smallest monotone class containing
&, called the monotone class generated by E.

If A if an algebra of subsets of X, then the monotone class D generated by A coincides
with the o-algebra generated by A.

Proof. One can refer to [For| lemma 2.35. O
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8. LEBESGUE MEASURE

8.A. Construction of Lebesgue measure. There are three methods to construct the
Lebesgue measure on R":

(1) Construct both outer measure m* and inner measure m,, and then we define
L, = {ACR": m*"(A) < co,m*(A) = m,(A)}
L = {ACR": AnM e L£),VM € L}

Then £ is the collection of all Lebesgue-Measurable sets, and the Lebesgue measure
can be defined as m(A) = sup{m(ANM) : M € £,}. One can refer to [Jon] for this
method.
(2) Consturct the outer measure m*, and then m* induces the Lebesgue measure m. We
will introduce this method in this subsection.
(3) Use the Riesz representation theorem for Radon measures, which will be introduced
later.
In the next we introduce method 2. As in proposition 7.18, we start with a family of
“elementary sets” & to define the outer measure. £ can be the set of all cubes or be the
set of all balls (see theorem 11.31). Here we choose cubes.

8.B. Elementary sets — boxes and cubes, Lebesgue (outer) measure.

Definition 8.1 (Box and cube). A box I in R" is given by the product of n compact intervals
I = [a,b] := Hj la;,b;] where a = (a;,---,a,) and b = (b, ---,b,), and a; < b;,
1 < j < n, are real numbers. The volume |I| of I is defined by |I| = H;l:l |b; —a;l. A
box is called a cube if all its sides have the same length. the interior of a box I is given by

=(a,b) := Hj a;,b;). A union of boxes is said to be almost disjoint if the interiors
of the boxes are disjoint. We denote by dist(E,, E,) = inf {|x; — x,| : x; € E1, x, € E,} the

distance of two subsets E,, E, C R".

Theorem 8.2 (Lebesgue measure). Let m* : P(R") — [0, +oo] be defined By

m*(E) :=inf Z 1Q,| : (Q,);, is a countable cover of E by cubes

n=1

and set
LR :={ECR": m*(A)=m*(ANE)+ m*(ANE°),VA C R"}
Then

(1) m* is an outer measure; the so-called Lebesgue outer measure.
(2) If dist(E,, E,) > 0, then m*(E; U E,) = m*(E;) + m*(E,).

(3) L(R"™) is a o-algebra that contains Byn.

Moreover, m = m*| ;gny : L(R") = [0, 4+00] is a complete measure.

Proof. (1) It follows from proposition 7.18 that m* is an outer measure.

(2) Choose dist(E;, E;) > § > 0 and fixe > 0. There exists a cover (Q,);, by cubes
of E := E; UE, so that Z 1 1Qn £ m*(E) + &. We may assume that each Q,
has diameter less than 8, after p0551bly subdividing Q,.. Then each Q,, can intersect
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at most one of E; or E,. Hence setting J, = {n : Q, NE, # @}, k = 1,2, we have
JinJ,=@,and E, C Unejk Q,,. Therefore,

m*(E) < m*(E) + m*(E) < 3 [Qul + 2 1Qul < 31 1Q,| < m*(E) +¢

nel; nel, n=1
Since ¢ is arbitrary, we are done.

(3) It follows from Carathéodory’s theorem 7.19 that £L(R") is a o-algebra. In order to
prove that B, C L(R") it suffices to prove that £L(R") contains all closed subsets of
R". Let F C R" be closed, and let A C R". It suffices to prove

m*(A) > m*(ANF)+ m*(AnNF°).
WLOG, we assume that m*(A) < 0. Set
Ay i={x €A : dist(x,F) > 1}
Aji={xeA: (+D7 <dist(x,F) < j}, j>1
Then by (2) we have that for each n € N,

n n
>omAy) s mt| | Ay | < m(4)
j=0

Jj=0

n n
Z m*(Ayj,) < m* U Agjp | S m*(A)
Jj=0 j=0

and hence Zj; m*(A) < co. Therefore Z;’;nﬂ m*(A;) - 0asn — oo and

n o0
m"(ANF)+m"(AnF) < mAnF)+m* UAJ- + Y m*(4)
j=0 j=n+1

= m* (AnF)UUAJ- + Z m*(A;)
Jj=0 Jj=n+1
m*(A) + Y, m*(A))

Jj=n+1

IA

Hence m*(A) > m*(ANF) + m*(A N F¢). Done.
Finally, it follows from Carathéodory theorem 7.19 that m is a complete measure. [J

Remark 8.3. The completion of (R”, B, m*| z@n)) is (R", LR™), m*| @n))-

Remark 8.4. We can choose the “elementary sets” to be the open cubes (the interiors
of cubes) to define the Lebesgue measure. Namely, putting

A*(E) :=inf Z |P,| : (P,)y2, is a countable cover of E by open cubesg,
n=1

then A*(E) = m*(E).
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Proof. 1t’s clear that A*(E) > m*(E). On the other hand, fix ¢ > 0, and then given
a countable cover by cubes (Q,);>, of E with Z:;l |Q,| < m*(E) + ¢, we can find a
countable sequence of open cubes (P,) with Q,, C P, and |P,| < |Q,| + €27", and hence
m*(E) + ¢ > 211 1Q,| > Z:;l(anl —e2™) = Z:;l |P,| — €. Since ¢ is arbitrary, we get
that A*(E) < m*(E). We are done. O

Remark 8.5. In this construction, we begin with the “elementary sets” € and then define
m* and m. In fact we can also begin with a algebra A, and then define the premeasure
m,, which implies m* and m.

More precisely, the collection A of all finite disjoint unions of sets of the form F N G,
where F is closed and G is open, is an algebra. Although A is a little complicated and we
don’t construct the Lebesgue measure via it, but we can show the uniqueness of Lebesgue
measure via this algebra and corresponding premeasure m| , by theorem 7.25.

8.C. Examples — generalized Cantor sets, Cantor-Lebesgue function.

Example 8.6. There are some basic examples.

(1) One-point sets are null sets.

(2) The Cantor set C is a null set. (Moreover, card(C) = card(R), and C is compact,
nowhere dense, totally disconnected and has no isolated points.)

(3) (The generalized Cantor set) If (« j);i1 is any sequence of members in (0, 1), then,
we can define a decreasing sequence (K j);‘;o of closed sets as follows: K, = [0, 1],
and K; is obtained by removing the open middle a;-th from each of the intervals
that make up K;_,. The resulting limiting set K = ﬂ;‘;l K; is called a generalized
Cantor set. It’s clear that m(K) = lim,_,, m(K;) = H;il(l —a;), which can achieve
any number in [0, 1).

On the other hand, to achieve any number a € (0, 1) directly, we can remove the
middle % from each closed interval at stage n, thereby removing a total of

1-a)), 2 _1-a
n=0

3n+l

(4) For a cube I = [a,b], we have m([a, b]) = |[a, b]|.
(5) LetE = U;il Q; be an almost disjoint union of cubes, then m(E) = Z;il 1Q;l.

Remark 8.7. £L(R") # P(R") if we admit the axiom of choice.

Example 8.8 (Cantor-Lebesgue function). We construct the Cantor-Lebesgue function
f in the following steps.

(1) Each x € [0, 1] has a base-3 decimal expansion x = Zjil aj3‘j where a; = 0,1 or
2. This expansion is unique unless x = p3~* for some intergers p, k, in which case
x has two expansions: one with a; = 0 for j > k and one with a; = 2 for j > k.
Assuming p is not divisible by 3, one of these expansions will have a;, = 1 and the
other will have a, = 0 or 2. If we agree always to use the latter expansion, we see
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that

. 1 2
a, =1 iff §<x<§

. 1 2 7 8
a, #landa, =1 iff §<x<§or§<x<§

and so forth. Also note that if x = Z;:l a3/ andy = Z;:l b;37/, then x < y iff
there exists an n such that a, < b, and a; = b; for j < n.

(2) The Cantor set C is the set of all x € [0,1] that have a base-3 expansion x =
Z;‘;l a;37/ with a; # 1 for all j. Thus C is obtained from [0, 1] by removing the
open middle third (%, 2), then removing the open middle thirds (é, g) and (g, 2) of
the two remaining intervals, and so forth.

(3) Define the Cantor-Lebesgue function f : [0,1] — [0, 1] by

o) = Zj; a;27/, X = 2;11 2a;377 € Cfora; €{0,1};
sup,.,ec f), x €10,1]\ C.

Remark 8.9. The Cantor function challenges naive intuitions about continuity

and measure; though it is continuous everywhere and has zero derivative almost

everywhere, f(x) goes from 0 to 1 as x goes from 0 to 1, and takes on every value
in between. The Cantor function is the most frequently cited example of a real
function that is uniformly continuous (precisely, it is Holder continuous of exponent

a = log2/log3) but not absolutely continuous. It is constant on intervals of the form

(0.x;%,%5 -+ x,022222 -+, 0.X; X,X5 - -+ X,200000 ---), and every point not in the Cantor

set is in one of these intervals, so its derivative is 0 outside of the Cantor set. On the

other hand, it has no derivative at any point in an uncountable subset of the Cantor set
containing the interval endpoints described above.

8.D. Filling problem:s.
Proposition 8.10. Every open set U C R" is a countable almost disjoint union of cubes.
Proof. Consider the collection A, of cubes of side length 1 defined by the lattice Z". Set

Uy :={Qe€ A, : QCc U}, and D, :={Q€A,:QnU#3,QnU* # &}.

Let A; be the collection of cubes that we obtain by subdividing each cube in D, into 2"
cubes of side length i and set

U :={Q€eA,:QcU}, and D, :={Qe A, : Q0nNnU#3,0NnU* # &}.

Continue this process. Then U = | ocy Q Where U := U;’;l U, is a countable almost
disjoint union of cubes. O

Proposition 8.11. Let U C R" be open, 6 > 0. There exists a countable collection G of
disjoint closed cubes in U such that |Q| < & foreach B € G and

mU\ [ JQ|=0
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Proof. Fix0 < 6, < 6, < 1. WLOG we assume that m(U) < oo (otherwise we apply the
conclusiontoU,, = {x €U : m < |x| <m+ 1} form = 0,1, ---). Via proposition 8.10
and subdividing, there exists a finite collection (Q; Z}/I:ll of almost disjoint cubes in U such
that |Q;| <6 for j =1,---,M,, and

Via a method like in remark 8.4, we can assume that Q ;s disjoint and

m|U\|JQ|<6mU)

Jj=1

Now letting U, := U \ Uj\g Qj, there exists, for the same reason, a finite collection
Q; ?fMl ., of isjoint cubes in U, such that
M, M,
mlU\|JQ;|=m|U,\ | Q|<6m@U,)<8im)
j=1 j=Mj+1

Continue this process to obtain a countable collection of disjoint balls such that
My
m|U\ UQj <0m(U)
j=1

since 6’1‘ — 0 as k — oo, the theorem is proved if m(U) < co. We are done. 0

8.E. Regularity, Radon measures on R"”. Our next aim is to show the regularity of
Lebesgue measure on R”. First, we build the framework of Radon measures on R".

Definition 8.12 (Regularity). Let X be a topological space. A measure u on a o-algebra
X D By is called outer regular if

WE)=inf{u(U) : ECU,Uisopen}, VEeX
and inner regular if
U(E) =sup{u(K) : K C E,K iscompact}, VEe€X

If u is both outer and inner regular, it is called regular.

An outer measure u* on R" is call Borel regular if for each E C R", there exists a Borel
set B D E such that u*(E) = u*(B).
Definition 8.13 (Radon measure on R"). A Radon measure on R" is a Borel measure

that is finite on compact sets.

Remark 8.14. As in definition 11.2, more generally, a Radon measure on a LCH space
is a Borel measure that not only has finiteness on compact sets, but also has regularity.
In fact, on R", finiteness on compact sets implies regularity. See theorem 8.16.

Remark 8.15. Moreover, as pointed out in remark 7.21, some people regard outer
measures and measures as the same things. Actually, under that identification, a Radon
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measure y on R" is equivalent to a Radon outer measure y* on R", where a Radon
outer measure is an outer measure u* on R” satisfying:

(1) u* is Borel regular;
(2) All Borel sets are u*-measurable;
(3) u*(K) < oo for each compact set K C R".

See proposition 8.17.
Now we give detailed explanations of the above remarks.

Theorem 8.16 (Regularity of Radon measure on R"). Each Radon measure u on R" is
o-finite and regular. For each Borel set A and each € > 0 there is an open set U and a closed
set F so that

(8.1) FCAcCU, and u(U\F)<e.

Proof. Obviously u is o-finite, since R" = U:ozl m Let we prove (8.1).

First we assume that u is finite. Let A be the set of all Borel sets A that satisfy (8.1). It
suffices to prove that A is a o-algebra that contains all closed subsets.

It’s clear that A is closed under complements. To show that A is a o-algebra it suffices
to show that A is closed under countable unions. Suppose that A; € A, j > 1,and ¢ > 0.
So there exist open U;’s and closed F’s such that F; C A; ¢ U; and u(U; \ F;) < e27/71.
Then U := Ujil U, is open and F, := U§=1 F; is closed for finite k. Note that F), C
U;il A; CUand

U\Fe | Ju\Fp U UJEN\Fo .
j=1 Jj=1

Since u is finite, for k suffices large, we have u (U;; F j) — u(Fy) < 2 and hence

[

WU N\F) < 3 wU\F) +p| | Fy |- uFo) <.

Jj=1 j=1
Thus |J,_, A, € A.
Let F be a closed subset. Setting U; = {x s dist(x, F) < l}, then U; is open for each j
J

and Ujil U; = F. Since u is finite, lim;_, ., u(U;) = u(F). It follows that F € A.

Assume that u is not finite. Let A be a Borel set and let € > 0 be given. It’s clear that
vp(E) := u(E N F) is a finite Radon measure on R" if F € Bk, and F C K for some
compact subset K. By the above, for j = 1,2, ---, there exists a closed set C; C (B j(O) \A)
with vp (B;(0\(AuC))=u(B;(0)\(AuC)) <e27. ThenU := Uj.’;l(Bj(o)\cj)
isopen, A C U, and

uUN\NA) <D u(B0)\(AUC)) <e.
j=1
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Similarly, there exists a closed set F; C A; := An{x € R" : i < |x| < i+ 1} with u(A;\
F))<e27)"L. ThenF :=J,_ F; c U,_,A4; = A, and

HA\F) <Y u(A;\F)) <
j=0

It remains to show that F is closed. It’s well known that for a locally finite collection
(S1)ier of subsets of a topological space X, we have | J._, S; = U, S,. The conclusion
follows.

Finally we prove that u is regular. The outer regular easily follows from (8.1).
Moreover, from the above we know that

(8.2) U(A) =sup{u(F) : F C A,Fisclosed}, VA € Bgn.

Note that for any closed F C R" the sets K; = F n B;(0) are compact and u(F) =
lim;_, , u(K;). It follows that u is inner regular. O

Proposition 8.17. Let u be a Radon measure on R". Then the outer measure u* induced
by proposition 7.18 is a Radon outer measure (see remark 8.15 for definition). Conversely,
if an outer measure u* on R" is a Radon outer measure, then u*|5_, is a Radon measure.

Proof. Suppose that u is a Radon measure on R". As pointed outin remark 7.21, u*[ 5, =
. Then (2) and (3) in remark 8.15 follows. If u*(E) = oo, take B = R". Suppose that
u*(E) < oo. For each k > 1, choose a countable collection A, of Borel sets so that

Ec|JA=:B, and Z,u(A)su*(E)+%

AEA, A€EA,

Then B = ﬂzo:l B, is a Borel set that satisfies E C B and

1
w(B) SpB) < ) mA) SwE +, Yk
Aeﬂk
Hence u*(E) = u*(B).
The converse statement is obvious. O

For more properties of Randon measures on R", one can refer to [Evaal.

8.F. Regularity of Lebesgue measure, F, and G5 sets. In the next we come back the
regularity of Lebesgue measure.

Definition 8.18 (F, and G, sets). An F set is a countable union of closed sets, and a G
set is a countable intersection of open sets.

Theorem 8.19 (Properties of the Lebesgue measure). Let m denote the Lebesgue measure
and let m* denote the Lebesgue outer measure.

(1) m* is Borel regular.

(2) m|g,, is a Radon measure, and m is regular and o-finite.

(3) Aset E C R" is Lebesgue measurable iff there is an F, set A and a G5 set B satisfying
ACE CBandm(B\ A) =0.
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Moreover, the completion of(R”, Bgn, mIB(Rn)) is (R", L(R"™), m). In particular, L(R") is
the completion of the Borel o-algebra By, with respect to the Lebesgue measure.

Proof. (1) If m*(E) = o0, take B = R". Suppose that m*(E) < oo. For each k > 1, choose
a countable collection A, of cubes so that

. 1
EcC U Q=:B, and ) Q1 < m*(E) +
Q€A Q€A
Then B = ﬂ:’:l B, is a Borel set that satisfies E C B and
m*(B) < m*(By) < ), 1Q| Sm(E)+ 2, vk
Q€A

Hence m*(E) = m*(B).
(2) It’s clear that m| 4, has finiteness on compact sets and hence is a Randon measure.
Thus m is also o-finite. Via theorem 8.16,

VB € Bg» : m(B) = inf{m(U) : BC U,U is open}
= sup{m(K) : K C B,K is compact}.
If E € £L(R"), by (1) there exists a Borel set B with E C B and m(E) = m*(E) =
m*(B) = m(B), and hence
m(E) =m(B) = inf{m(U) : BC U,U is open}
> inf{m(U) : E C U,U is open} > m(E)
which implies that m is outer regular.

To see that m is inner regular, let E C R” be measurable, and suppose first that E
is contained in a cube Q. Let e > 0. Since m(Q \ E) < oo and m is outer regular, there
exist an open set U D (Q \ E) with m(U) < m(Q \ E)+¢. ThesetK :=Q\U CE
is compact and satisfies

m(E) =m(Q) —m(Q\E) < mQ —-m(U)+e
mQ)—mQnU)+e=mK)+¢

IA

If E is not contained in a cube, for each j > 1, there is a compact K; C [—], j]" so
that m(K;) > m(E n [—}, j]") — l Hence m(K;) — m(E) as k — oo and hence m is
J

inner regular.

(3) Assume that E is Lebesgue measurable. By (2) there exist open sets G;’s and closed
sets F;’s satisfying F; C E C G, and m(G; \ F;) < % Then sets F = Ujil F; and
G = ﬂ;; G; are as required.

Conversely, suppose that there exist such F and G for E. It suffices to show that
for any A C R" we have
m*(ANE) + m* (AN E°) = m*(A).

Since we have m*(ANF)+ m*(ANF¢) = m*(A), it suffices to show that m*(ANF) =
m*(ANE)and m*(ANE°) = m* (AN F¢). Notethat ANF C ANE C AnG and
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ANG°C AnE°C An F¢. Also note that
m* (ANG)\ANF)=m*"(An(G\F))<m*(G\F)=0,

and similarly m* ((A N F¢) \ (A N G°)) = 0. It follows that m*(ANE) = m* (AN F)
and m*(A N E°) = m*(A N F°). We are done.

Finally, it follows from (3) and theorem 7.12 that L(R") C ?Rn and m|ymn =
M| ;@r), Where (R, 7| ;@n), m) is the completion of (R", m|;@n), m). Then it follows
from proposition 7.14 that the completion of (R”, Bgn, mIB(Rn)) is (R", L(R™), m), since
(R", L(R™), m) is complete. O

8.G. Existence of non-measurable sets.

Theorem 8.20 (Existence of non-measurable sets). On R" consider the equivalence
relation x ~ y iff x —y € Q". The axiom of choice allows us to choose exactly one element
in each equivalence class and to gather these elements in one set N; such a set is called a
Vitali set. N is not Lebesgue measurable.

Moreover, given E C R", then m(E) = 0 iff every subset of E is Lebesgue measurable.

Proof. Note that
R" = U(x + Q") = U(rj + N)
XEN Jj=1

where Q" = {r,,r,,---} and these are two disjoint union. To show that N ¢
L(R™), via theorem 8.16, it suffices to prove that m*(N) > 0 and m, (N) :=
sup{u(F) : F C A, F is compact} = 0.

First note that m*(IN) > 0; otherwise via theorem 8.19 we have m(E) = m*(E) = 0,
and hence m(r, + N) = 0 for each k, which implies that m(R") = 0, a contradiction.

Then we show that m (E) = 0. Given any compact set K C E. Then setting
D = B;(0) n Q" we know that [ J _, (r + K) is a disjoint union and is bounded. Hence
m (U, (r +K)) =2, ., m(K) < o0, and it follows that m(K) = 0. Thus m,(E) = 0.

Now we prove the second assertion. The “only if” implication follows from theorem
8.19. On the other hand, suppose that A is a Lebesgue measurable set with m(A) > 0.
Note that

A= U((rj+N)nA),

j=1
and
0 <m(A) =m*(A) <D ;m*((r; + N)n A),
j=1

Hence there exist k > 1 such that B := (r;, + N) N A has positive outer measure. Also
note that

m,(B) := sup{u(F) : F C B,F is compact}
< sup{u(F) : F C (r, + N),F iscompact} =0

Hence B is not Lebesgue measurable. We are done. O
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Remark 8.21. In the previous proof the axiom of choice plays an essential role. In fact,
Solovay constructed a model in which all axioms of Zermelo-Frankel set theory, except
the axiom of choice, hold and in which every subset of R is Lebesgue measurable.

8.H. Uniqueness, product property. In the next we introduce the uniqueness of
Lebesgue measure.

Definition 8.22 (Translation invariant). We call a measure u on R" translation

invariant if it satisfies that if E is measurable and x € R", then x + E is measurable

and u(x + E) = u(E).

Theorem 8.23 (Uniqueness of Lebesgue measure). There are some editions.

(1) m|sg,, is the unique measure on By satisfying m([a, b]) = |[a, b]|.

(2) m* is the unique Borel regular outer measure such that all Borel sets are measurable
and m*([a, b]) = |[a, b]|.

(3) m|g,, is the unique translation invariant Randon measure on By, up to a scaling.

Proof. For (1), let G be the collection of sets of the form F N G, where F is closed and G
is open. Then G is an elementary family. Via theorem 7.29, letting A be the collection of
all finite disjoint unions of sets in G, then A is an algebra. Via theorem 7.25 and remark
7.30, it suffices to show that any Borel measure u on R" satisfying u([a, b]) = |[a, b]| will
coincide with m on G, since the o-algebra generated by A is Byx.

Via proposition 8.10, u coincide with m on all open sets. If F is closed and G is open,

setG; 1= {x e R" : dist(x,F) < %} Then G; is open, G; D Gj;y, and F = ﬂ;; G;. It
U(G) < o0, then m(G) = u(G) < oo and hence

uF N G)=p|()(G;NG)|=limuG,;nG)=limmG;nG)=m|()G;nG)|=mFNnG)
j—oo j—oo

j=1 j=1
If u(G) = o0, then
UuFNGN(=k,k)")y=mEFEnNGn(=k,k)")

and letting k — oo we have u(F N G) = m(F N G). Then (1) follows.

Let u* be a Borel regular outer measure such that all Borel sets are measurable and
w*([a,b]) = |[a,b]|. By (1) and Carathéodory’s theorem 7.19, u* coincide with m* on all
Borel sets. Let E C R". Since they are Borel regular, there exist two Borel sets B;,B, D E
such that u*(B;) = u*(E) and m*(B,) = m*(E). Setting B = B, N B,, it’s clear that
m*(E) = m*(B) = u*(B) = u*(E). Then (2) follows.

Let u be a translation invariant Randon measure on Bg.. Set u([0,1)") := C < oo.
Consider the grid of dyadic cubes of the form [a,, b,) X :-- X [a,, b,) defined by the lattice
27k7". Since these cubes are all translates of each other, we have

2ku(Q) = u([0,1)") = Cm([0,1)") = C2*"m(Q),

for each such cube Q. We may infer by the regularity that u vanishes on degenerate
boxes, and so u(Q) = Cm(Q) for each closed dyadic cube Q = [a;,b;] X --- X [a,, b, ].
Also, We may infer by proposition 8.10 that u(E) = CA(E) for each open set E, and thus
for each Borel set E by the regularity of u and m. Then (3) follows. O
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Corollary 8.24. The (m + n)-dimensional Lebesgue measure space
(R™1, LR™™), m| g gmeny )
is the completion of (R™ x R", L(R™) X L(R"), m| g@my X M| z@n)).
Proof. First we show that
Brmn C LR™) X LR™) C LIR™M),

The first inclusion follows from the fact that each cube in R”*" belongs to L(R")x L(R™),
and B+ is the o-algebra generated by the cubes in R™*". It follows from theorem 8.19
(3) that E x R" and R™ X F belong to L(R™*")if E € L(R™) and F € L£L(R"); then the
second inclusion follows via proposition 6.29.

Then note that m| ;gmeny and m| g gmy X M| gy coincide on boxes, and hence coincide
on By, via theorem 8.23 (1). Via theorem 8.19, the completion of (R”,BRn,mlg(Rn))
is (R", £(R"), m). Hence, via proposition 7.14, it suffices to show that m|;gm+ and
m| gmy X M| zwny coincide on L(R™) x L(R"). Forall E € L(R™) x L(R") C L(R™"), it
follows from theorem 8.19 (3) that A C E C B for some A, B € By, with m(B \ A) = 0.
Note that

m(A) < m|ggmy X M|y @ny(A) < M| gwmy X M| ) (E) < M| ggmy X M| gy (B) = m(B).

Then the desired coincidence follows. We are done. O
For more properties such as invariance properties, one can refer to [Jon] or [Rai].
Moreover, since the completion of ([R{”, Bgn, M| B(Rn)) is (R",L(R"),m), some

conclusions of the Radon measure (R”,BRn,mlg(Rn)) also apply to (R", L(R"), m).

Hence, one can refer to the section 11, which is about Radon measures, for more
properties of Lebesgue measures.
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9. INTEGRATION ON A MEASURE SPACE

In this section we introduce the integration on a measure space and its properties.
First we fix the arithmetic in [0, co]. We define
at+oo=cc+a=c ifae]0,o0];
0, a € (0,0]

a-c0o=00-a=
0, a=0.

Then addition and multiplication in [0,c0] are commutative, associative, and
distributive. The cancellation laws have to be treated with some care; a + ¢ = b + ¢
implies a = b only if ¢ € [0, ), and ac = bc implies a = b only if ¢ € (0, ).

In the next we define the integration in three steps:

(1) Define the integration of non-negative simple functions;
(2) Induce the integration of non-negative measurable functions;
(3) Induce the integration of measurable real-valued and complex-valued functions.

9.A. Integration on L™.
Definition 9.1 (L* space). Let (X, X, u) be a measure space. Then we define
L* = L*(X) := the space of all measurable functions from X to [0, ].

Definition 9.2 (Integration of non-negative simple functions). Let (X,X,u) be a
measure space. The integration [ ¢ du with respect to the measure u of a simple function
@ : X — [0, oo] with standard representation ¢ = ZL a; X, is defined by

N
fcodu = /codu 1= ), au(E).
X j=1

Moreover, if E C X, then we set

fqod# fqo)(EdM ZaJM(E NE).

Proposition 9.3. Let ¢ and 1 be simple functions in L*.

(1) Ifc €[0,00), fcpdu=c [edu

Q2 fle+P)du= fodu+ [Pdu

(3) Ife <9, then fodu < [Ppdu

(4) Themap A~ [, ¢ duis a measure on X.

Proof. Trivial. Just use the common refinement. O
Remark 9.4. In the next we will see that in (4) we can change ¢ to any f € L*.

Remark 9.5. The integration itself is of course of great significance. But on the other
hand, a new perspective of studying measures is inspired: the measures form functionals
on a function space via the integration. (They finally form functionals on L'.)

More precisely, under good conditions, we have the Riesz representation theorem 11.6.
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Now we induce the integration of functions in L*.

Definition 9.6 (Integration of non-negative measurable functions). Let (X, X, u) be a
measure space. The integration [ f du with respect to the measure u of a function f € L*
is defined by

/fdu:supzfqod,u : quosf,goissimple%.
X

Moreover, if E C X, then we set

jEfd#=ff)(Edu-

Remark 9.7. By proposition 9.3 (3) we know that two definitions f* f du agree when f
is simple. Moreover, it’s obvious from the definition that for f,g € L*,

jfdﬂ < fgd,uwheneverf <g, and /cfd,u = c/fd,uifc > 0.
Also, the integration has additivity. See corollary 9.14 for the general cases.

Proposition 9.8. Let (X, X, u) be a measure space. If f € L*, then [ fdu =0iff f =0
a.e.

Proof. If f is simple, the conclusion is trivial. In general, if f = 0 a.e. and ¢ is simple
with 0 < ¢ < f, then ¢ = 0 a.e. and hence [ fdu = supos¢sff¢du = 0. On the
other hand, if it false that f = 0 a.e., then it follows that u(E,) > 0 for some n where
E, := {x D f(x) < %}, since{x € X : f(x)>0} = U:;l E,. Note that f > %){En; hence

S fdu> l,u(En) > 0. Then the conclusion follows. O
n

Proposition 9.9. Let (X, X, u) be a measure space. If f € LT and [ fdu < oo, then
A:={x: f(x)=oo}isanullsetand B :={x : f(x)> 0}is o-finite.

Proof. Trivial. 0

9.B. (Improved) monotone convergence theorem, Fatou’s lemma. Theorem 6.22
shows that f can be approximated pointwisely by a sequence of monotonely incresing
simple functions (which is uniformly when f is bounded). Actually this monotone
approximation leads to the approximation in the sense of integration. More precisely,
we have the monotone convergence theorem.

Theorem 9.10 (The monotone convergence theorem). Let (X, X, u) be a measure space.
If (f,,) is a sequence in L™ such that f; < fj, forall j, and f = lim;_, f;, then f € LY,
and [ fdu =lim;_ [ f;du

Proof. Since f = sup i>1 fj» f 1s measurable via proposition 6.18. It’s clear that /* f du >
J fjduforall j,and hence [ f du > lim;_,, / f; du, where (f f; dp)?2, isincresing and
hence the limit makes sense.
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For the converse inequality, fix @« € (0,1). It suffices to show that for any simple
function ¢ with 0 < ¢ < f we have

1imf]%d,u2afqod,u.
jooo

Setting E; 1= {x : f;(x) > ap(x)},thenE, CE, C ---and X = U;:l E;. Hence

[fiau> [ siduza [ pan
Ej Ej

It follows that
1im/fjdu >alim | pdu= afgod,u,
joeo jooo
J
since E — [, ¢ du is a measure. We are done. U

Remark 9.11. Theorem 9.10 and theorem 6.22 give us a new method to define the
integration of f € L*. But in this way we need to show that the defined integration
is independent from the choice of (¢,,).

Remark 9.12. In fact, in the monotone incresing theorem, if f, increses to f a.e., we
already have [ fdu =lim,_ . [ f, du. We will show this later.

Remark 9.13. The hypothesis that the sequence (f,) be incresing, at least a.e., is
essential for the monotone convergence theorem. For example, consider (R, £(R), m)

and fn = )((n,n+1)-
Corollary 9.14 (Additivity). Let (X, X, u) be a measure space. If (f,) is a finite or infinite
sequencein Lt and f = 2:321 fothen [ fdu= Z:o:l S fndu.

Proof. First we prove the statement for the sum of two functions f; and f,. By theorem
6.22, there exist two sequences (¢ ;)% ); °,and (7,0 )52, of non-negative simple functions that
increse to f and f,. Then (¢;+;) 5 , increses to f 1+f,,so by the monotone convergence
theorem 9.10 and proposition 9.3,

/(f1+f2>du=}ggf<qoj+¢j>du=}ggf¢,~du+}ggj¢jdu=ff1dﬂ+ff1du.

Hence, by induction, (Z?’:l f j) du = Z;V:l J f;du for any finite N. Letting N — oo
and applying the monotone convergence theorem 9.10 again, we obtain the conclusion.
O

Corollary 9.15. Let (X, X, u) be a measure space. If f € L* and set v(E) = [, f du for
E € X, then v is a measure on X, and forany g € L™,

(9.1) fgdv=ffgd,u.

Proof. Let (E,)?, is a sequence of disjoint sets in . Then via corollary 9.14,

v (U E) - ZlfxE,, dp = Z fs, dp = Z_)lv@n)
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It follows that v is a measure on X. By definition, (9.1) holds for g = yz, E € X.
Moreover, via corollary 9.14, for each non-negative simple function we have

N N N N
Zaj)(ﬁj dvzzaj XE; deZaj f)(Ej du = fZaj)(Ej du,
j=1 j=1 j=1

j=1
and hence (9.1) holds for non-negative simple functions. The general case follows from
theorem 6.22 and the monotone convergence theorem 9.10. O

Remark 9.16. This corollary inspires us that we may represent a measure via a give
measure. Actually, we have the Radon-Nikodym-Lebesgue theorem 10.18.

Now we come back to remark 9.12 and improve the monotone convergence theorem.

Corollary 9.17 (Improved monotone convergence theorem). Let (X, X, u) be a measure
space. If (f,) C L*, f € L*, and f, increses to f a.e., then [ fdu =lim,_ [ f,du.

Proof. 1If f,(x) increses to f(x) for x € E and u(E¢) = 0, then f — fy; = 0 a.e. and
fn— faxe = 0 a.e., so by the monotone convergence theorem 9.10, we have [ fdu =

S fxgdu=1m,_ . f foxgdu=1lim,_ . [ f,du. O

Remark 9.18. Actually under the purposes of integration, we can alter functions on
null sets. Thus via proposition 6.13 and proposition 6.14, lim;_, ,, f; can be regarded as
an a.e.-defined measurable function under the purposes of integration, and hence we
can remove the hypothesis that f is in L* in the above corollary.

As remark 9.13 said, being incresing is essential for the monotone convergence
theorem. If we remove this condition, we also have Fatou’s lemma.

Theorem 9.19 (Fatou’s lemma). Let (X, X, u) be a measure space. If (f,) C L*, then

jliminffn du < liminfffn du.

n—oo n—

Proof. Setting g, :=inf,,, f, € L*, then g, increses to liminf,_ . f,, and hence

/hminffn du = %im /gk du.

Therefore, it suffices to show that

/gkd,uSinf—/fjd,u.
j=k

Note that g, = inf,, f,, < f;forall j > k. It follows that /' g, du < [ f;duforall j > k.
Then the conclusion follows. O

Corollary 9.20. Let (X, X, 1) be a measure space. If (f,) C L*, f € L* and f, — f a.e,
then [ fdu <liminf,_ . [ f,du.

9.C. Integration of measurable functions, the dominated convergence theorem.
Now we induce the integration of measure real-valued and complex-valued functions.
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Definition 9.21 (Integration of measurable functions). Let (X, X, u) be a measure space.
If f : X - [—o0,+00] is measurable, then the integration [ f du with respect to the
measure u of f is defined by

[ rau=[rrau- [ £ au

We shall be mainly concerned with the case where [ f*du and [ f~ du are both finite;
we then say that f is integrable. Since |f| = f* + f~, it’s clear that f is integrable iff

SIfldp < oco.
Next, if f : X — C is measurable, then the integration [ f du with respect to the

measure u of f is defined by

ffd,u=f2Rfd,u+i/Sfd,u.

We say that f is integrable if [ |f|du < oo. More generally, if E € X, f is integrable
onEif [ |f| < co. Since |f| < |[Rf| + |Sf| < 2|f|, f is integrable iff Rf and Jf are
both integrable. We denote the space of complex-valued integrable functions by L'(u) (or
L'(X, ), or L*(w), or simply L'.).

Remark 9.22. Sometimes we also write the integration in the following form:

f FCe) du(x) = f fdu.

Proposition 9.23. Let (X, X, u) be a measure space.

(1) (Linearity) The set of integrable real-valued (or complex-valued) functions on X is a
real (or complex) vector space, and the integration is a linear functional on it.
(2) (Monotony) If f and g are real-valued and f < g, then

[raus [gan

(3) (Triangle inequality) If f € L', then
< [if1dn

[ #au

(4) (o — additivity) If (E,)_, is a sequence of disjoint sets in X and f € L', then

[, fau=% [ rau
UOOE n=1"YE,

n=1"n

(5) If f € L', then{x : f(x) # 0} is o-finite.
(6) Iff,ge L', then [, fdu= f,gduforalE€ Xiff f|f —gldu=0iff f =gae

Proof. Trivial. 0

Remark 9.24. This proposition shows that for the purposes of integration it makes no
difference if we alter functions on null sets (this is feasible via proposition 6.13). In this
fashion we can treat R-valued functions that are finite a.e. as R-valued functions for the
purposes of integration.
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With this in mind, we shall find it more convenient to redefine L'(u«) to be the set of
equivalence classes of a.e.-defined integrable functions on X, where f and g are
considered equivalent iff f = g a.e. This new L!(u) is still a complex vector space, and we
shall still employ the notation “f € L'(«)” to mean that f is an a.e.-defined integrable
function.

Moreover, under the new definition, L'(u) is a metric space with distance function
p(f,g) = [|f — gl du. We shall refer to the convergence with respect to this metric as
convergence in L'; thus f, — fin LY iff /' |f, — f| du — 0.

Now we present the last of the three basic convergence theorems.

Theorem 9.25 (The dominated convergence theorem). Let (X, X, u) be a measure space.
Let (f,) be a sequence in L' such that

(D) f,— fae,and
(2) there exists a non-negative g € L' such that |f,| < g a.e. forall n.

Then f € L' and [ fdu = lim,_ . f,du.

Proof. 1t follows from proposition 6.18 and proposition 6.13 that f is measurable
(perhaps after redefinition on a null set). Since |f| < g a.e., we have f € L!. By taking
real and imaginary parts it suffices to assume that f, and f are real-valued, in which
case we have g + f, > 0a.e. and g — f,, > 0 a.e. Thus by Fatou’s lemma 9.19,

/gdu+ffd,uSliminff(g+fn)du=fgd,u+liminf/fndl«4,
fgd,u—ffdygliminf/(g—fn)d/,c:fgdu—limsupffnd#,

n—oo

Therefore, liminf,_  f f,du > [ fdu > limsup, [ f,du, and the result follows.
O

Corollary 9.26 (Improved additivity). Let (X, X, u) be a measure space. Suppose that (f ;)
is a sequence in L' such that Z;il S If;ldu < o0. Then Zj; fj converges a.e. to a function

inL',and [ (X7, f;) due =37, [ f;dp

Proof. By corollary 9.14, we have
[Xisian=3 [1r)du<,
j=1 j=1

so the function g = Z]oil |f;]isin L'. In particular, by proposition 9.9, g is finite for a.e.

x, and for each such x the series Z;’;l f(x) converges. Moreover, | Z;lzl fjl < gforall
n, so we can apply the dominated convergence theorem 9.25 to the sequence of partial

sum to obtainf(z;i1 fj> du = Z;:l S fidu. O

For more application, such as the conclusions about the integration depending on
parameters, one can refer to [For]| or [Rail].
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9.D. Product measure, Fubini-Tonelli theorem. In the next we introduce the
integration theory under the product measures, in which we keep the notations in section
6. First we show that the product measure can be represented by integration.

Theorem 9.27 (Product measure). Let (X, X, u) and (Y, Y, v) be o-fintie measure spaces.
IfE € X X Y, then the functions x — v(E,) andy — u(E”) are measurableon X and Y,
respectively, and

Gex9)B) = [ AE)au() = [ B vy,

X Y
Proof. First suppose that u and v are finite, and let D be the set of all E € X X Y for
which the conclusions of the theorem are true. If E = A X B, then v(E,) = y4(x)v(B)
and u(E”) = u(A)xs(), so clearly E € D. By additivity it follows that finite disjoint
unions of rectangles are in D, so by corollary 7.31 lemma 7.32 it suffices to show that
A is a monotone class. If (E,) is an incresing sequence in D and E = U:;l E,, then
the functions f,(y) = u((E,)’) are measurable and increse pointwise to f(y) = u (E”).
Hence f is measurable via proposition 6.18, and by the monotone convergence theorem
9.10,

f W(E) dv(y) = lim f U((E,)) dv(y) = lim X W(E,) = X V(E).

Likewise u X v(E) = [ v(E,)du(x), so E € D. Similarly, if (E,) is a decreasing sequence
inDandE = ﬂ:zl E,, then we apply the dominated convergence theorem 9.25 to derive
that E € D, where the function y — w ((E,)) is in L'(v) because u ((E,)) < u(X) < oo
and »(Y) < oo, and the majorant function can be chosen as y — u((E;)”). Thus ¥ is a
monotone class, and the proof is complete for the case of fintie measure spaces.

Finally, if 4 and v are o-finite, we can write X X Y as the union of an increasing
sequence (X; XY;) of rectangles of fintie measure. If E € X' X ¥, the preceding argument
applies to E N (X; X Y;) for each j to give

px v (B0 xY) = [ 1B Y)du) = [ s OuE 0X)dv(y),
and we apply the monotone convergence theorem 9.10 to yield the desired result. U
Moreover, we have the Fubini-Tonelli theorem.

Theorem 9.28 (Fubini-Tonelli theorem). Let (X, X, u) and (Y, Y, v) be o-fintie measure
spaces.

(D) If f € L*(X X Y), then the functions

P(x) = f fodv and $() = f £ du
Y X

are in L*(X) and L*(Y) respectively, and

(9.2) fd(,uxv)=f¢pd1x=f¢dv.
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2 Iff:X - Cand
f o' du < co, where ¢*(x) 1= f Fl, dv,
X Y

then f € L*(u X v).
3) If f € L'(u x v), then f, € L'(v) for p-a.e. x € X, f¥ € L'(u) forv-a.e. y € Y, the
a.e.-defined functions ¢ and i are in L'(u) and L*(v) respectively, and (9.2) holds.

Proof. The definitions in (1) of ¢ and ¥ make sense by corollary 6.40. Theorem 9.27
implies (1) in the case that f = yp for E € X X Y, and hence (1) holds for all non-
negative simple functions. In the general case, let (f,) be a sequence of simple functions
that increse pointwise to f as in theorem 6.22. The monotone convergence theorem
9.10 implies, first, that the corresponding ¢, and 1, increse to ¢ and 3 respectively, and,
second that

ffpdu=lim pudyt = lim fndwxv):f Fd(uxv),
X n—oo Jx XXY

n—-oo XY

fz,bdv:lim Y, dv = lim fnd(uxv) = fd(uxv),
Y Y

e = Jxxy XXY
which is (9.2). This establishes (1).
(2) follows by applying (1) to | f].
For (3), by taking the positive and negative parts of real and imaginary parts of f,
WLOG we may assume that f € L* n L. Then (3) follows from (1) and proposition
9.9. 0

Remark 9.29. Theorem 9.28 can false if one of the measure spaces if not o-fintie.
Consider the following example:

If X =Y = [0,1], u the Lebesgue measure, v the counting measure, and f(x,y) =1
for x = y and f(x,y) = 0 otherwise, then

f G ) du(X) =0 and f FCey)dv(y) = 1
X Y

for all x,y € [0, 1] so that

f ( f e ) dv(y)) du(x) =140 = f ( f FGey) du(X)) ().
X Y Y X

(The function f = x,_, is measurable since {x =y} = ﬂ:ozl Q, where Q, :=
(221 ) o 0[5 ][22 b measurtte

Theorem 9.30 (Fubini-Tonelli theorem for complete measures). Let (X,X,u) and

(Y, Y,v) be o-fintie measure spaces, and let (X XY, £, A) be the completion of (X XY, X X

Y, u X ).

(D If f € L*(A), then f, is Y-measurable for u-a.e. x € X, f¥ is X'-measurable for v-a.e.
Yy €Y, and the functions

o(x) = f fodv and $O) = f £ du
Y X
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are a.e.-defined and measurable on their domains respectively, and
(9.3) fd(uxv)=f¢du=f¢dv.
XXY X Y
@ Iff : X > Cand
f(p* du < oo, where @*(x) :=f|f|x dv,
X Y

then f € L*(u X v).
3) If f € L'(u x ), then f, € L*(v) for u-a.e. x € X, f¥ € L'(u) forv-a.e. y € Y, the
a.e.-defined functions ¢ and 1 are in L*(u) and L*(v) respectively, and (9.2) holds.
Proof. This easily follows from Fubini-Tonelli theorem 9.28 and proposition 7.16. OJ

Remark 9.31. In this theorem we regard an a.e.-defined function as a function defined
on a co-null set E, and we call E the domain of it.

9.E. The transformation of integration, polar coordinates. In the next, we
introduce the transformation of integration. For the general cases, we have the following
proposition: (Recall the concept of push-forward in example 7.4.)

Proposition 9.32. Let (X, X, u) and (Y, Y,v) be measure spaces, andlet f : X — Y bea
measurable map. Then gof € L*(w) iffg € L*(f.u), and

9.4 f gd(f o) = fX gof du.

Proof. ForE € Yand g = yg, (9.4) follows from yzof = ¥ -i(5). S0(9.4) holds for simple
function and hence for L* functions by theorem 6.22 and the monotone convergence
theorem 9.10. In particular, (9.4) holds for |g| and so gof € L'(w) iff g € L'(f.w).
Finally by taking the positive and negative parts of real and imaginary parts of g, (9.4)
holds for complex-valued functions. O

In the next we focus on the Lebesgue measure m.

Theorem 9.33. Suppose that T € GL(n, R).

(1) If f is a Lebesgue measurable function (or Borel measurable) on R", sois foT. If f > 0
or f € L'(m), then

(9.5) ff(x) dm(x) = |detT| ffoT(x) dm(x).
(2) IfE € L(R") (or Bgn), then T(E) € L(R") (or Bgs), and m(T(E)) = |det T| m(E).

Proof. First suppose that f is Borel measurable. Then foT is Borel measurable since T
is continuous and hence Borel measurable. If (9.5) holds for transformations T and S, it
also holds for ToS since

ff(x)dm(x): |detT|ffoT(x)dm(x) = |detT||detS|f(foT)oS(x)dm(x)

|det(ToS)| ffo(ToS)(x) dm(x).
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Hence it suffices to prove (9.5) when T is of the following three types:

Tl(xl"" "" n) = (Xl,"',ij,"-,Xn) (C;éO),
Tz(xl"” Xjs oy n) = (xls""xj'i'cxka"' xn) (k#.])a
T3(x1,...’xj,...’ k’”"xn) = (xl,...’xk,.. ’... n)

This is a simple consequence of Fubini-Tonelli theorem 9.30: for T; interchange the order
of integration in the variables x; and x;, and for T, and T, we integrate first with respect
to x; and use the one-dimensional formulas

ff(t)dM(t)= ICI/f(CIT)dWL(t), /f(t+a)dM(t)=ff(t)dM(t)-

Since detT, = ¢, detT, = 1, detT; = —1, in this case (9.5) is proved. Moreover, if E is

a Borel set, so is T(E) since T~! is continuous and hence Borel measurable. By taking
f = Xr@), we obtain m(T(E)) = |det T| m(E).

The result for Lebesgue measurable functions and sets now follows from theorem 8.19.

O

Corollary 9.34. Lebesgue measure is invariant under orthogonal transformations.
Next we shall generalize theorem 9.33 to differentiable maps.

Theorem 9.35 (Transformation formula). Let U,V C R" be open and let f € C*(U,V)
be bijective. If g is a Lebesgue measurable (or Borel measurable) function on V, then gof is
Lebesgue measurable (or Borel measurable) on U. If g > 0 or g € L'(V), then we have the
transformation formula

f g(FC) |7 (x)| dm(x) = f &) dm(y),

where J; = det (—f> is the Jacobi determinant of f. In particular, for Lebesgue measurable
(or Borel measurable) E C U, f(E) is Lebesgue measurable (or Borel measurable), and

(@) = [ 1,0 e
E
Proof. One can refer to [For] or [Rai]. O

In the next we introduce the integration under the polar coordinates.

Definition 9.36 (Polar coordinates). Let S"™! = {x € R" : |x| = 1}denote the unit sphere
in R". The map

P i R\{0} = 0.00)x 5" x o (jal, = |>

defines a diffeomorphism with inverse (r,y) +— ry; we call (r,y) = ¢(x) the polar
coordinates of x.
Let p be the measure on (0, o) defined by p(E) = [, "' dm(r).
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Theorem 9.37 (Polar coordinates). There is a unique Borel measure o on S"! such that
o.m = p X o. If f is Borel measurable on R" and f > 0 or f € L'(m), then

f £ dm(x) = f Fry)r=t do(y) dm(r).
Rn (0,00) Jsn—1

Proof. By proposition 9.32 and Fubini-Tonelli theorem 9.28, it suffices to show that there
is a unique Borel measure o on S"~! such that ¢, m = p X 0. For Borel sets E € S"~! we
define

o(E) :=n-m(p 1 ((0,1] XE)).

It suffices to show that ¢ is a Borel measure o on S"~! such that o, m = p X 0.

Since the map E — ¢~ ((0,1] X E) maps Borel sets to Borel sets and commutes with
unions, intersections, and complements, ¢ is a Borel measure on S" 1.

Note the following points:

(1) For N € N and a fixed Borel set E C S"*!, the collection Gy g of the form (a,b] X E,
where b < N, forms an elementary family. Via theorem 7.29, letting Ay ; be the
collection of all finite disjoint unions of sets in G, then Ay y is an algebra;

(2) Borel rectangles in (0,00) x S"! are disjoint countable unions of sets in
UNEN,EGBSn—1 AN’E;

(3) The collection G of rectangles forms an elementary family, and hence the collection
A of finite disjoint unions of rectangles is an algebra via theorem 7.29. Clearly, the
o-algebra generated by A is H';:l X;.

Thus to show that ¢, m = p X o, it suffices to show that ¢.m = p X o holds on (a,b] X E

where E C S™ !, which follows from theorem 9.33. We are done. O

Remark 9.38. The formula of previous theorem can be extended to Lebesgue
measurable functions by considering the completion of o.

Remark 9.39. In particular, if f(x) = g(|x|), it yields
f f(x)dm(x) = o(S"1) g(ryr=tdm(r).
Rn

(0,00)
Example 9.40. We have the following basic examples.

n/2
~alx|? (T
/R;ne dm(x) <a) , a>0,
271.}1/2 n.n/z
S = , d B") = ——M8M—.
o) =ty 4 mEBY= e

9.F. Riemann integration v.s. Lebesgue intergration. In the next we introduce
the relation between Riemann integration and Lebesgue intergration. One can refer to
[Mei] or [Jon] for a detailed introduction to Riemann integration, which is relatively
elementary and so we won’t give the whole details.

First we introduce the semicontinuity to help us study continuity.

Definition 9.41 (Semicontinuity). Let X be a topological space, and let f : X —
[—o0, +0]. Then f is called lower semicontinuousif{x : f(x) > a}isopenforalla € R,
and f is called upper semicontinuous if {x : f(x) < a}isopen foralla € R.
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In particular, let X = R" and let x € R". Then f is called lower semicontinuous at
x if forany t < f(x) there exists § > 0 such that forally € Bs(x), t < f(y); and f is
called upper semicontinuous at x if for any t > f(x) there exists > 0 such that for all

y € Bs(x), t > f(¥).
We abbreviate lower semicontinuous and upper semicontinuous as LSC and USC
respectively.

Remark 9.42. It follows from remark 6.6 that LSC or USC functions are Borel
measurable.

Proposition 9.43. Let f : R" - [—o0, +o0] and define
f(x) =liminf f(y), and f(x)=limsup f(y).
— y—ox

y—=x

Then

(D i <f< f whereiis LSC and?is USC.

(2) f is continuous at x <= fis LSC and USC at x <> f(x) = f(x) = f(x).

(3) fisLSC < f(x) = f(x). B

Proof. Easy. One can refer to [Jon]. O

Remark 9.44. See proposition 11.14 for more properties of LSC functions.

Definition 9.45 (Step functions and Riemann integration). Let I be a box in R". A
Lebesgue measurable function o : I — [—o0, +o0] is called a step function if there exists
an almost disjoint collection {I J-};\’:l of subboxes if I satisfying Uj.il I; = I and that o| I is
constant for each j.

Let f : I — R be a bounded function. We all f Riemann integrable if for any € > 0,
there exist step functions o and T on I such that

o< f<r, f(r—a)dm<£.
1

If f is Riemann integrable, then we define

(R) / f(x)dx
1

1

sup {/a dm:o< f,oisa Stepfunctiont

inf i/“r dm: f<rt,tisa stepfunction;.

I

Remark 9.46. For any step function 7 we have

(R) fr(x) dx = fr dm.
1 1

Theorem 9.47 (Riemann integration). Let f be a bounded function on a box I. Then

(1) f is Riemann integrable < f is continuous a.e.
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(2) If f is Riemann integrable, then f is measurable and its Riemann integration and
Lebesgue integration on I are equal:

(R)ff(x)dx—ffdm

Proof. (1) is well-known. One can refer to [Mei] or [Jon]. In the next we give a direct
proof of (2).

Suppose that f is Riemann integrable. Then there exist two sequences of step
functions (O'j);il and (Tj);';l on I such that

1
O'ijSTj, /(Tj—o'j)dm<7, vj.

It follows that o; < f and f <7

and hence via proposition 9.43 (2) we have
G-Sfﬁfﬁfﬁf-, a.e.

since ¢; and 7; are continuous a.e. Setting g = Sup;, 9; and h = inf;,, 7; then gand h
are Lebesgue measurable with

g<f<f<f<h, ae.
Note that

Vj: f(h—g)dmsf(fj—aj)dm<% = fgdmthdm.
I I I I

It follows form proposition 9.23 (6) that

g:i:f:?:h, a.e.

(This also implies f is continuous a.e. via proposition 9.43 (2).) Since f = h a.e. and h
is Lebesgue measurable, via proposition 7.15, f is also Lebesgue measurable. Note that

(R)ff(x)dxsffjdm<fajdm+l.Sffdm+l., vj;

I I T J I J

(R)/f(x)dxzfojdm>/rjdm—l,fodm—l,, Vj.
I I i J it J

The desired result follows. O

For more properties of Riemann integration, one can refer to [Jon].
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10. SIGNED MEASURES AND DIFFERENTIATION

The principal theme of this section is the concept of differentiating a measure v with
respect to another measure u on the same o-algebra.

As pointed out in [For], in developing the theory of differentiation, it is useful to
generalize the concept of measures so as to allow measures to assume negative or even
complex values. There are three reasons for this.

(1) First, in applications such “signed measures” can represent things such as electric
charge that can be either positive or negative.

(2) Second, the differentiation theory proceeds more naturally in the more general
seting.

(3) Finally, complex measures have a functional-analytic significance in section 11.

10.A. Signed measure.

Definition 10.1 (Signed measure). Let (X, X) be a measurable space. A signed measure

on (X,X)isa functionv : X - [—o0, +o0] such that

(D »(@)=0;

(2) v assumes at most one of the values +oo;

(3) If (E)) is a sequence of disjoint sets in X, then v (Uj:l Ej> = Z;‘;l V(E;), where the
latter sum converges absolutely if v (U;:l E j) is finite.

Definition 10.2. Every measure is a signed measure; for emphasis we shall sometimes refer
fo measures as positive measures.

Ifv is a signed measure on (X,X), a set E € U is called positive (resp. negative, null)
forvifv(F) > 0 (resp. v(F) <0, v(F) =0) forall F € X such that F C E.

Two signed measures u and v on (X,X) are called mutually singular, or that v is
singular with respect to u, or vice versa, if there exist E,F € X such that ENF = @,
EUF =X, E is null for u, and F is null for v, and we denote this relation by u L v.

Remark 10.3. Informally speaking, mutual singularity means that u and v live on
disjoint sets.

The following are some basic properties of signed measures.

Proposition 10.4. Let v be a signed measure on a measurable space (X, X).

(1) If(E;) is an incresing sequence in X, then v (Uj; Ej) = lim;_,,, v(E)).

(2) If (E;) is a decreasing sequence in X and v(E;) is finite, then v (ﬂj; Ej) =
lim;_, , v(E;).

(3) Any measurable subset of a positive set is positive.

(4) The union of any countable family of positive sets is positive.

Proof. Trivial. O

Example 10.5. Let (X, X) be a measurable space.

(1) If uy and p, are measures on XX, and at least one of them is fintie, then v = u; — u, is
a signed measure.
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(2) If uisameasureon X and f : X — [—oo, +00] is a measurable function such that at
leastone of /' f* duand f f~ du is finite (in which case we shall call f an extended
u-integrable function), thenv : X — [—o0,+00], E = J f duis a signed measure.

We will see that every signed measure can be represented in either of these two forms.
See the next subsection.

10.B. Decomposition theorems, standard integration representation. Now we
prove the above claims.

Theorem 10.6 (Decomposition theorems). There are two editions of decomposition
theorems.

(1) (The Hahn decomposition theorem) If v is a signed measure on a measurable space
(X, ), there exist a positive set P and a negative set N for v such that PUN = X and
PN N = @. If P’ and N’ an another such pair, then PAP' = NAN' is null for v.

(2) (The Jordan decomposition theorem) If v is a signed measure on a measurable space
(X, X), there exist unique positive measures v* and v~ such that v = vt — v~ and
vh Ly,

Proof. WLOG, we assume that v does not assume the value +o0. (Otherwise, consider
—v.) Set

M = sup{v(E) : E is positive}.
Thus there is a sequence (P;) of positive sets such that v(P;) — M. Set

P=|JP, and N=X\P.
j=1
Then P is positive via proposition 10.4. In the next we show that N is negative.

N has the following basic properties: If E C N is positive and »(E) > 0, then E U P is
positive and v(E U P) = v(E) + v(P) > M, which is impossible; it follows thatif A C N
and v(A) > 0, there exists B C A with »(B) > v(A). Indeed, since A cannot be positive,
there exists C C A with v(C) < 0; thusif B= A\ C, we have »(B) = v(A) —v(C) > v(A).

Now we prove that N is negative. Suppose for contradiction, and then via the
properties above we can specify a sequence of subsets (A;) of N and a sequence (n;)
of positive integers as follows: n, is the smallest integer for which there existaset B C N
with »(B) > n;', and A, is such a set. Proceeding inductively, n; is the smallest integer
for which there exists a set B C A;_; with »(B) > v(A;_;) + n;l, and A; is such a set.

Setting A = ﬂ;il, then

400 > v(A) = Jlir?o v(A)) > Z nj_l,
Jj=1
son; — oo as j — oo. But once again, there exists B C A with »(B) > v(A) + n™" for
some integer n. For j sufficiently large we have n < n;,and B C A;_;, which contradicts
the construction of n; and A;. Thus the assumption that N is not negative is untenable.
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Moreover, if P/, N’ is another pair of sets as in the statement of the theorem, we have
P CP cPandP Cc PP C N',sothat P\ P’ is both positive and negative, hence null;
likewise for P’ \ P. Then (1) follows.

For (2). Let X = P U N be a Hahn decomposition as above, and define

vH(E)=v(ENP) and v (E)=—-v(ENN).

Then clearly v = v* —v~ andv* Lv~. Ifalsov=u* —u - andu* L u~,letE,F € X
besuchthat ENF = @, EUF = X,and u*(F) = w(E) = 0. ThenX = EUF is
another Hahn decomposition for v, so PAE is a v-null set. Therefore, for any A € X,
ut(A) = ut(ANE)=v(ANE)=v(ANP)=v"(A), and likewise v~ = u". O

Corollary 10.7 (Standard integration representation). If v is a signed measure on a
measurable space (X, X), then

W) = [ £
E
where u =v* +v~-and f = yp — xn, X = P U N being a Hahn decomposition for v.

10.C. Variation, integration, derivative, absolutely continuous. In the next we
introduce the following concepts, which are vital in differentiation theory.

Definition 10.8 (Variation, integration). The measures v* and v~ in theorem 10.6 are
called the positive and negative variations of v, and v = vt — v~ is called the Jordan
decomposition of v.

Furthermore, we define the total variation of v to be the measure |v| defined by |v| =
N o

A signed measure v is called finite (vesp. o-finite) if |v| is finite (vesp. o-finite).

Moreover, integration with respect to a signed measure v is defined in the obvious way:

L'(v) :=L*(v") nLi(v); /fdv 1= /fdv* - /fdv‘, Vf e L'(v).
Remark 10.9. It’s clear that any E € X is v-null iff [v|(E) = 0, and v L wiff |[v| L wiff
vt L pandv™ L u.

Definition 10.10 (Derivative). Let u, v be two signed measures on a measurable space
(X,X). A u-measurable function f : X — [—o0,+o0] is called the derivative of v with
respect to v, if we have

v(E):ffd,u, VE € X,
E

which is denoted by dv = f du.

Definition 10.11 (Absolutely continuous). Let (X, X) be a measurable space, let v be a
signed measure on X, and let u be a positive measure on XL. We say that v is absolutely
continuous with respect to u and write

V<< U
if v(E) = 0 for every E € X for which u(E) = 0.
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Remark 10.12. It’s clear that any v <« u iff |v| < piff v < pand v~ <« u.
One can extend the notion of absolute continuity to the case where u is a signed-
measure, but we shall have no need of this more general definition.

Remark 10.13. The term “absolute continuity” has the background of real-variable
theory. Actually the names of some other above notations come from the differentiation
theory on R as well.

Example 10.14. Let (X, X) be a measurable space.

(1) If pisameasure on X and f is an extended u-integrable function, the signed measure
v defined by v(E) = f;, f du is clearly absolutely continuous with respect to u.
(2) If w, ---, 4, are measure on XX, then u; < Z;lzl wu; for all j.

Proposition 10.15. Let (X, X') be a measurable space, let v be a signed measure on X, and
let u be a positive measure on X.

(1) (Absolute continuity is in a sense the antithesis of mutual singularity) If v 1L u and
Y KL U, thenv = 0.
(2) v < uiff for every € > 0 there exists § > 0 such that |v(E)| < € whenever u(E) < 6.

Proof. Trivial. 0J

Corollary 10.16. Let u be a measure on a measurable space (X, X). If f € L'(w), then for
every ¢ > 0 there exists & > 0 such that | Jo f d,ul < ¢ whenever u(E) < 6.

Proof. Apply proposition 10.15(2) to Rf and S f. O

10.D. Radon-Nikodym-Lebesgue theorem. Now we come back to the differentiation
theory. First, we give an intuitive and precise characterization of the antithesis of being
mutually singular in a special case.

Lemma 10.17. Suppose that v and u are finite measures on a measurable space (X, X).
Eitherv L u, orthere exist e > 0 and E € X such that u(E) > 0 and E is a positive set for
V —EU.

Proof. Let X = P, U N,, be a Hahn decomposition for v — n™'y, and let P = U;il P; and
N = ﬂ;il N; = P¢. Then N isa negative setforv—n~"'uforalln,ie.,0 < v(N) < n"'v(N)
for all n, so v(N) = 0. If u(P) = 0, then v L w. If u(P) > 0, then u(P,) > 0 for some n,
and P, is a positive set for v — n=!u. U

Theorem 10.18 (The Radon-Nikodym-Lebesgue Theorem). Let v be a o-finite signed
measure and let u be a o-finite positive measure on a measurable space (X, X). There exist
unique o-finite signed measures A, p on X such that

v=A+p, Alu p<Ku

Moreover, there is an extended u-integrable function f : X — R such thatdp = f du, and
any such two functions are equal u-a.e.



90 Functional analysis, measure theory and real analysis

Proof. Case 1: Suppose that v and u are finite positive measures. Our framework is that
we first find f and then define dA = dv — f du. Set

fzif X - [0,+00] : ffd,ugv(E), VEeX}.
E
It’s clear that F is nonempty, and if f,g € ¥, then max {f, g} € . Hence

M:=sup{jfd,u:f€5"}§v(X)<oo.

Choose a sequence (f,) C ¥ such that [ f, du — M. Setting g, = max{f,,--, f,} and
f =sup,., fn.theng, € F,g, increses pointwise to f,and /' g, du > [ f, du. It follows
that lim,_, /'g, du — M and hence, by the monotone convergence theory 9.10, f € &
and [/ fdu =M.

We calim that the measure dA = dv — f du, which is positive since f € ¥, is singular
with respect to u. If not, by lemma 10.17, there exist E € X and ¢ > 0 such that u(E) > 0
and E is a positive set for 4 — eu. But then

expdu <di=dv—fdu = f+exyy; €F, where f(f+s)(E) du =M + eu(E) > M.

This contradicts the definition of M.

Thus the existence of A, f and dp = f du is proved. As for the uniqueness, if also
dv =dA, + f,du, we have d1 — dA, = (f, — f) du and hence

A=2A)Lu and (A—1) < pu

By proposition 10.15 (1) we know 1 = 4,, and hence f; = f u-a.e.

Case 2: Suppose that v and u are o-finite positive measures. Then X is a countable
disjoint union of u-finite sets and a countable disjoint union of v-disjoint sets; by taking
intersections of these we obtain a disjoint sequence (A;) C X such that u(A4;) and v(4;)
are finite for all j and X = U;il A;. Set

ui(E) =m(ENA;) and v,(E)=v(ENA).

By the reasoning above, for each j we have dv; = dA; + f; du; where 4; L u;. Obviously,
WLOG we may assume that f; = 0 on Afj. Setting A = Zj:l Ajand f = Z;’;l [, it’s
clear thatdv = dA + fdu, A L u, and d4 and f du are o-finite, as desired. Uniqueness
follows as before.

The General Case: If v is a signed measure, we apply the preceding argument to »*
and v~ and subtract the results. O

10.E. Lebesgue decomposition, Radon-Nikodym derivative, Chain rule. Based
on Radon-Nikodym-Lebesgue theorem 10.18, we give the following new definitions.

Definition 10.19 (Lebesgue decomposition and Radon-Nikodym derivative). The
decompositionv = A+pwheredl L pand p < uinthe Radon-Nikodym-Lebesgue theorem
10.18 is called the Lebesgue decomposition of v with respect to ju.

In the case where v < u, Radon-Nikodym-Lebesgue theorem 10.18 says thatdu = f du
for some f, where f is called the Radon-Nikodym derivative of v with respect to u. We
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denote it by dv/du:
dv
= —du.
du H
Proposition 10.20 (Chain rules). Suppose that v is a o-finite signed measure and u, A are
o-finite measures on (X, X) such thatv < u and u < A.
(1) Ifg € L'(v), then g(dv/du) € L*(u) and

dv
fgdv—fg@du.

dv _ dvdp
dl ~ dudi
Proof. Trivial. O

dv

(2) We havev < A and

A—a.e.

10.F. Complex measure, Radon-Nikodym-Lebesgue theorem, total variation. In
the next we generalize the conclusions to C.

Definition 10.21 (Complex measure). A complex measure on a measurable space

X,X)isamapv : M — C such that

(1) v(@) =0;

(2) If (E;) is a sequence of disjoint sets in X, then v (UJOLE]) = Zjil V(E;), where the
series converges absolutely.

Definition 10.22. Let v be a complex measure on a measurable space (X,X). We shall
write v, and v; for the real and imaginary parts of v, and then we set

L'(v) :=L'(v,)nL*(v), ffdv = /fdv, +ffdvi, Vf e L'(v).

If A and u are complex measures, we say thatv L wifv, L u, fora,b =r,i,andif lisa
positive measure, we say thatv < 1ifv, < Landv; < L.

Remark 10.23. If v is a complex measure, then v, and v, are finite signed measures, and
hence the range of a complex measure is a bounded subset of C.

One has merely to apply the preceding theorems to the real and imaginary parts
separately to generalize them to complex measures. In particular:

Theorem 10.24 (The Radon-Nikodym-Lebesgue Theorem). Let v be a complex measure
and let u be a o-finite positive measure on a measurable space (X, X'). There exist a complex
measure A and an f € L'(u) such that A L wanddv = dA + fdu. Ifalso A, L uand
dv=dA, + fidy, then A = A, and f = f, u-ae.

Based on this we can show that the total variation of a complex measure is well-
defined.

Definition 10.25 (Total variation). The total variation of a complex measure v is the
positive measure |v| determined by the property that if dv = f du where u is a positive
measure, then d|v| = | f| du.
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Proposition 10.26. Let v be a complex measure on a measurable space (X, X).

(1) Setting u = |v,| + |v;|, then dv = f du for some f € L*(w).

(2) Definition 10.25 is well-defined.

(3) Definition 10.25 agrees with the previous definition of v when v is a signed measure.

Proof. (1) follows from Radon-Nikodym-Lebesgue theorem 10.24. To show (2), it suffices
to show that |v| is independent of the choice of 4 and f, which easily follows from chain
rules 10.20. Finally, (3) follows from decomposition theorems 10.6. These are easy, one
can refer to [For] for details. O

For more properties of complex measures, one can refer to [For].

10.G. Pointwise Differentiation on R", coincidence of two derivatives. In the
next, we come back to the differentiation on R”.

Definition 10.27 (Pointwise Differentiation on R"). Let v be a signed or complex Borel
measure on R". Then the pointwise derivative of v with respect to m is defined by

. v(B(x,r))
F(x) =lim ——————,
0 = I B
when it exists.

Remark 10.28. We can change balls into any family of sets that shrink nicely. See the
Lebesgue differentiation theorem 10.36.

Remark 10.29. In the next when we apply the Radon-Nikodym-Lebesgue theorem
10.24, then m denotes the measure m|_,.

We have the natural question:

Question 10.30. For the nice case that v << m where v is a complex Borel measure on R",
by Radon-Nikodym-Lebesgue theorem 10.24 we have dv = f dm for some f € L'(m). It
follows that the pointwise derivative satisfies:

1
F(x) =1lm —— fdm.
r—0 m(B(x,r)) B
Then people will think, is it true that F = f almost everywhere (with respect to m)?

Remark 10.31. From the point of view of the function f, this may be regarded as a
generalization of the fundamental theorem of calculus: the derivative of the indefinite
integration (namely, v) is f. (Actually f is the derivative of v with respect to m.)

The answer is yes! We summarize the (stronger) conclusions as follows. (We will use
the technical lemma corollary 11.10 in section 11.)

Theorem 10.32. Let f € L, , then

) 1
lrl_l’)I(‘)l m o fy)dm(y) = f(x), form-a.e. x.
Moreover,
lim _ lf(y) — f(x)|dm(y) =0, form-a.e. x.

r—0 m(B(x,r)) BCx.r)
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Proof. 1t suffices to show that for N € N, A, f(x) — f(x) for m-a.e. x with |x| < N. But
for |x| < N and r < 1 the values A, f(x) depend only on the values f(y) for |[y| < N +1,
so by replacing f with f yp 1) We may assume that f € L'.

Via corollary 11.10 we can find a continuous integrable function g such that

(10.1) f 180) - FO)l dmy) <c.

Continuity of g implies that

. 1 _ n
133 mBO.1) o gy)dm(y) = g(x), VxeR"
Therefore
. 1
llllffglp mB&.) o F@)dm(y) — f(x)
. 1
< hr?j}lp BT o [f) —g)] dm(y)| + |f —gl(x)

< limsup

1
_1 o d N
LSUD B O 7O AmO) 1S~ 1)

Hence, if we set

no.1; 1 _ .
A, = jxER™: hnrlfoup mBG.) B(x,r)f(y)dm(y) f)| > ocl,
Bye = jx€R™: ﬁf?foup m ; )|f(J’) — 8| dm(y) > 06};
Cog = {x€R":[|f—g|(x)>a}.

AC{ C BOC/Z,g U Ca/Z,g, al’ld AO = U Al/nv

n=1

and hence it suffices to show that m(A4, ,) = 0 for each n. Note that

1
m(ca,g)sa—[ |f_g|dn’lS
C

a,g

Q_I )

It suffices to show that m (B, ,) = O(e), which is derived in the following lemma. Hence
the first assertion follows.
For the second assertion, let D be a countable dense subset of C, and for each d € D

we set
1
—_— > 0¢.
m(B(x’ r)) B(x,r) }

By the first assertion it follows that m(E;) = 0 for each d € D, and hence E := | dep Ed
also satisfies m(E) = 0. Then if x ¢ E, for any ¢ > 0, we can choose d € D with

E; =4x € R" : limsup

r—0

|f(¥) —dldm(y) — | f(x) —d]
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|f(x) —d| < ¢; then

lf(y) = fO) dm(y)

1
limsup ———
r—0 m(B(x’ I")) B(x,r)

IA

lim sup lf() —dldm(y) +¢

1
r—0 Wl(B(X, I")) B(x,r)
|f(x)—d|+¢€ < 2e.

IA

Since ¢ is arbitrary, the second assertion follows. OJ

10.H. Hardy-Littlewood maximal function, Lebesgue differentiation theorem.
Moreover, via using the technical lemma, Vitali’s covering theorem 11.33, we will get
the Lebesgue differentiation theorem.

Lemma 10.33. Forevery f € Lloc, we define the Hardy-Littlewood maximal function
Hf by

1
Hf(x) = Srl>10P m e lf )] dm(y).

Then H f is Borel measurable, and there is a constant C > 0 such that for all f € L' and
all ¢ > 0, we have

C
(10.2) m@xeR": Hf(x) > a}) < Ef | f ()| dm(x).
Proof. The first assertion is easy, and one can refer to [For] for details. In the next, we
prove the second assertion (10.2). Set

E={xeR": Hf(x) > a}.

Note that
xX€EE < Elrx>0:; lfMdm(y) >«
mBEGT)) Jyery
= >0 imBEr < [ el
Then the desired result easily follows from Vitali’s covering theorem 11.33. O

Remark 10.34. In fact, this lemma is stronger than what we need, since we change
“limsup,_,” to “sup,_,”. For the general case, the corresponding proposition is lemma
11.35.

Definition 10.35 (Shrink nicely). A family (E,),., of Borel subsets of R" is said to shrink
nicely to x € R" if

(1) E, C B(x,r) foreachr;

(2) There is a constant a > 0, independent of r, such that m(E,) > am (B(x,r)).

Theorem 10.36 (The Lebesgue differentiation theorem). Suppose that f € Llloc' Then

1
m(E,)

lim
r—0

f |f(y)— f(x)|dm(y) =0, form-a.e. x.
E,
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for every family (E,),. that shrinks nicely to x.

Proof. For some a > 0 we have

1
iy O = slame) < g [ o) = setane)
1
m e lf ) — fC)| dm(y).
Then the conclusion follows from theorem 10.32. O

For more conclusions, such as the differentiation theory on R, one can refer to [For].

10.I. A New framework of derivatives. We will see in the next section that we can
build a new framework of derivatives; that is, a framework of differentiating Radon
measures with respect to Radon measures.

The key points are theorem 11.36, theorem 11.37 and theorem 11.38. Now we show
how these theorems imply the classical conclusions. In the next we admit all conclusions
in section 11. New readers can skip this subsection first

Proposition 10.37. Every complex Borel measure v on R" has a Randon-Nikodym-
Lebesgue representation

(10.3) dv =dA+ fdm,
where A L m and f € L*(m). Then, we have
v(B(x r)) . 1
(10.4) (x) = —_— = lim — dm, form-a.e. x,
J0) = I B ) ~ 8 B ) Sy ? T
and
(10.5) lim M =0 form-ae. x.

r—-0 m(B(x,r))
Moreover, for any g € L*(m), we have

(10.6) lim 1 gdm = g(x), form-a.e. x.
r—0 m(B(x,r)) BCer)

Proof. By remark 11.26 we know that every complex Borel measure v on R” is a
complex Radon measure. Applying theorem 11.36 and theorem 11.37 to the positive and
negative parts of real and imaginary parts of v, we find the Randon-Nikodym-Lebesgue
representation 10.3, and then formulas (10.4) and (10.5) easily follows.

Since gdm is Radon measure (which is absolutely continuous with respect to m),
formula (10.6) follows from (10.4). O

Lemma 10.38. If f € L*(R"), then f dmis Radon iff f € L1 .(m), where

loc(m)

fiR">C: f | f|dm < oo for all bounded measurable set K C R"

Moreover, for a signed measure v on R" with

dv=diA+ fdm
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where A L m and f is an extended m-integrable function, v is Radon iff f € L}

loc”

Proposition 10.39. If f € Llloc and dv = dA + f dm where A L m, we have

fGo) = lim 2By, 1

— - - dm, form-a.e. x,
r—0 m(B(x, r)) r—0 m(B(x’ l")) B(x,r) f f

and
; A(B(x,1))
r—0 m(B(x,r))
Moreover, ifg € L} (m), then

loc

=0 form-a.e. x.

lim _r gdm = g(x), form-a.e. x.

r—0 m(B(x,r)) B(x.r)
Proof. Note that v is Radon via the lemma 10.38. Similarly, by applying theorem 11.36
and theorem 11.37 to v, the results easily follow. U

Corollary 10.40 (Coincidence of two derivatives). If v is a signed or complex Randon
measure with v < m, then the derivative of v with respect to m, which exists via Randon-
Nikodym-Lebesgue theorem 10.18 or 10.24, equals to the pointwise derivative of v with
respect to m for m-a.e. X.
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11. RADON MEASURES

The subject of this section is Radon measures and integration theory on LCH spaces. A
great significance of Radon measure is that we can approximate functions by continuous
functions in Sobolev spaces.

11.A. LCH space, Radon measure, positive linear functionals on C (X, C).

Definition 11.1 (LCH space). We call X an LCH space if it is locally compact and
Hausdorff.

Definition 11.2 (Radon measure). Let X be an LCH space. A Randon measure on X is
a Borel measure that is finite on all compact sets, outer regular on all Borel sets, and inner
regular on all open sets.

Remark 11.3. Randon measures are also inner regular on o-finite sets. See theorem
11.8.

Definition 11.4 (Positive linear functionals on C.(X,C)). Let C.(X, C) be the space of
complex-valued continuous functions on X with compact support. A linear functional I on
C.(X, C) will be called positive if I(f) > 0 whenever f > 0.

Definition 11.5. If U isopen in X and f € C.(X,C), we shall write f < U to mean that
0< f<landsuppf CU.

11.B. Riesz Representation Theorem. Aswe said in remark 9.5, we will establish the
relation between Radon measures and functionals.

Theorem 11.6 (Riesz Representation Theorem). Let X be an LCH space. IfI is a positive
linear functional on C.(X,C), there is a unique Radon measure u on X such that I(f) =
S fduforall f € C.(X,C). Moreover, u satisfies

(11.1) uw(U) =sup{I(f) : f e C.X,C),f <U}, VopensubsetU C X,
and
(11.2) wK) =inf{I(f) : f e C.X,C), f > xx}, VcompactsubsetK C X.

Proof. Let us begin by establishing uniqueness. If x4 is a Radon measure such that I(f) =
S fduforall f € C.(X,C),and U C X is open, then clearly I(f) < u(U) whenever
f < U. On the other hand, if K C U is compact, by Urysohn’s lemma there is an f €
C.(X,C)such that f < U and f = 1on K, and hence u(K) < f fdu < I(f) < u(U).
Since u is inner regular, it follows that (11.1) is satisfied. Thus u is determined by I on
open sets, and hence on all Borel sets because of outer regularity.

This argument proves the uniqueness of u and also suggests how to go about proving
existence. The outline is as follows.

(1) We define u(U) for any open subset U by (11.1), and then define
w*(E) = inf {u(U) : U D E, U is open}.

(2) p* is an outer measure, and u*(U) = u(U) for any open subset U.
(3) Every open set is u*-measurable, and hence u := u*|5_is a Borel measure.
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(4) w satisfies (11.2).
(5) I(f)= [ fduforall f € C.(X,C).
One can refer to [For] for details. O

Remark 11.7. Obviously, for all Radon measure u, the map f — [ fdu is a positive
linear functional on C.(X,C). Hence we derive the correspondence between Radon
measures and positive linear functionals.

More generally, if 1 is a Borel measure on X such that u(K) < oo for every compactK C
X, then clearly C.(X,C) c L'(u), so the map f — [ f du is a positive linear functional
on C.(X, C). Then people will think, is such measure already the corresponding Radon
measure? The answer is no, but if we add some new condition to the space, the answer
will be yes. See theorem 11.13.

11.C. Conclusions of regularity — o-finite, F, and G;, c-compact.

Theorem 11.8. Every Radon measure on an LCH space X is inner regular on all of its
o-finite sets.

Proof. Suppose that u is Radon and E is o-finite Borel set. If u(E) < oo, for any € > 0 we
can choose an open U D E such that u(U) < u(E) + € and a compact F C U such that
u(F) > u(U) — €. Since u(U \ E) < €, we can also choose an open V' D U \ E such that
u(V) < e. Setting K = F \ V, then K is compact, K C E, and

u(K) = u(F) = u(FNV) > wE) —e—u(V) > u(E) — 2e.

Thus u is inner regular on E.

On the other hand, if u(E) = oo, E is an increasing union of sets E; with u(E;) < oo
and u(E;) — oco. Thus for any N € N there exists j such that u(E;) > N, and hence, by
the preceding argument, there exists a compact K C E; with u(K) > N. Hence u is inner
regular on E. O

Corollary 11.9. Every o-finite Radon measure on an LCH space X is regular. If an LCH
space X is o-compact, every Radon measure on X is regular.

Corollary 11.10. Let X be an LCH space. If  is a Radon measure on X, then C.(X,C) is
dense in LP(u) for1 < p < co.

Proof. Viaproposition 12.7 (2), it suffices to show that for any Borel set E with u(E) < oo,
Xr can be approximated in the L? norm by elements of C.(X, C).

Given ¢ > 0, by theorem 11.8 there exist a compact K C E and an open U D E such
that u(U \ K) < €. and by Urysohn’s lemma we can choose f € C.(X,C) such that
xx < f < xu- Then ||xz — fll, < u(U \ K)V/P < '/P. We are done. O

Remark 11.11. It follows from corollary 11.10, theorem 8.19, proposition 7.16 and
proposition 9.23 that C.(R") is dense in L?(m).

Theorem 11.12. Let X be an LCH space. Suppose that u is a o-finite Radon measure on
X and E is a Borel set in X.

(1) Foreverye > 0 there exist an open U and a closed F with F C E C U and u(U \ F) < «.
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(2) There existan F, set A and a G set B such that A CE C Band u(B\ A) =0.

Proof. Write E = Uj; E; where the E;’s are disjoint and have finite measure. For each
J> choose an open U; D E; with u(U;) < u(E;) < €27/7!,and set U = U;il U;. Then U
isopen, and u(U \ E) < Z;:l u(U;\E)) < % Similarly, for E€, we obtain an open V' D E¢
with u(V \ E°) < 2 Let F = V¢ Then F is closed, F C E, and

MU\F)=pu(U\E)+uWE\F)=puU\E)+u(V\E) <e

Then (1) follows.
By (1) there exist open sets G;’s and closed sets F;’s satisfying F; C E C G, and m(G; \
Fj)) < 3 Then sets F = Ujil F;and G = ﬂj‘;l G; are as required. O

Theorem 11.13. Let X be an LCH space in which every open set is c-compact (which is
the case, for example, if X is second countable). Then every Borel measure on X that is finite
on compact sets is regular and hence Radon.

Proof. If u is a Borel measure on X such that u(K) < oo for every compact K C X,
then clearly C.(X,C) C L'(w), so the map f — [ fdu is a positive linear functional
on C,(X,C). Let v be the associated Radon measure according to Riesz representation
theorem 11.6.

IfU C Xisopen,letU = Ujil K; where each K; is compact. Choose f; € C.(X,C)
such that f < U and f = 1onK,. Proceeding inductively, forn > 1choose f, € C.(X, C)
such that f, < U and f, = 1 on U;—llej and on U;:ll supp(f;). Then f, increses
pointwise to y as n — oo, and hence

uwW)=1m | f,du=1im | f,dv=vU)

n—oo

by the monotone convergence theorem 9.10.

Next, if E is any Borel set and ¢ > 0, by theorem 11.12 there exists an open V D E and
aclosed F Cc Ewithv(V \ F) <e¢. Since V \ Fisopen, u(V\F) =v»(V \F) <e. In
particular, u(V) < u(E)+e¢ and hence u is outer regular. Also, u(F) > u(E)—ce. Note that
F is o-compact since X is o-compact, so there exist compact K; C F with u(K;) — u(F).
It follows that  is inner regular. Thus u is regular, and equal to v by Riesz representation
theorem 11.6. U

11.D. LSC functions, integration approximation. In the next we introduce some
properties of LSC functions, and then use them to derive a new method of integration
approximation.

Proposition 11.14. Let X be a topological space.

(1) IfU is open in X, then y; is LSC.

(2) If fis LSC and ¢ € [0, ), then cf is LSC.

(3) If Sis a family of LSC functions and f(x) = sup{g : g € 8}, then f is LSC.
(4) If f, and f, are LSC, so is f1 + f,.

(5) If X is an LCH space and f is LSC and non-negative, then

f(x) =sup{g(x) : g€ C(X,0),0<g < f}.
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Proof. One can refer to [For] proposition 7.11. O

Proposition 11.15. If u is a Radon measure and f is non-negative Borel measurable
function, then

/fd,u:inf{/gd/x : ng,gisLSC}.
If{x : f(x)> 0}is o-finite, then

ffduzsupifgd,u : OSggf,gisUSC}.

Proof. Let (¢,) be a sequence of non-negative simple functions that increse pointwise to
f.Then f = ¢, + Z:’:Z(qon — ¢,_1), and each term in this series is a non-negative simple
function, so we can write f = 2;11 X, where a; > 0. Given ¢ > 0, for each j choose
an open U; D E; such that u(U;) < w(E;) + 52‘faj‘1. Then g = Zj:l a;jXu, is LSC by
proposition 11.14. Note that g > f, and fgdu > [ f du + ¢; this establishes the first
assertion. N

For the second, if a > [ fdu, let N be large enough so that ijl a;u(E;) > a.
Since the E;’s are o-finite, by theorem 11.8 there are compact sets K; C E; such that

N . N .
ijl a;u(K;) > a. Thusifg = Z,-=1 a;xg,,thengis USC, g < f,and [ gdu > a. O

Proposition 11.16. Let S be a family of non-negative LSC functions on an LCH space X
that is direct by < (that is, for every g,,8, € 8 there exists g € 8 such that g, < g and
g < g.) Set

f(x) =sup{g(x) : g € 8}.
If u is any Radon measure on X, then

ffdu:sup{fgdu:ges}.

Proof. 1t easily follows from proposition 11.14 and the monotone convergence theorem
9.10. One can refer to [For] for details. O

Corollary 11.17. If u is Radon and f is non-negative and LSC, then

ffd,“ = supUgdﬂ 18 €C(X,0),0<g Sf}-
Proof. 1t follows from proposition 11.14 (5) and proposition 11.16. O

11.E. C.(X,C)* = Cy(X, C)*, Jordan decomposition of C,(X, R)*. Now we generalize
the Riesz representation theorem 11.6 to the case of bounded linear functionals. First
we still consider the positive linear functional.

Proposition 11.18. Let X be an LCH space, and let I be a positive linear functional on
C.(X,C). Then I is bounded with respect to the uniform norm || - iff the associated
Radon measure u satisfies u(X) < oo.

[

Proof. By Riesz representation theorem 11.6 (11.1),
p(X) =sup{I(f) : feC(X,0),0< f<1}
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It follows that
I
sup ) <o = uX) < .
rec 0 1l
Ifl0<1
The converse statement is obvious. We are done. 0

Remark 11.19. We have identitied the positive bounded linear functionals on C,(X, C):
they are given by integration against finite Radon measures.

In the next, we generalize positive bounded linear functionals on C.(X,C) to all I €
C.(X,C)*. The key fact is that C.(X, C)* can be reduced to C.(X, R)* and that C (X, R)*
has a “Jordan decomposition”.

Before doing this generalization, we do some small technical treatments. Note that
C.(X,C) is not always complete, and C.(X, C) and its completion have the same dual
space. Sometimes it brings convenience if we realize this.

Definition 11.20 (Vanishes at infinity and C,(X, C)). Let X be a topological space and let
f € C(X,C). Wesay that f vanishes at infinity if for every € > 0 the set {x : |f(x)| > €}
is compact, and we define

CoX,C) ={f € C(X,C) : fvanishes at infinity}.

Proposition 11.21. If X is an LCH space, then Cy(X, C) is the closure of C.(X, C) in the
space (C(X,C), || * |lo)-

Proof. One can refer to [For| proposition 4.35. O

Remark 11.22. Therefore, if X is an LCH space, then Cy(X,C) is the completion of
C.(X,C), and hence Cy(X, C)* = C (X, C)*.

Now we focus on Cy(X, C)*. As mentioned above, we note that any I € Cy(X,C)* is
uniquely determined by its restriction J to Cy(X,R), and we have J = J; + iJ, where
J, and J, are real linear functionals. Moreover, C.(X,R)* has the following “Jordan
decomposition”:

Proposition 11.23. If f € Cy(X,R)*, there exist positive functionals I* € Cy(X, R)* such
thatl =17 —1".
Proof. Define
I 1 C(X,[0,00)) » R, frsup{l(g): g€ CyX,R),0<g<f}.
and then define
I" 1 CX,R) > R, feoL()-L(), and I-=I"—1.
It’s easy to see that I* € Cy(X, R)*. One can refer to [For] for details. O

Corollary 11.24. For any I € Cy (X, C)* there are finite Radon measures {,, -, iy SUch
that 1(f) = J f duwhere u = uy — p + i(ps — fy).
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11.F. Signed (or complex) Radon measure, Riesz representation theorem. To
establish a better correspondence, we introduce some new concepts.

Definition 11.25 (Signed Radon measure and complex Radon measure). A signed
Radon measure is a signed Borel measure whose positive and nagative variations are
Radon, and a complex Radon measure is a complex Borel measure whose real and
imaginary parts are signed Radon measures. We denote the space of complex Radon
measures on X by M(X), and for u € M(X) we define

llull = |pl (XD,
where |u| is the total variation of u.
Remark 11.26. Note that if v is a complex measure, then v, and v; are finite signed

measures. Hence, via theorem 11.13, if X is an LCH space in which every open set is
o-compact, then every complex Borel measure is Radon.

Proposition 11.27. If u is a complex Borel measure, then u is Radon iff |u| is Radon.
Moreover, M(X) is a vector space and u — ||u|| is a norm on it.

Proof. Trivial. OJ

Theorem 11.28 (Riesz representation theorem). Let X be an LCH space, and for u €
M(X) and [ € Cy(X,C) let 1,(f) = [ fdu. Then the map ® : M(X) — Cy(X,C),
u — 1, is an isometric isomorphism.

Proof. By corollary 11.24, the linear map ® is surejective. It suffices to show that ||u|| =
|I1,,]| for all u € M(X). Note that

/ fau < [ 191w < 07l

so I, € Co(X)" and ||I|| < ||ul|. Moreover, if h = du/d|u|, then [h| = 1, and hence by

Lusin’s theorem, for any € > 0 there exists f € C,(X) such that ||f||l, = 1 and f = h
except on a set E with |u|(E) < €/2. Then

= [veraet = [Ra < |[raud+| [ (r-7) a
< |[ rau+ 2w
< Ml +e
It follows that [|u|| < ||I,,||. So the proof is complete. U

Remark 11.29. One can refer to [For| or [Evaa] for Lusin’s theorem.

Corollary 11.30. If X is a compact Hausdorff space, then C(X,C)* is isometrically
isomorphism to M(X).

For more properties of Radon measures, such as the products of Radon measures, one
can refer to [For].
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11.G. Filling problems and covering theorems for R", Vitali, Besicovitch. Now
we come back to R". We will introduce the differentiation of Radon measures with
respect to Radon measures, and the weak convergence of Radon measures.

Conclusions of filling propblems are important tools of the differentiation theory.
Generally speaking, filling problems are highly related to the covering theorems.” In
the next we introduce filling problems and covering theorems for R" first.

Theorem 11.31 (Filling theorem). There are two editions.

(1) (Filling open sets with balls — Lebesgue measure) Let U C R" be open, § > 0. There
exists a countable collection G of disjoint closed balls in U such that diamB < § for all
B e Gand

m{U\ [ JB|=0.

(2) (Filling open sets with balls — Borel outer measure) Let u* be an outer measure on R”"
such that all Borel sets are u*-measurable, and let F be any collection of nondegenerate
closed balls. Let A denote the set of centers of the balls in F. Assume that

u*(A) < oo,
and
inf{r : B(a,r) € ¥} =0, Vae€ A.

Then for each open set U C R", there exists a countable collection G of disjoint balls in

F such that
U BCU,

and

wlanm\ | JB|=0.

Beg

Remark 11.32. We can set A = U in (2) to derive the normal filling theorem for open
sets.
Proof. The framework and idea of the first assertion are as follows.

(1) WLOG we can assume that m(U) < oo; otherwise we apply the finite conclusion to
U, ={xeU . m<|x|<m+1}, m=0,1,---.

(2) It suffices to cover a fixed percentage of measures at a time by finite disjoint closed
balls.
(3) Since for each ball B C R"” we have

m®) _
m(B)

n

(11.3)

>We also use Vitali’s covering theorem in the proof of Lebesgue differentiation theorem.
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where B = B(x, 5r) for B = B(x,r). It suffices to show that there exists a finite
collection (B j)J]V: , of disjoint closed balls with

j=1
This is the Vitali’s covering theorem, for which we will introduce later.
The framework and idea of the second assertion are as follows.

(1) It suffices to cover a fixed percentage of measures at a time by finite disjoint closed
balls.

(2) In this case we don’t (11.3), we turn to the Pigeonhole principle. This is the
Besicovitch’s covering theorem, which we will introduce later.

The left is trivial. It suffices to show the following covering theorems. O

Theorem 11.33 (Covering theorems). There are two editions of covering theorems.
(1) (Vitali’s covering theorem) Let ¥ be any collection of nondegenerate closed balls in
R"™ with
sup {diam(B) : B € F} < 0.

Then there exists a countable familiar G of disjoint balls in F such that

U BcC U B,
BeF Beg
where B = B(x, 5r) for B = B(x, 7).
(2) (Besicovitch’s covering theorem) There exists a constant N, depending only on the
dimension n, with the following property:
If F is any collection of nondegenerate closed balls in R" with

sup {diam(B) : B € ¥} < oo,

and if A is the set of centers of balls in F, then there exists N, countable collections
G, -+, G, of disjoint balls in F such that

Proof. The framework and idea of Vitali’s covering theorem are as follows.

(1) It’s natural to find the maximal disjoint collection, which is certainly countable. The
difficulty is to ensure (B ;) covers U.

(2) It suffices to show that for each B € ¥, B Cc B ; for some j. By the maximal property
of (B i), it follows that B N B; # @ for some j. It suffices to modify the construction
of (B ;) such that there exists B; with BN B; # @ and diam(B;) > 2diam(B).

(3) According to the requirements, we make a division of diameter:

F; ::{365‘~ : §<diam(B)< %; where D :=sup{diam(B) : B € F},
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and choose G, as any maximal disjoint subcollection of

k-1
Be#, :BnB =g,¥B e ]9
j=1

(4) The left is trivial.
The framework and idea of Vitali’s covering theorem are as follows.

(1) Our basic framework is to find a covering model that covers A in countable steps,
and then divide it.

(2) For the covering model, a natural idea is to eliminate the gaps in order to ensure the
covering, and another natural idea is to ensure the basic separation, which ensures
that we can make reasonable division. We can create some basic models, in which
some parameters can be adjusted.

(3) An intuitive observation is that with a certain degree of separation, there must be
few “near balls”, so the division of “near balls” is actually easy to talk about. The key
is the handling of “distant balls”.

(4) Given a “distant ball”, we can make a rough estimate of the number of balls in front
that intersect it. Then, we adjust the parameters of the covering model to ensure that
the intersection numbers have a fixed upper bound. Then our work can be successful.

For a detailed proof of Besicovitch’s covering theorem, one can refer to [Evaa]. O

11.H. Differentiating Radon measures with respect to Radon measures. In the
next we introduce the differentiation theory of Radon measures. It’s the generalization
of that we introduced before. One can refer to [Evaa| for the proofs.

Definition 11.34 (Differentiation of Radon measures). Let u and v be Radon measures
on R". Foreach x € R", define

)
Do) = T % if (B(x, 1) > 0 for allr > 0;
[T if u(B(x,r)) = 0 for somer > 0.
and
.. Vv(B(x,r) . -
D v(x) = 1 111}1_)10nf m if u(B(x,r)) > 0 forallr > 0;
# oo, if u(B(x,r)) = 0 for somer > 0.

If Eﬂv(x) = Qﬂv(x) < oo, we say v is differentiable with respect to u at x and write
Dv(x) :=D,v(x) = Q#V(x).

D, v(x) is the derivative of v with respect to u. We also call D,y the density of v with respect

to u.

Lemma 11.35. Let u and v be Radon measures on R". Fix0 < a < oo. Then

(1) AC {x eR" : Qﬂv < oc} implies v(A) < au(A).
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2) AC {x eR" : E“v < oc} implies v(A) > au(A).

(If A is not a Borel set, we regard u and v as Radon outer measures.)

Theorem 11.36 (Differentiating Radon measures). Let 4 and v be Radon measures on
R". Then

(1) D,v exists and is finite u-a.e.;
(2) D,v is u-measurable.

Theorem 11.37 (Randon-Nikodym-Lebesgue theorem). Let 1 and v be Radon measures
on R".

(1) Then
V=V, + Y
where v,. and v, are Radon measures on R" with
Voe KM and vy L .
(2) Furthermore,
Dy =D,v,, and Dwv,=0 u—ae.

and for any Borel set A we have
v(A) = fDﬂv du + v(A).
A

Theorem 11.38 (Average properties). Let u be a Radon measure on R".
(D If f € L, (R, p), then
lim _ fdu=f(x), foru—ae xeR"
r—0 u(B(x,r)) B(x,r)
) If f € L? (R, u) forsome1 < p < oo, then

loc

lim ——— f=f@)f du=0, foru—ae xeR"
0 LB s |

(3) If f € L? (R, m) forsome1 < p < oo, then

loc
. 1 p
Iim —— —f(x)|" dm =0, form-—ae xeR"
B~{x} u(B) /B|f F)| f

where the limit is taken over all closed balls B containing x, as diam(B) — 0.

Theorem 11.39 (Points of density 1 and density 0). Let E C R" be Lebesgue-measurable.
Then

m(B(x,r)NE) _

0 m(B(x,r)

1, form—ae x€E

and
i m(B(x,r)NE)
rl—r>r01 m (B(x,r))

=0 form—ae xe€R"\E
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11.I. Weak convergence of Radon measures. Finally we introduce the properties of
weak convergence of Radon measures and their corollaries. These are not difficult, one
can refer to [Evaa] for their proofs.

Definition 11.40 (Weak convergence of Radon measures). Let u, u, (k = 1,2,---) be
Radon measures on R". Then we say that the measures (i );-, converge weakly to the
measure [, written

Hie = M,

if we have

k—oo

limf fdu =/ fdu, VfecC.(R").
Rn Rn

Theorem 11.41 (Weak convergence). Let ()=, be a sequence of Radon measures on R"
satisfying

sup ux(K) < oo for each compact set K C R".
k1

Then there exists a subsequence (,ukj );‘;1 and a Radon measure u such that

My, — M.
Corollary 11.42. Let U C R" be open, let 1 < p < oo, and let (f),2, be a sequence of
functions in LP(U, m) satisfying

sup || fillLeqm < o0
k>1

Then we have the following conclusions about weak convergence:

(1) If 1 < p < oo, then there exists a subsequence (fk,-);il and a function f € LP(U, m)
such that

i, = inLP(U,m).
(2) If p = 1, and suppose also

limsupf | fr]dm =0,
2o k1 Jyf120

then there exists a subsequence (f k)je1 and a function f € L' (U, m) such that

fi, =~ inLY(U,m).

Corollary 11.43 (Biting lemma). Assume that the open subset U is bounded and let (f);>
be a sequence of functions in L*(U, m) satisfying

sup || frllziw.m < co.
k>1

Then there exists a subsequence (f K, ;’;1 and a function f € LY(U, m) such that for each
& > 0 there exists a Lebesgue measurable set E C U with

m(E) < 9,
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and
Ji, = f inLP(U\E,m).

For more properties of Radon measures, one can refer to [Evaa] and [For].
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12. LP SPACES
12.A. LP space.

Definition 12.1 (L? space). Let (X, X, u) be a measure space. If f is a measurable function
onX and 0 < p < oo, we define

/p

i1 = ( [ rds)

(allowing the possibility that || f|, = o), and we define
LP(X,X,p) ={f : X - C : fis measurable and ||f]|, < oo}.
Moreover, if f is a measurable function on X and p = oo, we define
Ifllo = inffa >0 : w(ix : [fGO > a}) = 0},
with the convention that inf @ = oo, and we define
L¥(X, X, 1) ={f : X > C : fis measurable and ||f||, < oo}.

We abbreviate LP(X, X, ) by LP(u), LP(X), or simply LP when this will cause no confusion.
If A is any nonempty set, we define I’(A) to be L(u) where u is counting measure on
(A, P(A)), and we denote IP(N) simply by ¢P.

Remark 12.2. As like in remark 9.24, we usually redefine L”(u) to be the set of
equivalence classes of a.e.-defined L,-integrable functions on X, where f and g
are considered equivalent iff f = g a.e.

This new LP() is still a complex vector space, and we employ the notation “f € LP(u)”
to mean that f is an a.e.-defined integrable function.

Remark 12.3. In particular, ||f"||, = || f|[,- for all0 < p,r < co.

I
12.B. Holder inequality, Minkowski inequality.

Proposition 12.4. Let (X, X, u) be a measure space. Let f and g be measurable functions
on X.

(1) (Holder inequality) If1 < p < coand p~' + ¢! =1, then
(12.1) Ifglh < 1f1pllgllg-
In particular, if f € LP and g € LY, then fg € L'. Besides,

fel?r and gel?:|fell=Ifl,lelly =
alf|? = B|g|? u-a.e. for some constants a, 5 with a8 # 0.

Moreover, if p = 1 and g = co we also have ||fgll; < ||fl1llgllw- In particular, if f € L!
and g € L™, then fg € L. Besides,

fel and gel®:|fgl=Iflhlgle <
18(0)| = [18lleo u-a.e. on{x € X : f(x) # O},
(2) (Minkowski inequality) If1 < p < oo and f,g € LP, then

(12.2) If +gll, < 1l + ligllp-
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Proof. For Holder inequality, the case that p = 1 and g = oo is trivial, in the next we
assume that 1 < p < oo. Note that the result is trivial if ||f]|, = 0 or ||g|]|; = 0 (use
proposition 9.23), or if || f||, = oo or ||g||; = co. Then, setting

_1fe) 800
171, lell,

it follows from the Jesen inequality with respect to e* that

a’(x)  bix)
7

a(x)

and b(x) =

a(x)b(x) <

and hence
j a(x)b(x) du(x) < % f aP(x) du(x) + é f ba(x) du(x) = % + é =

Thus (12.1) follows, and if f € LP and g € LY, then fg € L'; moreover, in this case
equality holds in (12.1) iff a(x) = b(x) u-a.e. iff x| f|? = B|g|? u-a.e. for some constants
a, f with aff # 0.

For Minkowski inequality, the result is trivial if p = 1 or oo, orif f + g = 0 u-a.e.
Otherwise, setting p~ + g~! = 1, it follows from Holder inequality that

If +glb = ICF +rlh < [[If + &P IF 1], +[|If +glP1gl|

1.

1

< |if+ g, sl + lell,)
= If +ellb,y, (111, + llgll,)
Note that q(p — 1) = p; then Minkowski inequality follows. O

The Minkowski inequality has the following generalized edition.

Proposition 12.5 (Minkowski inequality for integration). Let (X, X, u) and (Y, Y,v) be
o-finite measure spaces, and let f be a measurable function on (X XY, X X Y, u X v).

(DIffel*(XxY)and1 < p < oo, then

p 1/p 1/p
/(ff@mﬂﬂﬁ)dmm sf([ﬂmwnwuﬂ ().

(@) If1<p <L oo, f(-,y) € LP(w) for v-a.e. y, and the function 'y — ||f(-,y)||, is in L'(v),
then f(x,-) € L'(v) for u-a.e. x, the function x — [ f(x,y)dv(y) isin LP(u), and

[ senaw| < [ircon,ao.
p

Proof. When p = 1, (1) is merely Fubini-Tonelli theorem 9.28. When 1 < p < oo, set
p '+ q!'=1andset

H: X = [0,00], w*W@JMy=/ﬂ%wM@)
Y
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Then for all g € L9(u), by Fubini-Tonelli theorem 9.28 and Hélder inequality 12.4 we
have

IHOOIS = IHP (e = [IHP COH )| |1x

[P GOIS G Pl [
P GO Ce v
GO Ce Pl

< [MEP gl G Dl
IHCOND 1L G Wllpix |-

Then (1) follows.
When p < o0, (2) follows from (1) with f replaced by |f| and Fubini-Tonelli theorem
9.28. When p = o0, itis a simple consequence of the monotonicity of the integration. [J

Remark 12.6. Setting (Y, Y,v) = (N,P(N),v) where v is the counting measure, by
Minkowski inequality for integration 12.5 we know that if (X, X, 1) is a o-finite measure
space and (f j);i1 are a sequence functions in L*(X), then for 1 < p < co we have

(12.3) D f
j=1

o0
< 2 fillps
p 7

which is a generalization of Minkowski inequality 12.4. Since we have corollary 9.14, we
can remove the condition that X is o-finite, and the above proof applies.

12.C. Banach, separability, dual, weak compact, uniformly convex.

Proposition 12.7. Let (X, X, u) be a measure space. Then

(1) (LP,]| - ||,) is a Banach space for 1 < p < co.

(2) For1 < p < oo, the set A of simple functions f = ),
Jj, is dense in LP.

(3) Let1 < p < coand p~' + q7! = 1, foreach ¢ € (LP)* there exists g € L9 such that
o(f) = [ fgduforall f € LP, and hence LY is isometrically isometric to (LP)*. The
same conclusion holds for p = 1 (and q = o) provided u is o-finite.

I;=1 a;xg, where u(E;) < oo for all

Proof. 1t easily follows from Minkowski inequality 12.4 that (L?, || - ||,) is an N.V.S. for
1 < p < o0. It’s obvious that (L*, || - ||,) is Banach. In the next assume that 1 < p < co.
Let (f,) be a Cauchy sequence in L?, then

Ve>0,AN =N() eN,Vn,m >N : ||f, — full, <&

Hence there exists a sequence of strictly increasing numbers (n j)j';l such that

1
‘fnjﬂ—fnj <5 VieN.

2]
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By (12.3) we know

[co]

SZ;‘

— b

fnj+1 _fnj

fnj+1_fnj p<1

j=1
and hence it follows from properties 9.9 that

Z

fn]H - n-

< o0, M-a.e.

Hence f, converges to some measurable f u-a.e pointwisely via proposition 6.13 and
proposition 6.14. It follows from Fatou’s lemma 9.19 that

Vn2N(e) @ |Ifn—fll, = liggglf

< hmlnf ”fn - fnj”p <
p Jm

Hence f, converges to f in LP. Then (1) follows.

For (2), clearly A C LP. If f € LP, by theorem 6.22 choose a sequence (f,,) of simple
functions such that 0 < |f,| < |f5] < -+ < |f|, f. = f pointwise. Then f, € LP and
|fn—fIP <2P|f|P € L', so by the dominated convergence theorem 9.25, || f,, — f||, = O.

Moreover, the simple functions f, = ZL XE)» where the E;’s are disjoint and the a;’s
are nonzero, must satisfy that u(E;) < oo since levz"l la;|Pu(E;) = [ |fnlP du < 00. Then
(2) follows.

For (3), the existence of g follows from Radon-Nikodym-Lebesgue theorem 10.24. One
can refer to [For] or [Tao] for details. O

Remark 12.8. When 0 < p <1, (L%, || - ||,) is not an N.V.S.
Remark 12.9. (2) is not true for p = oo in general. Consider f = 1 on R.

Proposition 12.10. There are some basic conclusions about separability.

(1) IfQ is Lebesgue measurable (1 < p < o0), then L*(Q, £L(Q), m) is separable.

(2) If Q is Lebesgue measurable with m(Q) > 0, then L*(Q, £(Q), m) is not separable.
(3) P is separable (1 < p < o), but ¢ is not separable.

Proof. Easy. 0J
Now we prove a general conclusion about separability.

Lemma 12.11. Let (X, X, u) be a o-finite measure space. If X is countably generated, then
the metric spaces (X, d) is separable, where

d(A, B) = u(AAB).
sketch of the proof. (1) WLOG we assume that y is finite.
(2) Suppose C = {C, : n € N} generates X'. Define A, to be the algebra generated by

{C),...,C,}. Sicne A, is finite, A = | J A, is a countable algebra that generates XX
(3) We construct the outer measure

w(E) =inf {3 u(A,) : A, € A,,E C | A,
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Carathéodory theorem 7.19 yields a complete measure that extends u to a larger o-
algebra M D X.
(4) From this construction, we know that any measurable set can be approximate by sets
in A, and hence (X, M) is separable.
(5) The conclusion follows by taking rational linear combinations of sets (indicator
functions rather) in A.
O

Proposition 12.12. Let (X, X, u) be a measure space. Suppose that u is o-finite and X is
separable (i.e. countably generated). Then L? is separable forall 1 < p < 0.

Proof. By lemma 12.11 we know that (XX, d) is separable. Let (A4,),cn be a dense subset
in (X, d). We claim that the countable set span,{A, : n € N}is dense in L?.
Note that for A, B € X we have

||xA—xB||§=f|xA—xB|P=f 1+f | = 4(AAB) = d(A, B)
A\B B\A

It follows that d(A,,,B) - 0 < ||x Ay Xsll.r = 0. By proposition 12.7 (2), simple
functions are dense in L?, and then the conclusion easily follows.
One can suitably modify the proof for complex valued functions. U

One can refer to corollary 11.42 for the properties of weak compactness of L? spaces.
One can refer to problem 3.43 (4) for the properties of uniform convexity of L? spaces.

12.D. Convolution, regularization.

Definition 12.13 (Convolution). Let f and g be measurable functions on R". The
convolution of f and g is the function f « g defined by

(f * g)(x) = / Fx = y)g)dy
Rn

for all x such that the integration exists.
We introduce the following basic property first.

Proposition 12.14 (Basic properties of convolution). Assuming that all integrals blow
exist, we have

(D) frg=gx*f;

) (fxgxh=[fx(g*h)

(3) Forz € R", 7,(f * ) = (1.f) * g = f * (1,8).

(4) If A'is the closure of {x +y : x € supp(f), : ¥ € supp(g)}, then supp(f * g) C A.

Here we use the notation 7, f(x) = (x — y).

Proof. Well-known. OJ

In the next we introduce some basic propositions which imply the existence of
convolution under some typical conditions.

Theorem 12.15 (Young). Let f € L'(R") and let g € LP(R") with1 < p < oco. Then
[ g(x) exists for a.e. x, f x g € LP(R"), and || f = g||, < [|fIl1lgll,-
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Proof. Setting ®(x,y) = g(x — y)f(»),° then ®(-,y) € LP for each y € R" and we
have [ ||®(-,y)||,dy < oo. Now the conclusion follows directly from the Minkowski
inequality for integration 12.5 (2), proposition 12.14 (1) and the translation invariance of
Lebesgue measure. O

Lemma12.16. Forl < p < o0, 7, : LP — LPisanisometric isomorphism and for f € L?,
z € R" —» 1,f € LP is continuous.

Proof. 1t easily follows from corollary 11.10. O
Proposition 12.17. Suppose that p,q € [1,00] and p and q are conjugate exponents,
f€LPandg e L% then f + g € BCR"), ||f * gl < Ifll,llgllg and if p,q € (1, ) then
f xg e Cy(R").

Proof. The existence of f * g(x) and the estimate |f * g|(x) < ||f|],llgll for all x €
R" is a simple consequence of Holder inequality 12.4 and the translation invariance of

Lebesgue measure. In particular this shows || * g||, < ||f]l,/gll4- By relabeling p and
q if necessary we may assume that p € [1, c0). By Holder 12.4 and lemma 12.16 we have

l72(f * &) = f * gl = llrof * g = f gl <llrzf = fll, llglly = 0 asz —0.

It follows that f s g is uniformly continuous.
Finally if p,q € (1, 00), setting f,, = fX|rj<m and &, = gX g<m> then by proposition
12.14 (4) and what we just proved, f, * g, € C.(R"). Moreover,

”f*g_fm*gm”oo < ”f*g_fm*glloo"'”fm*g_fm*gm“oo

< 1f = Full, liglly + 1Fll llg = gnll,
< NF = full, lglly + 1711 llg = gull, = 0 asm - co.
Hence f * g € Cy(R") by proposition 11.21. O

Proposition 12.18. Let f € C.(R")and g € LlloC (R™). Then (f = g)(x) is well defined
forevery x € R", and (f * g) € C (R").

Proof. Transform the conclusion into a local estimate, and then use Holder inequality
12.4 and lemma 12.16. U

Now we introduce the property of differentiation.

Proposition 12.19. Suppose f and g are real-valued functions on Re. If f € C¥ (resp.
fecCandgelL, (resp.g € L) then f «geC*and

DY(f «g)=(D*f) g, forallawith|a| <Lk.
In particular, if f € C (resp. f € C®)and g € LllOC (resp. g € L'), then f x g € C*™.
Proof. 1t immediately follows from theorem 2.27 of [For]. O
Finally we introduce the regularizations.

Definition 12.20 (mollifier). If ¢ is a smooth function on R", n > 1, satisfying the
following three requirements

me set ®(x,y) = f(x —y)g(y).
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(1) It is compactly supported;
@ [ oax=1
Rn
(3) limp.(x) = lime"p(x/e) = 8(x);
e—0 e—0
where 8(x) is the Dirac delta function and the limit must be understood in the space of
Schwartz distributions, then ¢ is a mollifier. For example, we can define n € C*(R") by

Cex ( ! ) iflx] <1
woo = 1) T
0 iflx] >1

the constant C > 0 selected so that / n(x)dx = 1. It’s easy to see that 7 is a mollifier. We
R~
call n the standard mollifier.

For each € > 0 we set
X

n(x) 1= glnn (;)

Now we make smooth approximations of a locally integrable function using the mollifier
and convolution.

Theorem 12.21 (Smooth approximation). Let U C R" be an open subset, let ¢ > 0, and
let f : U — R be locally integrable. Set

U, ={xeU: dist(x,0U) > ¢}.
and

) 1=, % f() = f

U

nGe = W f ) dy = f W f(x—y)dy in U..

B(0,¢)
Then we have

D ffeC=U.;

2) f*> faease > 0;

(3) If f € C(U), then f¢ — f uniformly on compact subsets of U;
(4) If1<p<o,and f €L (U), then f* - finL, (U).

loc

Proof. One can refer to [Evab]. O

Corollary 12.22. There are some density theorems.

(1) CZ(R™) (and hence also 8) is dense in LP(R") for 1 < p < oo and in Cy(R").
(2) Let Q C R" be an open subset. Then C°(Q) is dense in LP(Q) forany 1 < p < .

Corollary 12.23. Let Q C R? be an open set and let u € L}OC(Q) be such that

/uf =0 VfeCe(Q).

Thenu = 0 a.e. on Q.
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Proof. One can show that fug = 0 for any g € L*(Q) through considering g¢. Then for
any compact subset K of Q, taking g to be sign(u) on K and 0 otherwise, we get u = 0
a.e. on K. The conclusion follows from the arbitrariness of K. 0J

For more basic properties of LP spaces, one can refer to [For] and [Jon].
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13. APPENDIX A — SEMICONTINUITY

Theorem 13.1. A T,-space X is perfectly normal iff for every lower (resp. upper)
semicontinuous function f defined on X, there exists a sequence (f;) of continuous real-
valued function on X such that f;(x) < fi.1(x) (resp. fi(x) > fi1(x)) fori=1,2,---and
x € X, and that f(x) = lim f;(x) for every x € X.

Proof. One can refer to [Eng]. O
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