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1. Introduction

TBC.



2 Functional analysis, measure theory and real analysis

2. Metric spaces

Metric space is the basic models of spaces. We start with a brief review of it.

2.A. Basic concepts.

De�nition 2.1 (Metric space). Let X be a nonempty set. A map d ∶ X × X → ℝ is called
ametric if it satis�es the following properties:
(1) d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 i� x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.
We shall call (X, d) ametric space.

The open balls form the base for a topology on the metric space (X, d), making it a
topological space. Next, we will introduce some useful notions of (X, d), many of which
are related to topology.

De�nition 2.2 (Basic notations of metric spaces). Let (X, d) be a metric space. There are
some well-known notions:
(1) X is called complete if every Cauchy sequence of points in X has a limit that is also in

X.
(2) For two subsets A and B, we say that A is dense in B if B ⊂ A.
(3) X is called separable if there exists a countable dense subset.
(4) A subset A ⊂ X is called nowhere dense if its closure has empty interior.
(5) A subset A ⊂ X is said to be ameagre subset of X, or of �rst category in X if it is a

countable union of nowhere dense subsets of X.
(6) A subset A ⊂ X is of second category in X if it is not of �rst category in X.
(7) A subset A ⊂ X is called sequentially compact if every sequence of points in A has a

convergent subsequence convergeing to a point in X.
(8) A subset A ⊂ X is called compact if every open cover of A has a �nite subcover.
(9) A subset A ⊂ X is called bounded if A ⊂ B(x, r) for some x ∈ X and for some r > 0.
(10) A subsetA ⊂ X is called totally bounded if for every " > 0, there exists a �nite collection

of open balls in X of radius " whose union contains A.
AmapT ∶ (X, d1) → (Y, d2) is called an isometry ifd2(Tx, Ty) = d1(x, y) for allx, y ∈ X,
and is called an isometric isomorphism if it is a bijective isometry. Two metric spaces
(X, d1) and (Y, d2) are called isometric if there is an isometric isomorphism from X to Y.

Remark 2.3. There are some trivial conclusions.
(1) A closed subset A of X is nowhere dense i� its interior is empty.
(2) A subset is dense i� every nonempty open subset intersects it.
(3) A subset B is nowhere dense i� for each open subset U, B ∩ U is not dense in U.

Remark 2.4. Being separable makes it possible for us to do induction to a certain extent.
See lemma 3.40.

Example 2.5. There are some basic examples.
(1) If (X, d) is a metric space, then (X, d1) is also a metric space where d1(x, y) =

d(x,y)

1+d(x,y)
.
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(2) Let (s) be the space of all sequences of real numbers, and de�ne

d(x, y) =

∞∑

j=1

1

2j

|xj − yj|

1 + |xj − yj|
.

Then ((s), d) is separable and complete.
(3) ℝn is separable and complete.
(4) Lp(X,X, �) (1 ≤ p ≤ ∞) is a complete metric space.
(5) If Ω is Lebesgue measurable (1 ≤ p ≤ ∞), then L∞(Ω,ℒ(Ω),m) is separable.
(6) If Ω is Lebesgue measurable withm(Ω) > 0, then L∞(Ω,ℒ(Ω),m) is not separable.
(7) lp is separable (1 ≤ p ≤ ∞), but l∞ is not separable.

Proposition 2.6. The distance function is continuous with respect to each variable.

Proof. Trivial. �

In the next we introduce some important properties of metric spaces.

2.B. Completeness, Baire category theorem. Although completeness is a property
of the metric and not of the topology,1 it will lead to some important conclusions related
to topology. For instance, we have the Baire category theorem.

Theorem 2.7 (Completion). For any metric space (X, d), there is a complete metric space
(Y, d1) such that there exists a dense subset Y1 satisfying that (Y1, d1) and (X, d) are
isometric. Moreover, such (Y, d1) is unique up to isometric isomorphism.

Proof. Well-known. �

Theorem 2.8 (Cantor’s intersection theorem). Let (X, d) be a complete metric space, and
let (Fn) be a sequence of nonempty closed subsets satisfying:
(1) Fn ⊃ Fn+1, n = 1, 2,⋯.
(2) d(Fn) = sup

x,y∈Fn
d(x, y) → 0, as n → ∞.

Then there exists a unique x ∈
⋂∞

j=1
Fj.

Proof. Since Fn ≠ ∅ for each n, we choose a point xn ∈ Fn for each n. It follows
that (xn)∞n=1 is a Cauchy sequence and hence converges to some x ∈ X, since (X, d) is
complete. Note that for any �xed n, we have xm ∈ Fm ⊂ Fn for allm ≥ n; it follows from
the closedness of Fn that x ∈ Fn. Hence x ∈

⋂∞

n=1
Fn. If there is another y ∈

⋂∞

n=1
Fn,

then d(x, y) ≤ d(Fn) → 0 and hence d(x, y) = 0; then x = y. �

Theorem 2.9 (Baire category theorem). There are several editions.
(1) Let (X, d) be a complete metric space. Then for each countable collection of open dense

subsets (Un)
∞
n=1

, their intersection
⋂∞

n=1
Un is dense.

(2) Let (X, d) be a nonempty complete metric space. If X is the union of a countable family
(En)

∞
n=1

of closed subsets, then at least one of these closed subsets contains a nonempty
open set.

(3) Let (X, d) be a complete metric space. Then X is of second category.
1It means that a complete metric space can be homeomorphic to a non-complete one. An example is ℝ,
which is complete but homeomorphic to (0,1), which is not complete.
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Proof. A subset is dense i� every nonempty open subset intersects it. Thus to show (1)
it su�ces to show that any nonempty open G in X has a point x in common with all of
the Un. Since U1 is dense, G intersect U1; thus there is a point x1 and 0 < r1 < 1 such
that B(x1, r1) ⊂ G ∩ U1. Since each Un is dense, we can continue recursively to �nd a
pair of sequences xn and 0 < rn < n−1 such that B(xn, rn) ⊂ B(xn−1, rn−1) ∩Un. It follows
that (xn) is a Cauchy sequence and hence converges to some x ∈ X. By closedness,
x ∈ B(xn, rn) for each n. Therefore, x ∈ G and x ∈ Un for each n. We are done.
For (2), suppose for contradiction that each En is nowhere dense. Then Ecn is dense for

each n, and hence
⋂∞

n=1
Ecn =

(⋃∞

n=1
En

)c
= ∅ is dense by (1); a contradiction.

For (3), suppose for contradiction thatX is of �rst category, and henceX =
⋃∞

n=1
An in

which An is nowhere dense. Fix x1 ∈ X and r1 < 1. Since A1 is nowhere dense, there is
point x2 and 0 < r2 < 2−1 such that B(x2, r2) ⊂ B(x1, r1) ⧵ A1. Since each An is nowhere
dense, we can continue recursively to �nd a pair of sequences xn and 0 < rn < n−1 such
that B(xn, rn) ⊂ B(xn−1, rn−1)⧵An−1. By theorem 2.8, there exists x ∈

⋂∞

n=1
B(xn, rn). But

x ∉ An for each n; a contradiction. We are done. �

Using Baire category theorem we can solve the following interesting problem.

Problem 2.10. Suppose f ∈ C∞(ℝ) satisfying that ∀x ∈ ℝ, there exists nx ∈ ℕ such that
f(nx)(x) = 0. Prove that f is a polynomial.

Proof. See [Xio]. �

2.C. Compactness and boundedness, Arzelà–Ascoli theorem. Compactness is a
vital topological properties. As in the case of ℝn, compactness is highly related to
boundedness. Generally speaking, this relationship is related to completeness.

Theorem 2.11. Let (X, d) be a metric space.
(1) If a subset A is sequentially compact, then it is totally bounded.
(2) A subset A is compact i� A is sequentially compact and closed.
(3) If X is complete, then a subset A is sequentially compact i� it is totally bounded.

Proof. Well-known. �

Remark 2.12. By theorem 2.11 (2), when the background space is a metric space,
sometimes we call A a precompact set if A is sequentially compact.

In the next we introduce a characterization of sequentially compact in C([a, b],M).

Theorem 2.13 (Arzelà–Ascoli). Assume thatM is a complete metric space. Donote all the
continuous maps from [a, b] toM by C([a, b],M). De�ne

d(x, y) = sup
t∈[a,b]

dM(x(t), y(t)).

Then (C([a, b],M), d) forms a complete metric space, andA ⊂ C([a, b],M) is sequentially
compact i� the following claims hold.
(a) A is bounded;
(b) For all t ∈ [a, b] �xed. A(t) = {x(t) ∶ t ∈ A} is sequentially compact inM;
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(c) A is uniformly equicontinuous; i.e. for every " > 0, there exists a � > 0 such that
dM (x(t), x(t

′)) < " for all x ∈ A and all t, t′ ∈ [a, b] with |t′ − t| < �.

Proof. Since dM is continuous with respect to each variable, f(t) ∶= dM(x(t), y(t)) is
continuous. Thus f([a, b]) is also compact, and hence d(x, y) < +∞. In the next we
prove that d is a metric.

(1) It’s obvious that d(x, y) = d(y, x) ≥ 0.
(2) If d(x, y) = 0, then dM(x(t), y(t)) = 0, ∀t ∈ [a, b], and hence x = y.
(3) Note that ∀x, y, z ∈ C([a, b],M),

d(x, y) = sup
t∈[a,b]

dM(x(t), y(t))

≤ sup
t∈[a,b]

[dM(x(t), z(t)) + dM(z(t), y(t))]

≤ sup
t∈[a,b]

dM(x(t), z(t)) + sup
t∈[a,b]

dM(z(t), y(t))

= d(x, z) + d(z, y).

In the next we show that (C([a, b],M), d) is complete. Given a Cauchy sequence (xn)n≥1
in (C([a, b],M), d); then (xn(t))n≥1 is a Cauchy sequence in M, and hence has a limit
point x0(t) sinceM is a complete metric space. It su�ces to prove that x0 ∶ [a, b] → M,
t ↦ x0(t), is continuous.
For all " > 0, there exists N > 0 such that

dM(xm(t), xn(t)) < " ∀t ∈ [a, b] ∀m, n > N.

Fix some n0 > N, since xn0 is continuous on a compact set [a, b], there exists � > 0 such
that

dM(xn0(t), xn0(t
′)) < " ∀|t − t′| < �,

and then for all |t − t′| < �,

dM(x0(t), x0(t
′)) ≤ dM(x0(t), xn0(t)) + dM(xn0(t), xn0(t

′)) + dM(xn0(t
′), x0(t

′))

< " + " + " = 3".

Thus x0 is continuous. Now the �rst assertion follows. In the next we prove the second
assertion.
Since (C([a, b],M), d) is complete, we know that the following are equivalent.

(1) A is sequentially compact.
(2) A is totally bounded; i.e. for all " > 0, A admits a �nite "-net.

“⟹”:

(a) Since A is totally bounded, then A is certainly bounded.
(b) Since any �nite "-net of A induces a �nite "-net of A(t), A(t) is also totally bounded.

Note thatM is also complete, and hence A(t) is sequentially compact.
(c) For all " > 0. A admits a �nite "-net {x1,⋯ , xn}. For each xi there exists �i such that

dM(xi(t), xi(t
′)) < " ∀|t − t′| < �i
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Put � = min1≤i≤n �i. Then for all x ∈ A, there exists i such that x ∈ B(xi, "), and then
for |t − t′| < �

dM(x(t), x(t
′)) ≤ dM(x(t), xi(t)) + dM(xi(t), xi(t

′)) + dM(xi(t
′), x(t′))

< " + " + " = 3"

Hence A is uniformly equicontinuous.

“⟸”: For all " > 0, these exists � > 0 such that

dM(x(t), x(t
′)) < " ∀x ∈ A ∀|t − t′| < �

Find a �-net of [a, b], denoted by {t1,⋯ , tn}. Endow Mn with the natural metric d =
∑n

i=1
dM, and then put

Φ ∶ C([a, b],M) → Mn, x ↦ (x(t1),⋯ , x(tn))

Since A(ti) is sequentially compact for all i,
∏n

i=1
A(ti) is sequentially compact. Thus

Φ(A) ⊂
∏n

i=1
A(ti) is sequentially compact, and hence has a �nite "-net, denoted by

{Φ(x1),⋯ ,Φ(xm)}

Note that for all x ∈ M, we can �nd i ∈ {1,⋯ ,m}, j ∈ {1,⋯ , n} such that for all
t ∈ [a, b],

dM(x(t), xi(t)) ≤ dM(x(t), x(tj)) + dM(x(tj), xi(tj)) + dM(xi(tj), xi(t))

< " + " + " = 3"

Hence A is totally bounded. �

2.D. Fixed point theorems. Finally, we introduce the Banach �xed point theorem and
some of its applications.

Theorem 2.14 (Banach �xed point theorem). Let (X, d) be a complete metric space. If a
map T ∶ X → X satis�es

(2.1) 1 > � ∶= sup
x≠y

d(Tx, Ty)

d(x, y)
.

Then T admits a unique �xed point x∗. Moreover, for any x0 ∈ X, setting xn+1 = Txn =

Tn+1x0, n = 0, 1,⋯, then xn → x∗ and

d(xn, x
∗) ≤

�n

1 − �
d(Tx0, x0)

Proof. First we show the uniqueness of the �xed point. If x∗ and y∗ are two distinct �xed
points of T, then we have

0 < d(x∗, y∗) = d(Tx∗, Ty∗) ≤ �d(x∗, y∗),

a contradiction. In the next we show the existence of the �xed point. Fix x0 ∈ X, setting
xn+1 = Txn = Tn+1x0 for each n, it follows that

d(xn+1, xn) ≤ �nd(Tx0, x0),
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and hence

d(xn+k, xn) ≤

k∑

j=1

d(xn+j, xn+j−1) ≤

k∑

j=1

�n+j−1d(Tx0, x0)

≤
⎛

⎜

⎝

∞∑

j=0

�j
⎞

⎟

⎠

�nd(Tx0, x0) =
�n

1 − �
d(Tx0, x0).

Thus (xn) is Cauchy; then (xn) converges to some x∗ ∈ X with

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = Tx∗,

since T is continuous via (2.1).
Finally, letting k → ∞ in the above formula, the last assertion follows. �

Corollary 2.15. Suppose that X is a complete metric space, and T ∶ X → X satis�es

inf
n
sup
x≠y

d(Tnx, Tny)

d(x, y)
< 1.

Then T admits a unique �xed point.

Proof. There exists n such that

� ∶= sup
x≠y

d(Tnx, Tny)

d(x, y)
< 1.

Thus Tn admits a unique �xed point x0 by theorem 2.14. Since T(x0) is also a �xed point
of Tn, we get that T(x0) = x0. If x1 ≠ x0 is another �xed point of T, then

1 = sup
x≠y

d(Tnx, Tny)

d(x, y)
≤ � < 1,

a contradiction. �

Remark 2.16. Sometimes T is not contractive but Tn is contractive. In this case T also
admits a unique �xed point.

Proposition 2.17. Suppose that X is a compact metric space, and T ∶ X → X satis�es

d(Tx, Ty) < d(x, y) ∀x, y ∈ X with x ≠ y.

Then T admits a unique �xed point.

Proof. Put f = d(f(x), x). Note that for all x ≠ y

|f(x) − f(y)| = |�(T(x), x) − �(T(y), y)|

≤ �(T(x), T(y)) + �(x, y)

≤ 2�(x, y).

Thus f is continuous. Since X is compact, we can �nd x0 ∈ X with

f(x0) = inf
x∈X

f(x).



8 Functional analysis, measure theory and real analysis

Suppose for contradiction that T(x0) ≠ x0; then

f(T(x0)) = d(T2(x0), T(x0)) < d(T(x0), x0) = f(x0),

a contradiction. Thus T(x0) = x0. If x1 ≠ x0 is another �xed point of T, then

d(x0, x1) = d(T(x0), T(x1)) < d(x0, x1),

a contradiction. �

Corollary 2.18. Suppose that f ∶ ℝn×[t0−�, t0+�] → ℝn is continuous, and is Lipschitz
with respect to the �rst variable x ∈ ℝn, i.e. there exists L > 0 such that for all t ∈ (t0 −

�, t0 + �), x, y ∈ ℝn we have

‖f(x, t) − f(y, t)‖ ≤ L‖x − y‖.

Then the following ODE

⎧

⎨

⎩

dx

dt
= f(x(t), t)

x(t0) = x0

has a unique continuous solution on [t0 − �, t0 + �] where 0 < � < min {�, 1∕L}.

Proof. The above ODE is equivalent to the continuous solution of the following
integration equation:

(2.2) x(t) = x0 + ∫

t

t0

f(x(s), s) ds.

Setting X = C ([t0 − �, t0 + �],ℝn) and

T ∶ X → X, x ↦ (Tx)(t) = x0 + ∫

t

t0

f(x(s), s) ds.

then the continuous solution of (2.2) is equivalent to the�xed point ofT. Wehave showed
in theorem 2.13 that X is complete; hence it su�ces to show that T is contractive. Note
that

d(Tx, Ty) = max
t∈[t0−�,t0+�]

‖(Tx)(t) − (Ty)(t)‖

= max
t∈[t0−�,t0+�]

‖‖‖‖‖‖‖‖‖

∫

t

t0

f(x(s), s) ds − ∫

t

t0

f(y(s), s) ds

‖‖‖‖‖‖‖‖‖

≤ max
t∈[t0−�,t0+�]

|||||||||

∫

t

t0

‖f(x(s), s) − f(y(s), s)‖ ds

|||||||||

≤ L� max
t∈[t0−�,t0+�]

‖x(t) − y(t)‖

= L�d(x, y).

Then the conclusion follows from theorem 2.14. �

For more properties, one can refer to any nice related textbook.
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3. Normed vector spaces and continuous operators

In this section we introduce the basic theory of normed vector spaces and continuous
(i.e. bounded) operators.

3.A. Basic concepts.

De�nition 3.1 (Normed vector space). A normed vector space is a vector space E
equipped with anℝ-valued function x ↦ ‖x‖ satisfying:
(1) ‖x‖ ≥ 0 for all x ∈ E, and ‖x‖ = 0 i� x = 0;
(2) ‖�x‖ = |�| ‖x‖, for all x ∈ E and � ∈ Λ;
(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖, for all x, y ∈ E.
We abbreviate “normed vector space” byNVS.

Setting d(x, y) = ‖x − y‖, an NVS (E, ‖ ⋅ ‖) becomes a metric space, so the knowledge
of metric space is applicable.

De�nition 3.2 (Basic notions of NVS). There are some basic notations:
(1) Two norms ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are called equivalent if there exist C1, C2 > 0 such that for

all x ∈ X, we have C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1.
(2) An NVS E is called a Banach space if it is complete.
(3) Let (E, ‖ ⋅ ‖E) and (F, ‖ ⋅ ‖F) be two NVSs, then their direct sum E⊕F denotes the NVS

whose norm is given by ‖(x, y)‖ = ‖x‖E + ‖y‖F .

Remark 3.3. Throughout this section, and unless otherwise speci�ed, the vector spaces
are over ℂ or ℝ. In the next we denote ℂ or ℝ by Λ.

De�nition 3.4 (Unbounded and bounded operators). Let E and F be two NVSs over Λ.
An unbounded linear operator from E into F is a linear map A ∶ D(A) ⊂ E → F

de�ned on a linear subspace D(A) ⊂ E. The set D(A) is called the domain of A.
One says that an unbounded linear operator A is bounded if D(A) = E and if there

exists a constantM > 0 such that

‖Ax‖ ≤ M‖x‖, ∀x ∈ E.

In particular, a linear functional on E is an unbounded linear operator f ∶ E → Λ,
and a bounded linear functional on E is a bounded linear operator f ∶ E → Λ.

De�nition 3.5 (Kernel, range, graph and closedness). For a unbounded linear operator
A ∶ D(A) → F, the kernel of A is denoted by N(A) ∶= {x ∈ D(A) ∶ Ax = 0}, the
range of A is denoted by R(A) ∶= {Ax ∶ x ∈ D(A)}, and the graph of A is denoted by
G(A) ∶= {(x, Ax) ∶ x ∈ D(A)}. Moreover, A is called closed if G(A) is closed in E ⊕ F.

De�nition 3.6 (Operator spaces). The norm of a bounded operator is de�ned by

‖A‖ = sup
x≠0

‖Ax‖

‖x‖
.

The space of all bounded linear operators from E to F is denoted by ℒ(E, F), which is
also an NVS.
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In particular, the space of all bounded linear functionals on E is denoted by E∗, and is
called the dual space of E.

De�nition 3.7 (Adjoint operators). Let A ∶ D(A) ⊂ E → F be an unbounded linear
operator that is densely de�ned. We shall introduce an unbounded operatorA∗ ∶ D(A∗) ⊂

F∗ → E∗ as follows. First, one de�nes its domain:

D(A∗) = {v ∈ F∗ ∶ ∃c ≥ 0 such that | ⟨v, Au⟩ | ≤ c ‖u‖ , ∀u ∈ D(A)} .

It’s clear that D(A∗) is a linear subspace of F∗. We shall now de�neA∗v. Given v ∈ D(A∗),
consider the map g ∶ D(A) → ℝ de�ned by

g(u) = ⟨v, Au⟩ ∀u ∈ D(A)

We have

|g(u)| ≤ c ‖u‖ ∀u ∈ D(A)

By Hahn–Banach 3.24 there exists a linear functional f ∶ E → ℝ that extends g such that

|f(u)| ≤ c ‖u‖ ∀u ∈ E

It follows that f ∈ E∗. Note that the extension of g is unique, sinceD(A) is dense in E. Now
set

A∗v = f

The unbounded linear operator A∗ ∶ D(A∗) ⊂ F∗ → E∗ os called the adjoint of A.

Remark 3.8. In addition to studying the operator itself, the operator is also used to
re�ect the properties of NVS. For instance, some information of the topology of an NVS
is embodied by the properties of operators on it, especially the linear functionals.

Remark 3.9. We can study A via A∗. This is very useful in solving the operator
equations, since we add topology into our consideration by this way, and the topology
is the key point.

Now let’s introduce some important properties of normed vector spaces and operators.

3.B. Seminorm, balanced and absorbing convex set. Seminorm, a generalization of
norm, is also ameans of constructing a norm. Seminorm is highly related to the balanced
and absorbing convex sets. The relevant theory is as follows.

De�nition 3.10 (Seminorm). Let X be a vector space. We call p ∶ X → ℝ a seminorm if
it satis�es the following two conditions:

(1) (Subadditivity) p(x + y) ≤ p(x) + p(y), ∀x, y ∈ X;
(2) (Absolute homogeneity) p(�x) = |�|p(x) for all x ∈ X and � ∈ Λ;

Proposition 3.11. Let X be a vector space, and let p ∶ X → ℝ be a seminorm. Then p is
a norm i� {x ∈ X ∶ p(x) = 0} = {0}.

Proof. Trivial. �
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De�nition 3.12 (Balanced and absorbing). Let X be a vector space. A subset M is call
balanced if �M ⊂ M for any scalar � with |�| ≤ 1, and is call absorbing if for every
x ∈ X, there exists "x > 0 such that �x ∈ M for any scalar � with |�| ≤ "x.

Theorem 3.13 (Correspondence between seminorms and balanced absorbing convex
sets). Let X be a vector space. We denote the collection of all seminorms on X by P, and
denote the collection of balanced and absorbing convex subsets by ℳ. Let X be a vector
space. If p ∈ P, thenMp ∶= {x ∈ M ∶ p(x) ≤ 1} ∈ ℳ with

p(x) = inf
{
� ∶ � > 0, �−1x ∈ M

}
.

IfM ∈ ℳ, then pM(x) ∶= inf
{
� ∶ � > 0, �−1x ∈ M

}
∈ P.

Proof. Well-known. The details are in my handwritten notes. �

Moreover, sometimes we need to construct a subadditive and positive homogeneous
function, such as in the division problem. The following is a basic construction method.

Proposition 3.14. Let X be a vector space. If a convex subsetM is absorbing, we de�ne its
Minkowski functional by

pM(x) ∶= inf
{
� ∶ � > 0, �−1x ∈ M

}
.

Then pM is subadditive and positive homogeneous; i.e. PM satis�es:
(1) (Subadditivity) pM(x + y) ≤ pM(x) + pM(y), for all x, y ∈ X;
(2) (Positive homogeneity) pM(�x) = �pM(x), for all x ∈ X and for all � > 0.

Proof. Well-known. The details are in my handwritten notes. �

3.C. Finite-dimensional NVS, Riesz lemma. In the next we brie�y introduce the
properties of �nite-dimensional normed vector spaces, and introduce Riesz lemma to
show the di�erence when we deal with the topology of in�nite-dimensional NVS.

Theorem 3.15. Let (X, ‖ ⋅ ‖) be an n-dimensional NVS, and let e1, e2,⋯ , en be a basis of
X. Then there exist 0 < C1 ≤ C2 such that for all x =

∑n

j=1
xjej ∈ X, we have

C1

⎛

⎜

⎝

n∑

j=1

|xj|
2
⎞

⎟

⎠

1∕2

≤ ‖x‖ ≤ C2

⎛

⎜

⎝

n∑

j=1

|xj|
2
⎞

⎟

⎠

1∕2

.

Proof. Trivial. �

Corollary 3.16. Any n-dimension NVS E over ℝ (or ℂ) is homeomorphic to ℝn (or ℂn),
and hence is complete and separable. Moreover, any bounded subset of E is sequentially
compact.

Theorem 3.17 (Riesz lemma). Let E be anNVS and letM ⊂ E be a closed linear subspace
withM ≠ E. Then

∀" > 0 ∃u ∈ E such that ‖u‖ = 1 and dist(u,M) ≥ 1 − "

Proof. This conclusion is intuitive. Let v ∈ E with v ∉ M. SinceM is closed, then

d = dist(v,M) > 0,
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and hence we can choosem0 ∈ M such that

d ≤ ‖v − m0‖ ≤
d

1 − "
.

Then

u ∶=
v − m0

‖v − m0‖

satis�es the required properties. Indeed, for everym ∈ M, we have

‖u − m‖ =

‖‖‖‖‖‖‖‖

v − m0

‖v − m0‖
− m

‖‖‖‖‖‖‖‖
≥

d

‖v − m0‖
≥ 1 − ",

sincem0 + ‖v − m0‖m ∈ M. �

Remark 3.18. Riesz lemma 3.17 says that a strictly ascending chain of closed subspaces
has the property of divergence to a certain degree.

Since compactness will lead to convergence, the following corollary is natural.

Corollary 3.19. An NVS E is �nite-dimensional i� the unit ball of E is sequentially
compact.

Proof. If E is in�nite-dimensional, then there is a sequence (En) of �nite-dimensional
subspaces of E such that

En−1 ⊂ En En−1 ≠ En.

By Riesz lemma 3.17 there is a sequence (un) with un ∈ En such that

‖un‖ = 1 dist(un, En−1) ≥
1

2
.

In particular,

‖un − um‖ ≥
1

2
∀m ≠ n.

Thus the sequence (un) has no convergent subsequence, and hence the unit ball BE is
not sequentially compact. Then the conclusion follows from corollary 3.16. �

Hencewe see that the topology of in�nite-dimensional NVS is very di�erent andmuch
more complicated. In the next we will introduce some basic properties of it.

3.D. Basic topology theorems — Banach spaces. As we mentioned before, we will
introduce the properties of continuous operators to re�ect the properties of the topology
of space.

Proposition 3.20. A linear operator L between normed vector spaces X and Y is bounded
i� it is a continuous linear operator.

Proof. ⟹: Suppose that L is bounded. Then, for all vectors x, ℎ ∈ X with ℎ nonzero we
have

‖L(x + ℎ) − L(x)‖ = ‖L(ℎ)‖ ≤ M‖ℎ‖.

It follows that L is continuous at x. Moreover, since the constantM does not depend on
x, this shows that in fact L is uniformly continuous, and even Lipschitz continuous.
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⟸: Conversely, it follows from the continuity at 0 that there exists a � > 0 such that

‖L(ℎ)‖ = ‖L(ℎ) − L(0)‖ ≤ 1, ∀ℎ ∈ B2�(0).

Thus, for all non-zero x ∈ X, one has

‖Lx‖ =

‖‖‖‖‖‖‖‖‖

‖x‖

�
L (�

x

‖x‖
)

‖‖‖‖‖‖‖‖‖

=
‖x‖

�

‖‖‖‖‖‖‖‖‖

L (�
x

‖x‖
)

‖‖‖‖‖‖‖‖‖

≤
‖x‖

�
⋅ 1 =

1

�
‖x‖.

This proves that L is bounded. �

Proposition 3.21. Let (X, ‖⋅‖) be anNVS, and letf ∶ X → Λ be a linear functional. Then
f is bounded i� N ∶= {x ∈ X ∶ f(x) = 0} is a closed subspace of X. Moreover, if f ∈ X∗

and f ≢ 0, then for any x0 ∈ X with f(x0) ≠ 0, we have

X = N + span {x0} .

Proof. Trivial. �

Theorem 3.22 (Topology theorem). There are some basic theorems related to topology.
(1) If X and Y are Banach, A ∈ ℒ(X,Y), and A is bijective, then A−1 ∈ ℒ(Y,X).
(2) If X and Y are Banach, and A ∶ X → Y is linear, then A ∈ ℒ(X,Y) i� G(A) is closed

in X ⊕ Y.
(3) If X is Banach and Y is an NVS, and (A�)�∈A is a collection of operators in ℒ(X,Y)

that satis�es

sup
�∈A

‖A�(x)‖ < ∞, ∀x ∈ X.

Then sup
�∈A

‖A�‖ < ∞.
(4) If X and Y are Banach, A ∈ ℒ(X,Y), and A is surjective, then A is an open map.

Proof. Well-known. The details are in my handwritten notes. �

Corollary 3.23. Let X be a Banach space, and let A and B be two closed linear subspace
with A ∩ B = {0}. Then

A + B is closed ⟺ ∃C > 0 ∶ ‖a‖ ≤ C‖a + b‖, ∀a ∈ A, b ∈ B

⟺ �A ∶ A + B → A is continuous.

where �A ∶ A + B → A is the standard projection.

Proof. First we note thatA andB are certainly complete, and that the second equivalence
is obvious. In the next we prove the �rst equivalence.
If there exists C > 0 such that

(3.1) ‖a‖ ≤ C‖a + b‖, ∀a ∈ A, b ∈ B.

Then we have

(3.2) ‖b‖ = ‖a + b − a‖ ≤ ‖a + b‖ + ‖a‖ ≤ (C + 1)‖a + b‖, ∀a ∈ A, b ∈ B.

Hence for a Cauchy sequence (an + bn)
∞
n=1

in A + B, where an ∈ A and bn ∈ B for each
n, it easily follows from (3.1) and (3.2) that (an) and (bn) are Cauchy sequences in A and
B respectively. Thus an → a for some a ∈ A and bn → b for some b ∈ B. It follows that
an + bn → a + b ∈ A + B, and hence A + B is closed.
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IfA+B is closed, then (A+B, ‖⋅‖X) is Banach. On the other hand, note that (A+B, ‖⋅‖1)
is Banach, where ‖a + b‖1 = ‖a‖X + ‖b‖X for all x ∈ X and y ∈ Y, since (A, ‖ ⋅ ‖X) and
(B, ‖ ⋅ ‖X) are Banach. Note that

id ∶ (A + B, ‖ ⋅ ‖1) → (A + B, ‖ ⋅ ‖X)

is bijective and bounded, since

‖a + b‖X ≤ ‖a‖X + ‖b‖X.

It follows from 3.22 (1) that the inverse operator

id ∶ (A + B, ‖ ⋅ ‖X) → (A + B, ‖ ⋅ ‖1)

is also bounded, then there exists C > 0 such that

‖a‖X + ‖b‖X ≤ C‖a + b‖X, ∀a ∈ A, b ∈ B.

Then the conclusion follows. We are done. �

3.E. Hahn–Banach theorem, division theorems. As we have showed:

(A) The topology of an in�nite-dimensional NVS is much more complicated.

If we can’t �nd new tools, it’s di�cult to get more powerful results.
Another di�culty with in�nite dimension is that we lose the concept of coordinates.

Hence some standard conclusions in linear algebra don’t work (sometimes if we add
some conditions of topology, the conclusions in linear algebra may work). An intuitive
result is as follows:

(B) An operator A ∶ E → F cannot be analyzed componentwise when F is in�nite-
dimensional. In other words, it’s di�cult for us to analyze from local to global.

In fact, we have the Hahn–Banach theorem, which solves the extension problem, and
hence help us to analyze from local to global. Also, just because of this, Hahn–Banach
theorem becomes the desired new tool that can help us analyze topology.
In the next we will introduce Hahn–Banach theorem and show some of its direct

applications. One will see how Hahn–Banach theorem helps us deal with di�culties
(A) and (B) in following subsections.

Theorem 3.24 (Hahn–Banach-Bohnenblust). There are several editions of extension
theorems.

(1) Let X be a vector space over ℝ, and let p ∶ X → ℝ be a subadditive and positive
homogeneous function; i.e. p satis�es:
(1.1) (Subadditivity) p(x + y) ≤ p(x) + p(y), for all x, y ∈ X;
(1.2) (Positive homogeneity) p(�x) = �p(x), for all x ∈ X and for all � > 0.
Let Y ⊂ X be a linear subspace and let f ∶ Y → ℝ be a linear functional such that

f(y) ≤ p(y), ∀y ∈ Y.

Then there exists a linear functional F ∶ X → ℝ satisfying:
(1.1) F(y) = f(y), for all y ∈ Y;
(1.2) F(x) ≤ p(x), for all x ∈ X.
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(2) LetX be a vector space overℂ, let p be a seminorm onX, letY ⊂ X be a linear subspace,
and let f ∶ Y → ℂ be a linear functional such that

|f(y)| ≤ p(y), ∀y ∈ Y.

Then there exists a linear functional F ∶ X → ℂ satisfying:
(2.1) F(y) = f(y), for all y ∈ Y;
(2.2) |F(x)| ≤ p(x), for all x ∈ X.

(3) Let (X, ‖ ⋅ ‖) be a normed vector space over Λ, let Y ⊂ X be a linear subspace, and
let f ∶ Y → Λ be a bounded linear functional. Then there exists a bounded linear
functional F ∶ X → Λ satisfying:
(3.1) F(y) = f(y), for all y ∈ Y;
(3.2) ‖F‖ ≤ ‖f‖.

Proof. Use the trans�nite induction for (1), and then (2) and (3) follows. The details are
in my handwritten notes. �

Before we deal with di�culties (A) and (B), we introduce some direct applications of
Hahn–Banach-Bohnenblust theorem 3.24 �rst.

Corollary 3.25. Let (X, ‖ ⋅ ‖) be an NVS.

(1) For all x0 ∈ X ⧵ {0}, there exists f ∈ X∗ satisfying
(1.1) f(x0) = ‖x0‖;
(1.2) ‖f‖ = 1.

(2) LetY ⊂ X be its closed linear subspace, and let x0 ∈ X⧵Y, then exists f ∈ X∗ satisfying
(2.1) f(y) = 0, for all y ∈ Y;
(2.2) f(x0) = dist(x0, Y);
(2.3) ‖f‖ = 1.

To a certain degree, the following division theorems are intuitive representation of
Hahn–Banach-Bohnenblust theorem 3.24.

Theorem 3.26 (Mazur theorem). Let (X, ‖ ⋅ ‖) be an NVS, and let K ⊂ X be closed and
convex. If x0 ∉ K, then there exists r and a bounded linear functionalF ∶ X → ℝ satisfying

F(x0) > r, and F(x) ≤ r, ∀x ∈ K.

Proof. WLOG we can assume that 0 ∈ K. Since x0 ∉ K, � = dist(x0, K) > 0. Setting

M = {x ∈ X ∶ dist(x, K) < �

3
},

then it’s easy to see the following properties:

(1) M is a closed and convex subset;
(2) B�∕3(0) ⊂ M (and henceM is absorbing);
(3) x0 ∉ M.

It follows from proposition 3.14 that the corresponding Minkowski functional

pM(x) ∶= inf
{
� ∶ � > 0, �−1x ∈ M

}
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is subadditive and positive homogeneous, and satis�es

p(x0) > 1, and p(x) ≤ 1, ∀x ∈ M.

Setting

Y = {cx0 ∶ c ∈ ℝ} , and f ∶ Y → ℝ, cx0 ↦ cp(x0),

then

f(y) ≤ p(y), ∀y ∈ Y,

and hence it follows from Hahn–Banach-Bohnenblust theorem 3.24 (1) that there exists
a linear functional F ∶ X → ℝ satisfying:
(1) F(y) = f(y), for all y ∈ Y;
(2) F(x) ≤ p(x), for all x ∈ X.
In particular, we have

|F(x)| ≤ max {p(x), p(−x)} ≤ 1, ∀x ∈ B�∕3(0) ⊂ M.

Thus F is bounded, and hence is exactly the desired bounded linear functional. �

Corollary 3.27. Given a normed vector space (X, ‖⋅‖) overℝ, let K1, K2 ⊂ X be two closed
and convex subsets with

d0 = dist(K1, K2) > 0.

Then there exists f ∈ X∗ such that

sup
x∈K1

f(x) < inf
y∈K2

f(y).

Proof. Each point inK1−K2 is of the form a−b, where a ∈ K1 and b ∈ K2. Letting a−b
and a′ − b′ be two points in K1 − K2, note that for any � ∈ [0, 1],

� (a − b) + (1 − �) (a′ − b′) = [�a + (1 − �) a′] − [�b + (1 − �) b′] .

Thus K1 − K2 is convex. Since d0 = dist(K1, K2) > 0, we have

B (0,
d0

2
)
⋂

(K1 − K2) = ∅.

Setting A = B(0, d0∕2) − (K1 − K2), then A is also convex for the same reason. Since

A =
⋃

y∈(K1−K2)

(B (0,
d0

2
) − y) ,

we know that A is open. Note that 0 ∉ A, by Mazur theorem 3.26 there is some f ∈ X∗

such that

f(z) < 0 ∀z ∈ A,

that is,

f(x) < f(y) ∀x ∈ B (0, d0∕2) ∀y ∈ (K1 − K2).

Letting " = d0

4
‖f‖, it induces that

" < f(y) ∀y ∈ (K1 − K2),
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which means

f(a) − f(b) > " ∀a ∈ K1 ∀b ∈ K2.

Thus −f satis�es the requirement. �

3.F. Deeper topology theorems — separability, Banach operator spaces,
re�exivity. Asmentioned in subsection 3.E, Hahn–Banach-Bohnenblust theorem 3.24
is just the desired new tool that helps us to analyze topology. In the next we introduce
some deeper topology theorems which are derived via it.

Proposition 3.28. Let E be an NVS. If E∗ is separable, then E is separable.

Proof. Since E∗ is separable, there exists a sequence (fn)∞n=1 in E
∗ such that ‖fn‖ = 1 for

each n and {fn}∞n=1 is dense in the unit sphere of E∗. Choose xn ∈ X for each n such that
‖xn‖ = 1 and

|||fn(xn)
||| >

1

2
, n = 1, 2,⋯ .

Setting Y = span {xn}
∞

n=1
, then Y is separable. It su�ces to prove that X = Y. Suppose

for contradiction that there exists x0 ∈ X ⧵Y, then by corollary 3.25, there exists f ∈ X∗

satisfying

‖f‖ = 1, f(x0) = d = dist(x0, Y), and f|Y ≡ 0.

Then note that

‖f − fn‖ = sup
x∈X
‖x‖≤1

|||f(x) − fn(x)
||| ≥

|||f(xn) − fn(xn)
||| >

1

2
, n = 1, 2,⋯ .

A contradiction. �

Proposition 3.29. Suppose that X and Y are two normed vector spaces over Λ. Then
ℒ(X,Y) is Banach i� Y is Banach.

Proof. Suppose that Y is Banach. Given a Cauchy sequence (An) in ℒ(X,Y), i.e. for all
" > 0, there exists N > 0 such that

‖An − Am‖ ≤ " ∀m, n ≥ N.

Then for each x ∈ X,

‖Anx − Amx‖ ≤ ‖An − Am‖ ‖x‖ ≤ " ‖x‖ ∀m, n ≥ N.

Thus (Anx) is Cauchy and hence converges. Put

A ∶ X → Y, x ↦ lim
n→∞

Anx.

It follows that A is linear, and

‖Ax‖ =
‖‖‖‖‖‖‖
lim
k→∞

Akx
‖‖‖‖‖‖‖

=
‖‖‖‖‖‖‖
ANx + lim

k→∞
(Ak − AN)x

‖‖‖‖‖‖‖

≤ ‖ANx‖ +
‖‖‖‖‖‖‖
lim
k→∞

(Ak − AN)x
‖‖‖‖‖‖‖

≤ ‖AN‖ ‖x‖ + " ‖x‖ = (‖AN‖ + ") ‖x‖ .
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Hence A ∈ ℒ(X,Y). Note that for each x ∈ X, we have

‖Anx − Amx‖ ≤ " ‖x‖ ∀m, n ≥ N ⟹ ‖Anx − Ax‖ ≤ " ‖x‖ ∀n ≥ N.

Thus

‖An − A‖ = sup
‖x‖≤1

‖Anx − Ax‖ ≤ ",

and hence limn→∞An = A.
Suppose that ℒ(X,Y) is Banach. Given any Cauchy sequence (yn) in Y, i.e. for all

" > 0, there exists N > 0 such that

‖yn − ym‖ ≤ " ∀m, n ≥ N.

Choose 0 ≠ x0 ∈ E and via Hahn-Banach theorem 3.24 choose f0 ∈ E∗ such that
f0(x0) = ‖x0‖ and ‖f0‖ = 1. Put

An ∶ X → Y, x ↦ f0(x)yn.

It’s clear that An ∈ ℒ(X,Y). Note that ∀m, n ≥ N, we have

‖An − Am‖ = sup
‖x‖≤1

‖Anx − Amx‖ = sup
‖x‖≤1

|f0(x)| ‖yn − ym‖ ≤ ‖yn − ym‖ ≤ ".

Hence we know that (An) converges to someA ∈ ℒ(X,Y) sinceℒ(X,Y) is Banach. Note
that for each x ∈ X we have

‖Anx − Ax‖ ≤ ‖An − A‖ ‖x‖ .

Hence (Anx) converges. Letting x = x0, we get that yn → ‖x0‖
−1
Ax0. �

An important di�erence of the topology of in�nite-dimensional NVS is that E∗∗ may
not be canonically isomorphic to E. Now we introduce the concept of re�exivity.

De�nition 3.30 (Re�exive). Let E be an NVS and let J ∶ E → E∗∗ be the canonical
injection from E into E∗∗.2 The space E is called re�exive if J is surjective, i.e., J(E) = E∗∗.

Remark 3.31. Since J is an isometry and X∗∗ is Banach, a necessary condition of being
re�exive is that E is Banach.

Theorem 3.32. Let X be an Banach space. Then X is re�exive i� every closed linear
subspace Y of X is re�exive.

Proof. It su�ces to show that if X is re�exive then every closed linear subspace Y is
re�exive. For any F ∈ Y∗∗, de�ne

F̃(f) = F (f|Y) , ∀f ∈ X∗.

Then
||||F̃(f)

|||| ≤ ‖F‖ ⋅ ‖f|Y‖ ≤ ‖F‖ ⋅ ‖f‖,

and hence F̃ ∈ X∗. Since X is re�exive, there exists x0 ∈ X with

J(x0) = x∗∗
0
= F̃.

2For v ∈ E, we have J(v) ∶ E∗ → Λ, f ↦ ⟨f, v⟩E∗,E .
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Hence

(3.3) x∗∗
0
(f) = f(x0) = F̃(f) = F (f|Y) , ∀f ∈ X∗.

It su�ces to show that x0 ∈ Y. Suppose for contraction that x0 ∉ Y, by corollary 3.25,
there exists f ∈ X∗ satisfying

‖f‖ = 1, f(x0) = d = dist(x0, Y), and f|Y ≡ 0.

Then it follows from (3.3) that

d = f(x0) = F(f|Y) = 0,

a contraction. �

We will go deeper for studying the topology of NVS in the next subsection.

3.G. Weak(-*) topology, sequentially weak(-*) compactness, achieving distance.
Now we introduce two aim-oriented concepts, the weak topology and the weak-*
topology.

De�nition 3.33 (Weak topology and weak-* topology). Let E be an NVS.
(1) The weak topology �(E, E∗) on E is the coarsest topology that makes all the maps

(f)f∈E∗ continuous.
(2) The weak-* topology �(E∗, E) on E∗ is the coarsest topology that makes all the maps

(⟨⋅, x⟩)x∈E continuous.

Remark 3.34. The signi�cance of de�nition 3.33 is just embodied in “coarsest”. This is
the weakest requirement to achieve the goal. Actually in lots of problems, it su�ces to
show the convergence in weak topology, which is the key point.

Remark 3.35. Let X be an in�nite-dimensional NVS. Then X equipped with the weak
topology is not metrizable,3 and X equipped with the weak-* topology is not always
metrizable.

By the above remark, we need to re-clarify some notions.

De�nition 3.36 (Weak(-*) convergence). Let E be an NVS.
(1) We say that a sequence (xn) in E weakly converges to x if (xn) converges to x in the

weak topology �(E, E∗), which is denoted by xn ⇀ x.
(2) We say that a sequence (xn) in E weakly-* converges to x if (xn) converges to x in the

weak-* topology �(E∗, E), which is denoted by xn
∗

⇀ x.

De�nition 3.37 (Sequentially weak(-*) compactness). Let E be an NVS.
(1) A subset A ⊂ E is called sequentially weak compact if every sequence of points in A

has a subsequence that weakly converges to a point in E.
(2) A subset A ⊂ E is called sequentially weak-* compact if every sequence of points in

A has a subsequence that weakly-* converges to a point in E.

In the next we introduce some basic properties of weak(-*) convergence.
3One can refer to https://math.stackexchange.com/questions/1381759.

https://math.stackexchange.com/questions/1381759
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Proposition 3.38 (Weak(-*) convergence). Let (xn) be a sequence in an NVS E. Then
(1) xn ⇀ x⟺⟨f, xn⟩ → ⟨f, x⟩, ∀f ∈ E∗.
(2) If xn → x , then xn ⇀ x .
(3) If xn ⇀ x, then (‖xn‖) is bounded and ‖x‖ ≤ lim inf n→∞ ‖xn‖.
(4) If xn ⇀ x and if fn → f in E∗, then ⟨fn, xn⟩ → ⟨f, x⟩.
Also, let (fn) be a sequence in E∗. Then

(1) fn
∗

⇀ f⟺⟨fn, x⟩ → ⟨f, x⟩, ∀x ∈ E.
(2) If fn → f , then fn ⇀ f in �(E∗, E∗∗). If fn ⇀ f in �(E∗, E∗∗), then fn

∗

⇀ f in
�(E∗, E).

(3) If fn
∗

⇀ f, then (‖fn‖) is bounded and ‖f‖ ≤ lim inf n→∞ ‖fn‖.
(4) If fn

∗

⇀ f and if xn → x in E, then ⟨fn, xn⟩ → ⟨f, x⟩.

Proof. One can refer to [Bre], in which we use the uniform boundedness principle, i.e.
theorem 3.22 (3). �

Theorem 3.39. Let X be an NVS, let x0 ∈ X, and let (xn) be a sequence of points in X. If
xn ⇀ x0, then x0 ∈ Co {xn}, where Co {xn} is the convex hull.

Proof. Set K = Co {xn}. If x0 ∉ K, via Mazur theorem 3.26, there exists a bounded linear
functional f ∶ X → ℝ and some constant r such that

f(x0) > r, and f(x) ≤ r, ∀x ∈ K.

But it follows from the weak convergence that f(xn) → f(x0); a contradiction. �

The properties of weak(-*) convergence lead to the following properties of sequentially
weak(-*) compactness if we add some conditions of topology.

Lemma 3.40. Let X be a separable NVS. Then any bounded set in X∗ is sequentially
weakly-* compact.

Proof. Suppose that (fn) ⊂ X satisfying ‖fn‖ ≤ M, n = 1, 2,⋯. It su�ces to show that
there is a weakly-* convergent subsequence.
Since X is separable, choose a sequence (xn) of points such that {xn} is a dense

subset. Since (fn(x1))∞n=1 is bounded, there is a convergent subsequence (fnj ,1(x1))
∞

j=1
.

Proceeding inductively, for each k we �nd a subsequence ((nj, k))∞j=1 of ((nj, k − 1))∞
j=1

such that (fnj ,k(xk))
∞

j=1
converges. Hence (fnj ,j)

∞

j=1
converges at each xk.

Then setting f(x) = limj→∞ fnj ,j(x), it easily follows that f ∈ X∗ and fnj ,j
∗

⇀ f. �

Theorem 3.41. Any bounded subset A of a re�exive space X is sequentially weakly
compact.

Proof. It su�ces to show that given a bounded sequences (xn)∞n=1 in X, then there exist
a subsequence (xnj)

∞

j=1
and a point x ∈ X such that xnj ⇀ x.

Set Y = span {xn}
∞

n=1
, then Y is separable, and is re�exive via theorem 3.32. Then via

proposition 3.28 we know that Y∗ is separable. Hence, via lemma 3.40, (x∗∗n |Y) has a
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subsequence (x∗∗nj |Y) that weakly-* converges to x
∗∗
0
|Y for some x0 ∈ Y. It follows that

f(xnj) → f(x0), ∀f ∈ Y∗,

and hence

f(xnj) = f|Y(xnj) → f|Y(x0) = f(x0), ∀f ∈ X∗.

We are done. �

After the above detailed analysis of topological properties, we can now prove the well-
known property of achieving distance.

Corollary 3.42. Let X be a re�exive space, and let K be a closed and convex subset. Then
for every x0 ∈ K, there exists y0 ∈ K such that

‖x0 − y0‖ = inf
y∈K

‖x0 − y‖.

Proof. WLOG we assume that x0 ∉ K. Choose a sequence (yn)∞n=1 of points in K such
that

‖x0 − yn‖ ≤ d +
1

n
, where d = inf

y∈K
‖x0 − y‖.

It’s clear that (yn) is bounded, and hence, by theorem 3.41, has a weakly convergent
subsequence (ynj)

∞

j=1
that converges to some z ∈ X; i.e. we have

f(x − ynj) → f(x − z), ∀f ∈ X∗.

By theorem 3.39, we know z ∈ K. By corollary 3.25 there exists f ∈ X∗ such that

f(x − z) = ‖x − z‖ and ‖f‖ = 1

Hence

‖x − z‖ = lim
j→∞

f(x − ynj) ≤ ‖f‖ ⋅ ‖x − ynj‖ ≤ d +
1

nj
, ∀j.

It follows that z is the desired point. �

The following are some other well-known properties of achieving distance.

Problem 3.43. The following facts are well-known:

(1) If a Banach space E is uniformly convex, then E is re�exive;
(2) The minimizing point in corollary 3.42 is unique when E is uniformly convex;
(3) Every Hilbert space is uniformly convex;
(4) Lp(X,X, �) is uniformly convex if 1 < p < ∞ and X is �-�nite.

Proof. See [Xio]. �

Problem3.44. Let (xn) be a sequence inl1, andx0 ∈ l1. Prove thatxn ⇀ x0 ⟺xn → x0.

Proof. See [Xio]. �

For more basic properties, one can refer to [Bre].
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3.H. Complements, orthogonal relations. Next, we will show how Hahn-Banach-
Bohnenblust theorem 3.24 helps us deal with di�culties (B) in subsection 3.E.
Hilbert spaces are typical cases that help us understand the framework. Roughly

speaking, Hahn-Banach-Bohnenblust theorem 3.24 helps us �nd the orthogonal
decomposition and helps us �nd a “basis” (i.e. a complete orthogonal system). See
section 4 for the detailed introduction.
For general spaces, we still have the conclusions for complements and orthogonal

relations. One can regard them as the generalization of the theory for Hilbert spaces.

De�nition 3.45. Let G ⊂ E be a closed subspace of a Banach space. A subspace L ⊂ E is
said to be a topological complement or simply a complement of G if L satis�es:
(1) L is closed;
(2) G ∩ L = {0} and G + L = E.

Lemma 3.46. Let (X, ‖ ⋅ ‖) be an NVS over Λ.
(1) If f1,⋯ , fn ∈ X∗ are linear independent, then there exist e1,⋯ , en ∈ X satisfying:

(1.1) fj(ek) = �jk, j, k = 1, 2,⋯;
(1.2) We have

X =
⎛

⎜

⎝

n⋂

j=1

N(fj)
⎞

⎟

⎠

⊕ span
{
ej
}n

j=1
,

where for every x ∈ X we have

⎛

⎜

⎝

x −

n∑

j=1

fj(x)ej

⎞

⎟

⎠

∈

n⋂

j=1

N(fj).

(2) IfY ⊂ X is an n-dimensional linear subspace, then there exists a closed linear subspace
Z of X such that X = Y ⊕ Z.

Proof. For (1), we de�ne

' ∶ X → Λn, x ↦ (f1(x), f2(x),⋯ , fn(x))

Then it follows easily from the linear independence that ' is surjective. Now choose ej
for each j such that

'(ej) = (0,⋯ , 0
⏟ ⏟ ⏟

i−1

, 1, 0⋯ , 0)

then (1.1) follows. Moreover, note that

fk

⎛

⎜

⎝

x −

n∑

j=1

fj(x)ej

⎞

⎟

⎠

= fk(x) −

n∑

j=1

fj(x)fk(ej) = fk(x) − fk(x) = 0, ∀k.

It’s clear that
(⋂n

j=1
N(fj)

)
∩ span

{
ej
}n

j=1
= {0}, and then (1) follows.

For (2), setting Y = span
{
ej
}n

j=1
, and then there exist f1,⋯ , fn ∈ Y∗ with

fj(ek) = �jk, j, k = 1, 2,⋯ .
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ByHahn–Banach theorem 3.24, we extend fj to a bounded linear functionalFj ∶ X → Λ

for each j, and then

X =
⎛

⎜

⎝

n⋂

j=1

N(Fj)
⎞

⎟

⎠

⊕ Y

by (1). Then (2) follows from proposition 3.21. �

Proposition 3.47. Let (X, ‖ ⋅ ‖) be an Banach space over Λ.
(1) Every �nite-dimensional subspace Y admits a complement.
(2) Every closed �nite-codimensional subspaceM admits a complement.4

(3) LetN ⊂ E∗ be a subspace of dimension p. Then

G = {x ∈ E ∶ ⟨f, x⟩ = 0 ∀f ∈ N} = N⟂

is closed and admits a complement of dimension p.

Proof. (1) and (3) follow immediately from lemma 3.46.
For (2), assume that X = M + N for some �nite-dimensional space N ⊂ X. We may

always assume that M ∩ N = {0} (otherwise by (1) we can choose a complement N′ of
M ∩ N in N). Then the conclusion follows, since �nite-dimensional subspace is always
closed. �

De�nition 3.48 (Orthogonal). Let E be an NVS. IfM ⊂ E is a linear subspace we set

M⟂ = {f ∈ E∗ ∶ ⟨f, x⟩ = 0, ∀x ∈ M}

IfN ⊂ E∗ is a linear subspace we set

N⟂ = {x ∈ E ∶ ⟨f, x⟩ = 0, ∀f ∈ N}

Note that, by de�nition,N⟂ is a subset of E rather than E∗∗. It is clear thatM⟂ (resp. N⟂) is
a closed linear subspace of E∗ (resp. E). We say thatM⟂ (resp. N⟂) is the space orthogonal
toM (resp. N).

Proposition 3.49. Let E be an NVS, and letM ⊂ E be a linear subspace. Then

(M⟂)⟂ = M.

LetN ⊂ E∗ be a linear subspace. Then

(N⟂)⟂ ⊃ N.

Proof. It is clear that N ⊂ (N⟂)⟂ and since (N⟂)⟂ is closed we have N ⊂ (N⟂)⟂. It is
also clear thatM ⊂ (M⟂)⟂, and since (M⟂)⟂ is closed we haveM ⊂ (M⟂)⟂. Conversely,
suppose for contradiction that

x0 ∈ (M⟂)⟂ x0 ∉ M.

Via Mazur theorem 3.26 we get

⟨f, x⟩ < � < ⟨f, x0⟩ ∀x ∈ M,

4LetM be a subspace of a Banach space X. M has �nite codimension if there exists a �nite-dimensional
space N ⊂ X such thatM +N = X.
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for some bounded linear functional f ∶ E → ℝ and some � ∈ ℝ. SinceM is linear space
we get

⟨f, x⟩ = 0 ∀x ∈ M,

and hence ⟨f, x0⟩ > 0. Therefore f ∈ M⟂ and consequently ⟨f, x0⟩ = 0, a contradiction.
�

The following propositions are vital, in which topology also plays an important role.

Theorem 3.50 (Orthogonal relations). Let E and F be two NVSs, and let A ∶ D(A) ⊂

E → F be an unbounded linear operator that is densely de�ned and closed. Then,
(1) N(A) = R(A∗)⟂;
(2) N(A∗) = R(A)⟂;
(3) N(A)⟂ ⊃ R(A∗);
(4) N(A∗)⟂ = R(A).

Moreover, if E∗ is re�exive thenN(A)⟂ = R(A∗).

Proof. One can refer to [Bre]. �

Theorem 3.51 (Equivalence between closedness and orthogonal relations). Let E and F
be Banach, and let A ∶ D(A) ⊂ E → F be an unbounded linear operator that is densely
de�ned and closed. The following properties are equivalent:
(1) R(A) is closed.
(2) R(A∗) is closed.
(3) R(A) = N(A∗)⟂.
(4) R(A∗) = N(A)⟂.

Proof. One can refer to [Bre]. �

Remark 3.52. Coming back to Hilbert spaces again, the theory of complements and
orthogonal relations will be more powerful when we deal with Hilbert spaces. One
can see that theorem 4.5, proposition 4.11, proposition 4.12 and theorem 4.14 give us
a powerful method to prove vital theorems like Riesz representation theorem 4.16.

3.I. Compact operators, Fredholm property. In the next we introduce the compact
operators, which are typical examples of operators that make a good use of the preceding
conclusions.
By adding the property of compactness, compact operators enjoy the Fredholm

property, which is the core topic of this subsection.

De�nition 3.53 (Compact operator). Let E and F be two Banach spaces. A bounded
operator T ∈ ℒ(E, F) is said to be compact if T(BE) is sequentially compact. The set of all
compact operators from E into F is denoted byK(E, F). For simplicity one writesK(E) =
K(E, E).

Example 3.54. Any �nite-rank operator is compact.

Proposition 3.55. Let E, F and G be three Banach spaces.
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(1) If T ∈ ℒ(E, F) and S ∈ K(E, F) (resp. T ∈ K(E, F) and S ∈ ℒ(F, G)), then S◦T ∈

K(E, G).
(2) If T ∈ K(E, F), then T∗ ∈ K(F∗, E∗). And conversely.
(3) K(E, F) is a closed linear subspace of ℒ(E, F).
(4) (Completely continuous) If T ∈ K(E, F), and if un ⇀ u, then Tun → Tu in F.

Proof. One can refer to [Bre]. �

Remark 3.56. Property (4)will produce non-trivial e�ects if we combine it with compact
embedding theorems. For instance, if Ω ⊂ ℝn is bounded and smooth, then a bounded
sequence of functions (uk)k≥1 in H1(Ω) has a subsequence (ukj)j≥1 that converges
strongly to some u ∈ L2(Ω).

Theorem 3.57 (Fredholm). Suppose that E is a Banach space and T ∈ K(E). Then

(1) N(I − T) is �nite-dimensional.
(2) R(I − T) is closed.
(3) N(I − T) = {0}⟺ R(I − T) = E.
(4) dimN(I − T) = dimN(I − T∗).

Proof. We will give the ideas of these conclusions and then solve them.

(1) The conclusion is just a direct corollary of theorem 3.17. LetE1 = N(I−T). Then BE1 ⊂
T(BE) and thus BE1 is compact. By Theorem 3.17, E1 must be �nite-dimensional.

(2) The conclusion originate in the fact that compactness will lead to the property of
convergence. Suppose that

fn = un − Tun → f.

We aim to show that f ∈ R(I − T). Our idea is to �nd a sequence (xk) such that

fnk = xk − Txk, xk → x, and Txk → Tx.

and then we will get f = x − Tx ∈ R(I − T). Clearly, we only need to �nd a sequence
(xk) such that fnk = xk − Txk and

(3.4) Txk → Tx.

Note that we can’t achieve this idea directly via (un), since (3.4) is certainly supposed to
be derived by the compactness, which requires that the sequence is bounded. Therefore,
in order to �nd appropriate (xk), wemustmake the following transformation �rst. Note
that if vn ∈ N(I − T), we have

fn = ũn − Tũn where ũn = un − vn.

Naturally, we want to minimize ‖ũn‖. Set dn = dist (un, N(I − T)). Since N(I − T) is
�nite-dimensional and hence is homeomorphic to someℝn, we can choose vn such that
‖ũn‖ = dn. Now it su�ces to prove that (Tũn) has a convergent subsequence, and hence
it su�ces to prove that (ũn) is bounded via the compactness.



26 Functional analysis, measure theory and real analysis

Suppose for contradiction that (ũn) is unbounded. Note that1

(ũn) is unbounded ⟺ ∃
(
ũnk

)
such that ‖‖‖‖ũnk

‖‖‖‖ → ∞

⟺ ∃
(
ũnk

)
such that

ũnk − Tũnk
‖‖‖‖ũnk

‖‖‖‖

→ 0

⟺ ∃(!k =
ũnk

‖‖‖‖ũnk
‖‖‖‖

) such that !k − T!k → 0.

Since (!k) is bounded, there exists (!nk) such that T!nk → z, and hence

!nk → z where z ∈ N(I − T).

Thus dist
(
!nk , N(I − T)

)
→ 0. But note that

dist
(
!nk , N(I − T)

)
= dist (

ũnk
‖‖‖‖ũnk

‖‖‖‖

,N(I − T)) =
1

dnk
dist

(
ũnk , N(I − T)

)
= 1.

Contradiction. Thus we can �nd appropriate (xk).
(3) Roughly speaking, our idea is that the condition that

N(I − T) = {0} and R(I − T) ⊊ E

will give us a strictly decresing chain of closed subspaces which has the property of
divergence (to a certain degree), and this will contradict the fact compactness will lead
to the property of convergence. Besides, the converse propblem is related to the dual
propblem, and hence we can use proposition 3.55.
Suppose for contradiction that E1 = R(I−T) ≠ E1 andN(I−T) = {0}. Then letting

En = (I − T)n(E), we obtain a decresing chain of closed subspaces since

En+1 = (I − T)n(E1) ⊂ (I − T)n(E) = En.

Moreover, it’s a strictly decresing chian, since if

En+1 = (I − T)n(E1) = (I − T)n(E) = En for some n ∈ ℕ,

then E1 = E (since (I − T) is injective), a contradiction. Now via Riesz’s lemma, we
may construct a sequence (un) such that

un ∈ En ‖un‖ = 1 dist(un, En+1) ≥ 1∕2 ∀n ∈ ℕ.

Then for n > m we have

Tun − Tum = (−un + Tun + um − Tum + un) − um ≥ dist(um, Em+1) ≥ 1∕2.

This is impossible, since T is a compact operator. Hence

(3.5) N(I − T) = {0} ⟹ R(I − T) = E.

Conversely, assume that R(I − T) = E. Via theorem 3.50 we know

N(I − T∗) = R(I − T)⟂ = {0}.

1Normalization is the basic method and the following equivalence is natural. One can easily see that the
unboundedness will lead to a contradiction.
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Since T∗ ∈ K(E∗), property (3.5) yields R(1 − T∗) = E∗. Then theorem 3.50 yields

N(I − T) = R(I − T∗)⟂ = {0}.

Now we get the conclusion.
(4) Set d = dimN(I − T) and d∗ = dimN(1 − T∗). Naturally, we want to shift all the

dimensions into E and then compare them.
By (1) and proposition 3.55 (2) we know d∗ < +∞, and then via proposition 3.47,

theorem 3.51 and (2) we know that

R(I − T) = N(I − T∗)⟂

has a complement in E, denoted by F, of dimension d∗.
(4.1) We will �rst prove that d∗ ≤ d.

Suppose for contradiction that d < d∗. Then there is a linear map

Λ ∶ N(I − T) → F

that is injective and not surjective.2 We will derive the contradiction similarly
as in footnote 2 via (3).
First we de�ne the projection P. Via (1),N(I−T) admits a complement inE via
proposition 3.47. Thus, by corollary 3.23, there exists a continuous projection

P ∶ E ↠ N(I − T).

Then we put3

f̃ = −Λ◦P + (I − T) ∶ E → E, u ↦ −Λ◦Pu + (I − T)u.

Clearly,N(f̃) = {0}. Note that I − f̃ = Λ◦P+T is compact sinceΛ◦P has �nite
rank. Then via (3) we know R(f̃) = E, which certainly contradicts the fact that
Λ is not surjective.

(4.2) Applying (4.1) to T∗, we obtain

dimN(I − T∗∗) ≤ dimN(I − T∗) ≤ dimN(I − T).

Based on the canonical injection from E to E∗∗, we know via theorem 3.50

N(I − T∗∗) ⊃ N(I − T)

and therefore d = d∗.
�

Remark 3.58. If we change I into an isomorphism A, the conclusion is also true.
Certainly one can prove this similarly, but this can also be proved by the properties of
composition; that is, using the fact thatA◦(I−T) = A−A◦TwhereA◦T is also compact.
2 Now our aim is to �nd the contradiction. Take the simplest situation that E is �nite-dimensional as an
example. Then it’s obvious that there doesn’t exist such Λ, since

f ∶ E → N ⊕ R, u ↦ (Pu, (I − T)u)

is an isomorphism and hence together withE ≅ F⊕R implies dimF = dimN, whereP is a natural projection

in the natural isomorphism E
≅
,→ N ⊕ E∕N.

3We only know that F and R are complements mutually. Hence we transform f naturally. In another word,
we turn to emphasize the fact that E ≅ F ⊕ R and �nd the contradiction based on this.
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3.J. Operator equations, spectrum on ℂ. At the end of this section, we make a brief
introduction to operator equations and the spectrums of operators (onℂ). One can refer
to section 5 for a further study.
Operator equations are the equations about operators and elements, which also give

us a new perspective to show the strength of preceding results. For instance, note that

y ∈ R(A) ⟺ Ax = y has a solution;
N(A) = {0} ⟺ if Ax = y has a solution, then the solution is unique.

Then theorem 3.57 yields

T ∈ K(E) ∶ (I − T)x = y has at most one solution ∀y
⟺ (I − T)x = y has at least one solution ∀y.

Clearly, the preceding theorems correspond to conclusions of solving operator equations.
As we do with linear maps, in the next we focus on the basic operator equation

(�I − A)(x) = y.

This leads to the concept of spectrum.

De�nition 3.59 (Spectrum on ℂ). Let X be a Banach space over ℂ, and let A ∈ ℒ(X,X).
(1) The resolvent set, denoted by �(A), is de�ned by

�(A) = {� ∈ ℂ ∶ (�I − A) is bijective}

(2) The spectrum, denoted by �(T), is the complement of the resolvent set, i.e., �(T) =
ℂ ⧵ �(T).

(3) Furthermore,

�(A) = �p(A) ∪ �c(A) ∪ �r(A)

where

�p(A) = {� ∈ ℂ ∶ N(�I − A) ≠ 0} ;

�c(A) =
{
� ∈ ℂ ∶ N(�I − A) = 0, R(�I − A) ≠ X, R(�I − A) = X

}
;

�r(A) =
{
� ∈ ℂ ∶ N(�I − A) = 0, R(�I − A) ≠ X

}
.

Remark 3.60. Clearly, ℂ = �(A) ∪ �p(A) ∪ �c(A) ∪ �r(A).

In the next we introduce some basic properties of spectrums for general operators.

Theorem 3.61. Let X be a Banach space over ℂ, and let A ∈ ℒ(X,X). Then
(1) (�(A) is bounded) If

|�| > r(A) = lim
n→∞

‖An‖1∕n = inf
n≥1

‖An‖1∕n,

then � ∈ �(A), and

(�I − A)−1 =

∞∑

n=0

An

�n+1
,

where RHS is the limit of Sm =
∑m

n=0

An

�n+1
with respect to the normal operator norm.
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(2) (�(A) is open) If �0 ∈ �(A), then

r�0 ∶= lim
n→∞

‖(�0I − A)−n‖1∕n < ∞,

we have B(�0, r−1�0 ) ⊂ �(A), and

(�I − A)−1 =

∞∑

n=0

(�0I − A)−(n+1)(�0 − �)n, ∀|� − �0| < r−1
�0
.

(3) (The radius of spectrum) we have

�(A) ≠ ∅ and sup
�∈�(A)

|�| = r(A).

(4) (Adjoint operator)We have

�(A) = �(A∗) and (�I − A∗)−1 =
(
(�I − A)−1

)∗
, ∀� ∈ �(A).

Proof. Well-known. The details are in my handwritten notes. �

Remark 3.62. For every A ∈ ℒ(X,X), �(A) is a compact set.

Example 3.63. Let F ⊂ ℂ be an arbitrary compact subset, and let {�n}∞n=1 be an arbitrary
dense subset of F. Then for 1 ≤ p < ∞, the operator

A ∶ lp → lp, (x1, x2,⋯ , xn,⋯) ↦ (�1x1, �2x2,⋯ , �nxn,⋯)

satis�es that F = �(A).

Proposition 3.64. Suppose thatE is a Banach space and that {Tn} ⊂ ℒ(E) (n = 1, 2, 3,⋯)
converges to T ∈ ℒ(E). Let �0 be a regular value of T. Then �0 is also a regular value of Tn
when n is su�ciently large, and

lim
n→∞

(�0I − Tn)
−1 = (�0I − T)−1.

Proof. Note that

(3.6) �0I − Tn = �0I − T − (Tn − T) = (�0I − T)
(
I − (�0I − T)−1(Tn − T)

)

and note that

‖(�0I − T)−1(Tn − T)‖ ≤ ‖(�0I − T)−1‖ ⋅ ‖Tn − T‖
n→∞

,,,,→ 0.

Hence there exists N > 0 such that

‖(�0I − T)−1(Tn − T)‖ < 1 ∀n > N,

and hence

I − (�0I − T)−1(Tn − T)

also has bounded inverse operator by theorem 3.61 (1). Hence for n > N, by (3.6) we
know that �0 is also a regular value of Tn. Moreover,

(�0I − Tn)
−1 =

(
I − (�0I − T)−1(Tn − T)

)−1
(�0I − T)−1

= (

∞∑

k=0

[
(�0I − T)−1(Tn − T)

]k
) (�0I − T)−1,
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and hence

‖(�0I − Tn)
−1 − (�0I − T)−1‖ =

‖‖‖‖‖‖‖‖‖

(

∞∑

k=1

[
(�0I − T)−1(Tn − T)

]k
) (�0I − T)−1

‖‖‖‖‖‖‖‖‖

≤

∞∑

k=1

‖(�0I − T)−1(Tn − T)‖
k
⋅ ‖(�0I − T)−1‖

=
‖(�0I − T)−1(Tn − T)‖

1 − ‖(�0I − T)−1(Tn − T)‖
⋅ ‖(�0I − T)−1‖

≤
‖Tn − T‖

1 − ‖(�0I − T)−1‖ ⋅ ‖Tn − T‖
⋅ ‖(�0I − T)−1‖2

n→∞

,,,,→ 0

We are done. �

We end with a typical example.

Proposition 3.65. Suppose that K(s, t) is a continuous function on [a, b] × [a, b]. De�ne
A ∶ C[a, b] → C[a, b] by

(Ax)(t) = ∫

t

a

K(s, t)x(s)ds

If � ≠ 0, then for all y ∈ C[a, b], the equation

�x(t) − (Ax)(t) = y(t)

has unique solution.

Proof. It’s clear that A is (totally) continuous. It su�ces to prove that

r(A) = lim
n→∞

‖An‖1∕n = 0

by theorem 3.61 (1). PutM = max[a,b]×[a,b] |K(s, t)|. Note that

|(Ax)(t)| =

|||||||||

∫

t

a

K(s, t)x(s)ds

|||||||||

≤ M(t − a)‖x‖

and by induction we easily know that

|(Anx)(t)| ≤
(t − a)nMn

n!
‖x‖.

Hence

‖An‖ ≤
(b − a)nMn

n!
,

and then

r(A) = lim
n→∞

‖An‖1∕n ≤ lim
n→∞

(b − a)M

n
√
n!

= 0.

Done. �

We will go further with the spectrum theory in section 5 by using the conclusions in
subsection 3.I for compact operators.
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4. Hilbert space

Before we develop the operator theory, we might as well introduce the basic theory of
Hilbert spaces and study some interesting examples.
Hilbert spaces have better properties than Banach spaces. Many important PDE

problems can be solved in the framework of Hilbert spaces.

4.A. Basic knowledge.

De�nition 4.1 (Inner product space). LetH be a vector space over Λ. If a map

(⋅, ⋅) ∶ H × H → Λ

is called an inner product onH if it satis�es the following properties:
(1) (Positive de�nite) (x, x) ≥ 0, for all x ∈ H, and (x, x) = 0 i� x = 0.
(2) (Conjugate symmetric) (x, y) = (y, x) for all x, y ∈ H.
(3) (Linear in its �rst argument) (�x + �y, z) = �(x, y) + �(y, z) for all x, y, z ∈ H and

�, � ∈ Λ.
We shall call such a space (H, (⋅, ⋅)) an inner product space. The induced norm is ‖x‖ =

(x, x)
1

2 , and we call (H, (⋅, ⋅)) aHilbert space ifH is complete.

Remark 4.2. (z, �x + �y) = �(z, x) + �(z, y).

Proposition 4.3. LetH be an inner product space over Λ. Then
(1) (Schwarz inequality) |(x, y)|2 ≤ (x, x)(y, y), for all x, y ∈ H.
(2) (H, ‖ ⋅ ‖) is an NVS where ‖x‖ = (x, x)

1

2 .
(3) (⋅, ⋅) is continuous with respect to each variable.
(4) (Polarization identity)We have

(x, y) =

⎧

⎨

⎩

1

4

(
‖x + y‖2 − ‖x − y‖2

)
, Λ = ℝ

1

4

(
‖x + y‖2 − ‖x − y‖2

)
+
i

4

(
‖x + iy‖2 − ‖x − iy‖2

)
, Λ = ℂ

(5) (Parallelogram law)We have

‖x + y‖2 + ‖x − y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Conversely, if a normed vector space satis�es the parallelogram law, it forms an inner
product space via polarization identity.

Proof. Trivial. �

4.B. Orthogonal systems, orthogonal relations. In the next we introduce two basic
tools, the orthogonal relations (of subspaces) and the orthogonal systems.

De�nition 4.4 (Orthogonal). Let H be an inner product space, and let M be a linear
subspace. The orthogonal complement ofM is de�ned as

M⟂ = {x ∈ H ∶ ⟨x, y⟩ = 0, ∀y ∈ M} .

For x, y ∈ H, we say that x and y are orthogonal if ⟨x, y⟩ = 0, which is denoted x ⟂ y.
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Theorem 4.5. Let H be a Hilbert space, and let L be a closed linear subspace. Then H =

L ⊕ L⟂ and (L⟂)⟂ = L.

Proof. Note that L ∩ L⟂ = {0}, since if y ∈ (L ∩ L⟂) then (y, y) = 0. Note that

‖a + b‖2 = ⟨a + b, a + b⟩ = ⟨a, a⟩ + ⟨b, b⟩ = ‖a‖2 + ‖b‖2, ∀a ∈ L, b ∈ L⟂.

Note that L⟂ is closed via the continuity of inner product. It follows form corollary 3.23
thatM ∶= L + L⟂ is closed. Suppose for contradiction that there exists 0 ≠ x0 ∈ H ⧵M;
then by corollary 3.42 and problem 3.43, there exists y0 ∈ M with

‖x0 − y0‖ = inf
y∈M

‖x0 − y‖.

It easily follows that 0 ≠ (x0 − y0) ⟂ M. But it’s obvious thatM⟂ = {0}; a contraction.
Now it follows that H = L ⊕ L⟂ = L⟂ ⊕ (L⟂)⟂. Since L ⊂ (L⟂)⟂, it follows then

(L⟂)⟂ = L. �

Remark 4.6. An alternative method to show the contradiction: suppose for contradiction
that there exists 0 ≠ x ∈ H ⧵ (L ⊕ L⟂). Via corollary 3.25 there exists f ∈ H∗ with
f(L⊕L⟂) = {0} and f(x) ≠ 0. Via Riesz representation theorem 4.16, there exists y ∈ H

with f = (y, ⋅). Thus y ∈ (L ⊕ L⟂)⟂, and hence (y, y) = 0, i.e. y = 0, which contradicts
that (y, x) ≠ 0.
We can also use the conclusions of orthogonal system to prove this theorem.

Corollary 4.7. LetH be a Hilbert space, and let L be a closed linear subspace. Via theorem
4.5, let PL ∶ H → L be the standard projection. Then for x ∈ H,

‖x − PM(x)‖ = inf
y∈M

‖x − y‖.

Proof. Trivial. �

Corollary 4.8. Let H be Hilbert and letM ⊂ H. Then (M⟂)⟂ is the smallest closed space
that containsM.

Proof. I.e. we need to prove that

(M⟂)⟂ = span(M).

It’s clear that LHS is closed since the inner product is continuous. Hence it follows from
M ⊂ (M⟂)⟂ that span(M) ⊂ (M⟂)⟂. Note that

M ⊂ span(M) ⟹ span(M)
⟂

⊂ M⟂ ⟹ (M⟂)⟂ ⊂ span(M) = (span(M)
⟂

)

⟂

,

where the last equality comes from theorem 4.5. We are done. �

In the next we develop the theory of orthogonal system.

De�nition 4.9 (Orthogonal system). LetH be an inner product space, and let {ej}j∈J be a
family of points inH. {ej}j∈J is called an orthogonal system if (ej, ek) = �jk for all j, k ∈ J.

An orthogonal system is called normal if
(
span

{
ej
}

j∈J

)⟂
= {0}, and is called complete if
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we have

x =
∑

j∈J

(x, ej)ej, ∀x ∈ H.

where RHS must be a �nite sum or a countable sum that converges.

Remark 4.10. An orthogonal system is normal i� the representation of 0 is unique. Also
note that being complete implies being normal.

Proposition 4.11. For any nonempty inner product space H, there exists a normal
orthogonal system onH.

Proof. Trivial. Use Zorn’s lemma. �

Proposition 4.12. LetH be an inner product space, and let {ej}j∈J be an orthogonal system.
Then for each x ∈ H, the set A ∶= {j ∈ J ∶ (x, ej) ≠ 0} is at most countable, and we have

(4.1)
∑

j∈J

|(x, ej)|
2 ∶=

∑

j∈A

|(x, ej)|
2 ≤ ‖x‖2.

Proof. If A is �nite, then

x − y ⟂ y, where y =
n∑

k=1

(
x, ejk

)
ejk ,

and hence

‖x‖2 = ‖x − y‖2 + ‖y‖2 ≥ ‖y‖2 =

n∑

k=1

|(x, ejk)|
2.

Then (4.1) follows. It follows that

An ∶= {j ∈ J ∶ |(x, ej)| ≥
1

n
}

is a �nite set for each n, and hence A =
⋃∞

n=1
An is at most countable. Finally, jsut take

limit to get (4.1) based on the �ntie conclusion. �

Example 4.13. Set x1 =
∑∞

n=1
2−nen, where en = (0,⋯ , 0

⏟ ⏟ ⏟
n−1

, 1, 0,⋯), n = 1, 2,⋯, and set

X = {

m∑

k=2

�kek + �1x1 ∶ �k ∈ ℝ, k = 1, 2,⋯ .}

Then X is a linear subspace of l2. Note that {ek}∞k=2 is normal but not complete.

Theorem 4.14. Let H be a Hilbert space, and let {ej}j∈J be an orthogonal system. Then
{ej}j∈J is normal i� {ej}j∈J is complete, and we have

‖x‖2 =
∑

j∈J

|(x, ej)|
2.

Proof. “⟸” is trivial.
“⟹”: write A =

{
j ∈ J ∶ (x, ej) ≠ 0

}
= {e1, e2,⋯} and set xn =

∑n

k=1
(x, ek)ek. It

follows from (4.1) that (xn) is Cauchy and hence converges to some x′ ∈ X. Since {ej}j∈J
is normal, it’s easy to see that x = x′. Then the result easily follows. �
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Moreover, we can give a new method to prove theorem 4.5.

A new proof of theorem 4.5: Since L ∩ L⟂ = {0}, it su�ces to show that L + L⟂ = H.
Given x ∈ H. Since L is a closed linear subspace, L itself is also a Hilbert space. Based

on proposition 4.11 and theorem 4.14, there exists a complete orthogonal system {ej}j∈J
of L. By proposition 4.12 we know that

A ∶= {j ∈ J ∶ (x, ej) ≠ 0} is at most countable, and
∑

j∈A

(x, ej)ej converges inM.

Then we set

y =
∑

j∈A

(x, ej)ej.

It follows that y ∈ M and x − y ⟂ ej for each j ∈ J, and hence x − y ⟂ L. We are
done. �

Corollary 4.15. If H is a separable Hilbert space over Λ, and let {ej}j∈J be a complete
orthogonal system. Then J is at most countable, and H is isometrically isometric to Λn

or l2(Λ).

Proof. Trivial. �

4.C. Riesz representation theorem, Bilinear forms, Lax–Milgram theorem.
Using the preceding basic tools, in the next we establish the theory of bilinear forms.

Theorem 4.16 (Riesz representation theorem). Let H be a Hilbert space. Then for any
f ∈ H∗, there exists a unique y ∈ H such that

f(x) = (x, y), ∀x ∈ H,

and ‖f‖ = ‖y‖.

WLOG, in the following proofs we assume that Λ = ℝ.

Method 1: orthogonal relations. Note thatN(f) is closed and is of codimension 1 (for the
case that f ≢ 0). By theorem 4.5, we just choose an appropriate element in N(f)⟂. �

Method 2: orthogonal system. Let {ej}j∈J be a complete orthogonal system of H via
proposition 4.11 and theorem 4.14. Setting fj = f(ej), we calim that

(1) A(f) ∶=
{
j ∈ J ∶ fj ≠ 0

}
is at most countable;

(2)
∑

j∈A(f)
|fj|

2 < ∞.

One can easily show that

An(f) ∶=
{
j ∈ J ∶ |fj| ≥ n−1

}

is �nite by using the boundedness of f, and hence A(f) =
⋃∞

n=1
An(f) is at most

countable. (2) also easily follows from the boundedness of f. Then setting y =
∑

j∈J
fjej

we obtain the result. �

In the next we study the general bilinear forms.
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De�nition 4.17 (Bilinear form). LetH be a Hilbert space over Λ. A map

' ∶ H × H → Λ

is called a bilinear form if it satis�es:
(1) '(�x + �y, z) = �'(x, z) + �'(y, z), for all x, y, z ∈ H and �, � ∈ Λ;
(2) '(z, �x + �y) = �'(z, x) + �'(z, y), for all x, y, z ∈ H and �, � ∈ Λ.
Moreover, a bilinear form is said to be
(1) bounded if there exists a constantM > 0 such that

|'(x, y)| ≤ M‖x‖‖y‖, ∀x, y ∈ H.

(2) coercive if there exists a constant � > 0 such that

'(x, x) ≥ �‖x‖2, ∀x ∈ H.

Proposition 4.18. LetH be aHilbert space overΛ, and let ' be a bilinear form onH. Then

' is bounded ⟺ ∃!A ∈ ℒ(H) ∶ '(x, y) = (Ax, y)

⟺ ∃!B ∈ ℒ(H) ∶ '(x, y) = (x, By)

Proof. Trivial. �

Proposition 4.19. LetH be a Hilbert space overΛ, and letA ∈ ℒ(H). If there exists � > 0

with

(Ax, x) ≥ �‖x‖2,

then A is bijective.

Proof. If Ax = 0, then ‖x‖ = 0 and hence x = 0. Thus A is injective.
If x ⟂ R(A), then ‖x‖ = 0 and hence x = 0. Thus R(A)⟂ = {0}, and it su�ces to show

that R(A) is closed by theorem 4.5. Suppose that yn = Axn → y0 ∈ H. Then

‖xn − xm‖
2 ≤ �−1 (A(xn − xm), xn − xm)

≤ �−1‖A(xn − xm)‖ ⋅ ‖xn − xm‖

= �−1‖yn − ym‖ ⋅ ‖xn − xm‖

It follows that (xn) is Cauchy and hence converges to some x0 ∈ H. Then by the
continuity of A we have

Ax0 = lim
n→∞

Axn = lim
n→∞

yn = y0,

which implies that y0 ∈ R(A). �

To sum up, we obtain the Lax–Milgram theorem:

Corollary 4.20 (Lax-Milgram theorem). LetH be a Hilbert space, and let ' be a bounded
and coercive bilinear form. Then for all f ∈ H∗, there exists a unique y ∈ H such that

f(x) = '(x, y), ∀x ∈ H.

Proof. It follows directly from proposition 4.18, proposition 4.19 and the Riesz
representation theorem 4.16. �
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4.D. Sovling elliptic PDE. An important application of Lax–Milgram theorem 4.20 is
sovling elliptic PDE.

Theorem 4.21. LetΩ ⊂ ℝN be open and bounded. Given the elliptic operator

L ∶ H1(Ω) → H−1(Ω), u ↦ −)j
(
aij)iu + dju

)
+ bi)iu + cu,

where aji = aij, aij ∈ L∞(Ω) and there exist constants 0 < � < Λ such that

�|�|2 ≤ aij(x)�i�j ≤ Λ|�|2 ∀� ∈ ℝn ∀x ∈ Ω;(4.2)
n∑

i=1

‖‖‖‖b
i‖‖‖‖Ln(Ω)

+

n∑

i=1

‖‖‖‖d
i‖‖‖‖Ln(Ω)

+ ‖c‖
Ln∕2(Ω)

≤ Λ.(4.3)

Suppose that v ∈ H−1(Ω), g ∈ H1(Ω). Then there exist � > 0, such that for � ≥ �, the
(Dirichlet) elliptic equation

{
Lu + �jiu = v

u − g ∈ H1
0
(Ω)

has a unique solution u ∈ H1(Ω), where

i ∶ H1
0
(Ω) ↪ L2(Ω) is the compact imbedding.

j ∶ L2(Ω) → H−1(Ω), u ↦ (u, ⋅)L2(Ω).

Proof. Note that our (Dirichlet) elliptic equation can be transformed into
∙ Finding u ∈ H1

0
(Ω) such that Lu + �jiu = w, where w ∈ H−1(Ω).

Note that

⟨Lu + �jiu, v⟩ =
⟨
−)j

(
aij)iu + dju

)
+ bi)iu + (c + �)u, v

⟩

=
⟨
aij)iu + dju, )jv

⟩
+

⟨
bi)iu + (c + �)u, v

⟩

Thus the equation is equivalent to
∙ Finding u ∈ H1

0
(Ω) such that a(u, ⋅) = w, where

a ∶ H1
0
(Ω) × H1

0
(Ω) → ℝ

(u, v) ↦ ∫
Ω

(
aij)iu)jv + dju)jv + bi()iu)v + (c + �)uv

)
dx

is a continuous bilinear form.4

Now we claim that
(i) There exists � > 0 such that a is coercive for � ≥ �.
Note that by Lax–Milgram theorem (corollary 4.20), the conclusion will follow from (i).
Thus it su�ces to prove (i). Note that
∙ Claim (i) is easy if the coe�cients are in L∞(Ω).

4 Continuity (i.e. boundedness) follows from (4.2), (4.3), Hölder inequality, Sobolev inequality and

|xAy⊤| ≤

√

xAy⊤(xAy⊤)⊤ =

√

xA(y⊤y)Ax⊤ = |y|
√
xAAx⊤ =

|y|

|x|

√
(xAx⊤)(xAx⊤) ≤ Λ|x||y|
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But we only have (4.3). Our idea is to show that the gap between (4.3) and L∞ can be
controlled. Note that via Poincaré inequality there exists c0 > 0 such that

‖∇u‖
L2(Ω)

≥
2c0

�
‖u‖

H1
0
(Ω)

∀u ∈ H1
0
(Ω).

Then we choose 0 < " < c0 and then �nd bi
1
, bi

2
, di

1
, di

2
, c1, c2 and k via lemma 4.22 such

that
n∑

i=1

‖‖‖‖b
i
1

‖‖‖‖L∞(Ω)
+

n∑

i=1

‖‖‖‖d
i
1

‖‖‖‖L∞(Ω)
+ ‖c1‖L∞(Ω) ≤ k

n∑

i=1

‖‖‖‖b
i
2

‖‖‖‖Ln(Ω)
+

n∑

i=1

‖‖‖‖d
i
2

‖‖‖‖Ln(Ω)
+ ‖c2‖Ln∕2(Ω) ≤ "

Put

a1(u, v) = ∫
Ω

(
aij)iu)jv + d

j

1
u)jv + bi

1
()iu)v + c1uv

)
dx

a2(u, v) = ∫
Ω

(
d
j

2
u)jv + bi

2
()iu)v + c2uv

)
dx

a3(u, v) = (k +
2k2

�
) ∫

Ω

uvdx

Then5

a1(u, u) ≥ � ‖∇u‖
2

L2(Ω)
− k

(
‖u‖

L2(Ω)
‖∇u‖

L2(Ω)
+ ‖u‖

L2(Ω)
‖∇u‖

L2(Ω)
+ ‖u‖

L2(Ω)
‖u‖

L2(Ω)

)

= � ‖∇u‖
2

L2(Ω)
− k ‖u‖

2

L2(Ω)
− 2k ‖∇u‖

L2(Ω)
‖u‖

L2(Ω)

=
�

2
‖∇u‖

2

L2(Ω)
− (k +

2k2

�
) ‖u‖

2

L2(Ω)
+
�

2
‖∇u‖

2

L2(Ω)
+
2k2

�
‖u‖

2

L2(Ω)
− 2k ‖∇u‖

L2(Ω)
‖u‖

L2(Ω)

≥
�

2
‖∇u‖

2

L2(Ω)
− (k +

2k2

�
) ‖u‖

2

L2(Ω)

≥ c0 ‖u‖
2

H1
0
(Ω)

− (k +
2k2

�
) ‖u‖

2

L2(Ω)

and just like in footnote 4, via Hölder inequality and Sobolev inequality, we have

|a2(u, u)| ≤ " ‖u‖
2

H1
0
(Ω)

Thus

a1(u, u) + a2(u, u) + a3(u, u) ≥ (c0 − ") ‖u‖
2

H1
0
(Ω)

which proves claim (i). Hence the conclusion follows. �

Lemma 4.22. Given f ∈ Lp(Ω) and " > 0. Then we can �nd f = f1 + f2 such that

sup
x∈Ω

|f1(x)| ≤ k(") ‖f2‖Lp(Ω) ≤ "

5Note that if we use c1 ‖∇u‖L2(Ω)+c2 ‖u‖L2(Ω) to controll−‖∇u‖
L2(Ω)

‖u‖
L2(Ω)

, we can use a small c1. But
if we use c1 ‖∇u‖L2(Ω) and Poincaré inequality to controll −‖∇u‖

L2(Ω)
‖u‖

L2(Ω)
, we can’t use a arbitrarily

small c1.
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Proof. Put Ak = {x ∈ Ω ∶ |f| < k}, Bk = Ω ⧵ Ak and

f1k = f�Ak f2k = f�Bk

Then we know

f1k + f2k = f sup
x∈Ω

|f1(x)| ≤ k

for all k. Note that f ∈ Lp(Ω) implies that m(Bk) → 0 as k → ∞, and then via the
Lebesgue dominated convergence theorem 9.25 we know

lim
k→+∞

‖f2k‖Lp(Ω) = 0

Thus ∀" > 0, we can �nd an appropriate k such that f1k and f2k satisfy the requirements.
�

Corollary 4.23. In theorem 4.21, if � ≥ �, the operator L + �ji ∶ H1
0
(Ω) → H−1(Ω) is

actually an isomorphism.

Proof. Note that L + �ji ∶ H1
0
(Ω) → H−1(Ω) is continuous since the corresponding

bilinear form a is continuous. Thus the conclusion follows from theorem 4.21 and
theorem 3.22. �

Example 4.24. The operator −∆ + cji ∶ H1
0
(Ω) → H−1(Ω) is an isomorphism, where

c ≥ 0 a.e. and c ∈ Ln∕2(Ω).

Proof. The corresponding bilinear form is

a(u, v) = ∫
Ω

()iu ⋅ )iv + cuv) dx

Then via Hölder inequality, Sobolev inequality and Poincaré inequality we have

|a(u, v)| ≤ ‖∇u‖
L2(Ω)

‖∇v‖
L2(Ω)

+ c1 ‖u‖
2

H1
0
(Ω)

‖v‖
2

H1
0
(Ω)

≤ c2 ‖u‖
2

H1
0
(Ω)

‖v‖
2

H1
0
(Ω)

and via Poincaré inequality we have

a(u, u) ≥ ‖∇u‖
2

L2(Ω)
≥ c3 ‖u‖

2

H1
0
(Ω)

Hence the conclusion follows. �
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5. Spectrum theory

In this section we revisit the concept of spectrum. For special operators we will go
further by using the preceding conclusions.

5.A. Fredholm alternative, solvability problems. Basic on the preceding theorems,
we make some preparation.

Theorem 5.1 (Fredholm alternative). Let E be a Banach space and T ∈ K(E). Then
(1) N(I − T) is �nite-dimensional.
(2) R(I − T) is closed, and more precisely R(I − T) = N(I − T∗)⟂.
(3) N(I − T) = {0}⟺ R(I − T) = E.
(4) dimN(I − T) = dimN(I − T∗).

Proof. Recall that we have proved (1)(3)(4) and that R(I − T) is closed in theorem 3.57.
Note that (I − T)∗ = I − T∗. Hence (2) follows from via theorem 3.51. �

Remark 5.2. Similarly to remark 3.58, if we change I into an isomorphism A, the
conclusion is also true.

An important application of Fredholm is to deal with the solvability problem.

Remark 5.3. The Fredholm alternative deals with the solvability of the equation

u − Tu = f

It says that
(1) either for every f ∈ E the equation u − Tu = f has a unique solution,
(2) or the homogeneous equation u − Tu = 0 admits n linearly independent solutions,

and in this case, the inhomogeneous equation u −Tu = f is solvable i� f satis�es n
orthogonal conditions, i.e.,

f ∈ N(1 − T∗)⟂.

Again, we take epplitic PDE as a typical example.

Theorem 5.4 (Solvability of elliptic PDE). Let Ω ⊂ ℝN be open and bounded. Consider
the elliptic operator

L ∶ H1(Ω) → H−1(Ω), u ↦ −)j
(
aij)iu + dju

)
+ bi)iu + cu,

where aji = aij, aij ∈ L∞(Ω) and there exist constants 0 < � < Λ such that

�|�|2 ≤ aij(x)�i�j ≤ Λ|�|2 ∀� ∈ ℝn ∀x ∈ Ω;

n∑

i=1

‖‖‖‖b
i‖‖‖‖Ln(Ω)

+

n∑

i=1

‖‖‖‖d
i‖‖‖‖Ln(Ω)

+ ‖c‖
Ln∕2(Ω)

≤ Λ.

Suppose that v ∈ H−1(Ω). Then for the (Dirichlet) elliptic equation

Lu = v, u ∈ H1
0
(Ω),

we have
(1) either for every v ∈ H−1(Ω) the equation has a unique solution,
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(2) or the homogeneous equation Lu = 0 admits n linearly independent solutions, and in
this case, the inhomogeneous equation Lu = f is solvable i� f satis�es n orthogonal
conditions.

Remark 5.5. Note that any (Dirichlet) elliptic equation can be transformed into �nding
u ∈ H1

0
(Ω) such that Lu = v, where v ∈ H−1(Ω). Theorem 5.4 is just a direct corollary

of theorem 4.21 and theorem 5.1.

Proof. Note that the equation is equivalent to:

Finding u ∈ H1
0
(Ω) such that (L + �ji)u − �jiu = v, where � ∈ ℝ and

i ∶ H1
0
(Ω) ↪ L2(Ω) is the compact imbedding;

j ∶ L2(Ω) → H−1(Ω), u ↦ (u, ⋅)L2(Ω).

Wecan�nd an appropriate� such thatL+�ji is isomorphism (corollary 4.23). Therefore,
the elliptic equation is equivalent to:

Finding u ∈ H1
0
(Ω) such that u − Tu = w, where

T = �(L + �ji)−1ji is compact via proposition 3.55;

w = (L + �ji)−1(v) ∈ H1
0
(Ω).

Thus as remark 5.3 claims,
(1) either for every f ∈ H1

0
(Ω) the equation u − Tu = f has a unique solution,

(2) or the homogeneous equation u − Tu = 0 admits n linearly independent solutions,
and in this case, the inhomogeneous equation u −Tu = f is solvable i� f satis�es n
orthogonal conditions, i.e.,

f ∈ N(1 − T∗)⟂

Then the conclusion follows. �

Remark 5.6. In theorem 5.4, Fredholm alternative 5.1 also implies that any eigenspace
of a elliptic operator is �nite-dimensional.

5.B. Spectrum on ℝ, eigenvalues of epplitic PDE, compactness of spectrum. In
the next we revisit the concept of spectrum, and show how it helps us analyze the
eigenvalues of elliptic PDE. In this section, our spectrum theory is on ℝ (not on ℂ as
before).

De�nition 5.7 (Spectrum on ℝ). Let E be Banach, and let T ∈ ℒ(E).
(1) The resolvent set, denoted by �(T), is de�ned by

�(T) = {� ∈ ℝ ∶ (T − �I) is bijective from E onto E} .

(2) The spectrum, denoted by �(T), is the complement of the resolvent set, i.e., �(T) =
ℝ ⧵ �(T).

(3) A real number � is said to be an eigenvalue of T if

N(T − �I) ≠ {0},

andN(T − �I) is the corresponding eigenspace.
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(4) The set of all eigenvalues is denoted by EV(T).

Remark 5.8. It’s clear that EV(T) ⊂ �(T). In general, this inclusion can be strict. One
can refer to [Bre] section 6.3 for the example of strict inclusion.

In addition to helping us analyze the operator itself, the spectrum has many uses.
When we deal with the eigenvalues problem of epplitic PDE, the spectrum theory will
play a vital role.

Proposition 5.9. Using the notations in theorem 4.21, then there exists � ∈ ℝ such that

S = (L + �ji)−1ji

is a compact operator, and then

(5.1) � ∈ ℝ ∶ N(L + �ji) ≠ {0}⟺ � ≠ � and 1

� − �
∈ EV(S).

Proof. Theorem 4.21 yields �. By corollary 4.23 and proposition 3.55 (1), for � ≥ �, S is
a compact operator. Note that for � ≠ � and � ≥ � we have

(5.2) N(L + �ji) = N (L + �ji + (� − �)ji) = N (I + (� − �)S) = N (S −
1

� − �
I) .

Then property 5.1 follows. If � = �, it’s clear that N(L + �ji) = {0}. �

Remark 5.10. We will show in the next subsection that �(S) ⧵ {0} = EV(S) ⧵ {0}.

In the next we introduce the compactness of the spectrum, which is derived by the
contraction mapping principle.

Theorem 5.11. Let E be Banach, and let T ∈ ℒ(E). The spectrum �(T) is compact and

�(T) ⊂ [− ‖T‖ , + ‖T‖] .

Proof. We prove it by two steps.
(1) Claim: �(T) ⊂ [− ‖T‖ , + ‖T‖].

Our idea is: the existence and uniqueness of solution is equivalent to the existence
and uniqueness of �xed point, and the �xed point is related to boundedness, since we
have the contraction mapping principle.
Let � ∈ ℝ be such that |�| > ‖T‖. It su�ces to show that T − �I is bijective. Now

just note that given f ∈ E, the equation Tu − �u = f has a unique solution, since it
may be written as u = �−1(Tu − f) and the contraction mapping principle applies.

(2) Claim: �(T) is open.
Wehave the similar idea: the existence and uniqueness of solution is equivalent to the

existence and uniqueness of �xed point, and then we try to use the contractionmapping
principle.
Let �0 ∈ �(T), � ∈ ℝ (close to �0) and f ∈ E. We try to solve

Tu − �u = f.

This is equivalent to

Tu − �0u = f + (� − �0)u,
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i.e.,

u = (T − �0I)
−1
[f + (� − �0)u] .

Via contraction mapping principle again, there exists a unique solution if

|� − �0| <
1

‖(T − �0I)
−1‖

.

Hence �(T) is open.

�

5.C. Spectrum of compact operator. In the next we introduce the properties of the
spectrum of a compact operator.
In addition to using the preceding theorems for compact operators, another basic idea

is to transform information into properties of convergence (or divergence).

Theorem 5.12. Let E be Banach with dimE = ∞, and let T ∈ K(E). Then we have

(a) 0 ∈ �(T),
(b) �(T) ⧵ {0} = EV(T) ⧵ {0},
(c) one of the following cases holds:

(i) �(T) = {0},
(ii) �(T) ⧵ {0} is a �nite set,
(iii) �(T) ⧵ {0} is a sequence converging to 0.

Proof. The �rst two conclusions are just direct corollaries of the preceding theorems.

(a) Suppose for contraction that 0 ∉ �(T). Then T is bijective and hence I = T◦T−1

is compact via theorem 3.22 and proposition 3.55. Thus BE is compact and hence
dimE < ∞ via corollary 3.19; a contradiction.

(b) Let � ∈ �(T), � ≠ 0. We shall prove that � is an eigenvalue. Suppose not, that
N(T−�I) = {0}. Then by theorem 5.1 (3), we know that R(T−�I) = E and therefore
� ∈ �(T); a contradiction.

For (c), it su�ces to show that:

For any n ∈ ℤ+, the set �(T) ∩ {� ∈ ℝ ∶ |�| ≥ 1∕n} is either empty or �nite.

Via theorem 5.11, it su�ces to prove that:

All the points of �(T) ⧵ {0} are isolated points.

Let (�n)n≥1 be a sequence of distinct real numbers such that:

�n ∈ �(T) ⧵ {0} ∀n ∈ ℕ, and �n → �.

It su�ces to prove:

(5.3) � = 0.

Recall that our conditions are T ∈ K(E) and �n → � where �n ∈ EV(T) ⧵ {0} for all
n. A natural idea is that we transform both conditions into properties of convergence (or
divergence) and then compare them to get (5.3).
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We �rst transform the latter condition into some property of convergence by the following
three steps, where the �rst two steps are a typical method, via using the tool Riesz lemma
3.17, to build a framework of solving problems.

(1) For each �n ∈ EV(T) ⧵ {0} we �nd en ≠ 0 with en ∈ N(T − �nI). Let En be the space
spanned by {e1,⋯ , en}. We claim that En ⊊ En+1, for all n.
It su�ces to check that for all n, the vectors e1,⋯ , en are linearly independent.

The proof is by induction on n. Assume that this holds up to n and suppose that

en+1 =

n∑

i=1

�iei.

Then by de�nitions we have

Ten+1 =

n∑

i=1

�i�iei = �n+1

n∑

i=1

�iei.

It follows that �i(�i − �n+1) = 0 for i = 1,⋯ , n and hence �i = 0 for i = 1,⋯ , n; a
contradiction. Hence we have proved that En ⊊ En+1, for all n.

(2) Now via Riesz lemma 3.17 we can construct a sequence (un)n≥1 such that un ∈ En,
‖un‖ = 1 and dist(un, En−1) ≥ 1∕2 for all n ≥ 2.

(3) (Now we use the condition �n → �.) It’s clear that (T − �nI)En ⊂ En−1. Thus for
2 ≤ m < n we have

‖‖‖‖‖‖‖

Tun

�n
−
Tum

�m

‖‖‖‖‖‖‖
=

‖‖‖‖‖‖‖

Tun − �nun

�n
−
Tum − �mum

�m
+ un − um

‖‖‖‖‖‖‖

≥ dist(un, En−1) ≥
1

2
.

Suppose for contradiction that � ≠ 0. Then via �n → � we get a sequence (Tun)n≥1
which has no convergent subsequence.

Now note that a compact operator sends a bounded sequence into a sequence that has
a convergent subsequence; a contradiction. Hence we prove (5.3), and (c) follows. �

5.D. Case of Hilbert spaces— bilinear forms, self-adjoint. Now let us consider the
better situation that E = H is a Hilbert space and T ∈ ℒ(H). We have more precise
characterizations and have more tools in Hilbert spaces, for which one can refer to
section 4.
For instance, by proposition 4.18, any operator T ∈ ℒ(H) can be represented by the

corresponding continuous bilinear form6

a ∶ H × H → ℝ, (u, v) ↦ (Tu, v),

and we have Lax–Milgram theorem 4.20 to characterize H∗. This gives us a good
breakthrough point for a new and better theory.
First of all, let’s make a more precise conclusion than theorem 5.11.

6In Hilbert spaceH, the continuity of T is equivalent to the continuity of a via Cauchy-Schwarz inequality.
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Theorem 5.13. Let T ∈ ℒ(H) and let a be the corresponding bilinear form. Set

m = inf
u∈H
|u|=1

a(u, u) and M = sup
u∈H
|u|=1

a(u, u)

Thenmax{|m|, |M|} ≤ ‖T‖ and �(T) ⊂ [m,M].

Proof. Note that

|a(u, v)| = |(Tu, v)| ≤ ‖Tu‖ ⋅ ‖v‖ ≤ ‖T‖ ⋅ ‖u‖ ⋅ ‖v‖.

It follows thatmax{|m|, |M|} ≤ ‖T‖. Let � > M; we will prove that � ∈ �(T). Note that

(�u − Tu, u) ≥ (� −M)‖u‖2 ∀u ∈ H.

Applying Lax–Milgram theorem 4.20, we deduce that �I − T is bijective and thus � ∈

�(T). Similarly, any � < m belongs to �(T) and therefore �(T) ⊂ [m,M]. �

We have the following natural question:

Question 5.14. Dom andM belong to �(T)?

Consider the problem ofM �rst. By de�nition we can �nd a sequence (un) such that
‖un‖ = 1 for all n and

a(un, un) → M as n → ∞.

Now we claim the following lemma, which is a natural su�cient condition.

Lemma 5.15. If a is symmetric, then (T −MI)(un) → 0, and henceM ∈ �(T).

Proof. We �rst prove that (T −MI)(un) → 0. Note that

b(u, v) = M(u, v)H,H − a(u, v)

is symmetric and satis�es

b(v, v) ≥ 0 ∀v ∈ H.

Hence b satis�es the Cauchy-Schwarz inequality

|b(u, v)| ≤ b(u, u)
1

2b(v, v)
1

2 .

Now put

wn =
Mun − Tun

‖Mun − Tun‖
.

It follows that

‖(T −MI)(un)‖ = b (un, wn) ≤ b(un, un)
1

2b(wn, wn)
1

2 .

Note that

b(un, un) = M − a(un, un) → 0,

and

b(wn, wn) = M − a(wn, wn) ≤ M −m.

Thus we get ‖(T −MI)(un)‖ → 0.
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Now suppose for contradiction thatM ∈ �(T). Then

un = (T −MI)−1 ((T −MI)(un)) → 0.

Contradiction. Hence the conclusion follows. �

Here we use the fact that any symmetric bilinear form has Cauchy-Schwarz
inequality. We add the property of symmetry and go on.

De�nition 5.16 (Self-adjoint). An operator T ∈ ℒ(H) is said to be self-adjoint if T∗ = T,
which is equivalent to that the corresponding bilinear form a is symmetric, i.e.

(Tu, v) = (u, Tv) ∀u, v ∈ H.

Now we get a deeper conclusion.

Theorem 5.17. Let T ∈ ℒ(H) be a self-adjoint operator. Set

m = inf
u∈H
|u|=1

a(u, u) and M = sup
u∈H
|u|=1

a(u, u).

Then �(T) ⊂ [m,M]. Moreover,m ∈ �(T),M ∈ �(T) and ‖T‖ = max{|m|, |M|}.

Proof. We have proved in theorem 5.13 that

max{|m|, |M|} ≤ ‖T‖ and �(T) ⊂ [m,M].

It follows from lemma 5.15 thatM ∈ �(T). Similarlym ∈ �(T). Now it su�ces to show
that

‖T‖ ≤ max{|m|, |M|}.

Put � = max{|m|, |M|}. Note that

4|a(u, v)| = |||a(u + v, u + v) − a(u − v, u − v)|||

≤ �
(
‖u + v‖2 + ‖u − v‖2

)

= 2�
(
‖u‖2 + ‖v‖2

)
.

This is not homogeneous. Setting v = tw we get

t|a(u, w)| ≤
1

2
�
(
‖u‖2 + t2‖w‖2

)
∀t ∈ ℝ.

Hence

|a(u, w)| ≤ �‖u‖ ⋅ ‖w‖ ∀v,w ∈ H.

For u ≠ 0, putting w = (Tu)∕‖Tu‖ we get

‖Tu‖ ≤ �‖u‖ ∀u ∈ H.

Hence ‖T‖ ≤ �, which completes the proof. �

We have the following important corollary.

Corollary 5.18. Let T ∈ ℒ(H) be a self-adjoint operator. Then
∙ T = 0⟺ �(T) = {0}.

Let A ⊂ H be a linear subspace. Then the following properties are equivalent
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(1) T(A) ⊂ A and � (T|A) = {0}.
(2) A ⊂ N(T).

Proof. Obviously it follows from theorem 5.17. �

Remark 5.19. For a self-adjoint operator, the equivalence serves us new methods to
prove that T = 0 or that A ⊂ N(T) for a linear subspace A.

5.E. Compact self-adjoint operators, eigenvector spaces, spectral
decomposition. Now let’s put the preceding good properties together. In the
next we will analyze the properties of a compact self-adjoint operator.

De�nition 5.20 (Eigenvector space). Based on theorem 5.12, we can let (�n)n≥0 be the
sequence of all (distinct) eigenvalues of T with �0 = 0 for a compact operator. Then the
eigenvector spaces are given by

En = N(T − �nI) ∀n ≥ 0.

Remark 5.21. Note that via de�nition and Fredholm alternative (theorem 5.1) we know

0 < dimEn < ∞ ∀n ≥ 1.

Now we give the �rst natural conclusion.

Theorem 5.22. The closed spaces (En)n≥0 are mutually orthogonal.

Proof. Since the kernel of a bounded operator is closed, En is closed for each n. Note that
for u ∈ Em and v ∈ En withm ≠ n we have

a(u, v) = �m(u, v)H,H = �n(u, v)H,H.

Therefore (u, v)H,H = 0. �

The second natural conclusion is a property of decomposition, which is derived based
on corollary 5.18. This is a more precise characterization of the spectrum that makes full
use of the typical properties of Hilbert space.

Theorem 5.23. Let F be the vector space spanned by the spaces (En)n≥0. Then F is dense
inH.

Proof. Via theorem 4.5, it su�ces to prove that F⟂ = {0}. Basically, we have
∙ T(F) ⊂ F; obviously this is a direct corollary of de�nition.
∙ T(F⟂) ⊂ F⟂; indeed, given u ∈ F⟂ we have

(Tu, v) = (u, Tv) = 0 ∀v ∈ F.

∙ T0 = T|F⟂ ∶ F
⟂ → F⟂ is a self-adjoint compact operator.

It’s very natural to analyze the spectrum of T0 notting the de�nition of F. Actually it’s
obvious that
∙ �(T0) = {0}.

Suppose not; suppose that some � ≠ 0 belongs to �(T0). Then via theorem 5.12 this
implies that there is some u ∈ F⟂, u ≠ 0, such that

Tu = �u.



Zhiyao Xiong 47

Therefore � = �n for some n via de�nition. Thus

u ∈ En ⊂ F,

which implies u ∈ F ∩ F⟂. However F ∩ F⟂ = {0}; a contradiction.
Now recall corollary 5.18; T(F⟂) ⊂ F⟂ and �(T0) = {0} imply that F⟂ ⊂ N(T) ⊂ F.

Thus F = {0} since F ∩ F⟂ = {0}. Hence the conclusion follows. �

To sum up, we have the following fundamental theorem.

Theorem 5.24 (Spectral Decomposition). Let H be a Hilbert space and let T be a
compact self-adjoint operator. Then there exists a complete orthogonal system composed
of eigenvectors of T.

Proof. Via theorem 5.22 and theorem 5.23, we just choose in each subspace (En)n≥0 a
complete orthogonal system (the existence of such orthogonal systems follows form
proposition 4.11 and theorem4.14), and then union of these orthogonal systems is clearly
a complete orthogonal system ofH, composed of eigenvectors of T. �

5.F. Epplitic PDE for L = ∆. Now we introduce an application in PDE. Recall
proposition 5.9 and example 4.24.

Theorem 5.25. Suppose that the (Dirichlet) epplitic PDE

−∆u = �u, u ∈ H1
0
(Ω)

has a nonzero solution. Then
(1) All possible �′s form a sequence

0 < �1 < �2 < ⋯

where

lim
n→∞

�n = +∞

(2) The corresponding eigenspaces E�n
′
s satisfy

0 < dimE�n < ∞ ∀n ≥ 1

(3) There exists a Hilbert basis ofH1
0
(Ω) composed of eigenfunctions.

Proof. Note that � > 0 follows from example 4.24. Besides, we can put

S = (−∆)−1ji

and then via (5.1) and theorem 5.12 we get (1). Moreover, via Fredholm alternative 5.1
and (5.2) we get (2), and via theorem 5.24 and (5.2) we get (3). �

Remark 5.26. Note that N(S) = {0} here. Generally speaking, we have 0 ≤ dimE0 ≤

+∞. Theorem 4.21, example 4.24, proposition 5.9, theorem 5.4 and theorem 5.25 are the
main results about PDE in this note.
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6. Measurable spaces and measurable maps

In this section we introduce the basic theory of measurable spaces and measurable
maps

6.A. Basic concepts, methods of judging measurability.

De�nition 6.1 (Measurable spaces, measurable maps). There are some basic concepts.

(1) A measurable spaces (X,X) is a set X, together with a collection X of subsets of X
which form a �-algebra.

(2) A subset of X is said to bemeasurable with respect to the measurable space if A ∈ X.
(3) We say that one �-algebraX on a set X is coarser than anotherX′ ifX ⊂ X′.
(4) A map f ∶ X → Y from one measurable space (X,X) to another (Y, Y) is said to be

measurable if f−1(E) ∈ X for all E ∈ Y.

Proposition 6.2. Let (X�)�∈A be an arbitrary family of �-algebras on X.

(1) The intersection
⋀

�∈A
X� ∶=

⋂

�∈A
X� of (X�)�∈A is another �-algebra on X.

(2) Given any collection ℱ of sets on X, the �-algebra generated by ℱ is de�ned as the
intersection of all the �-algebras containingℱ, which is denoted byℬ[ℱ].

(3) The join
⋁

�∈A
X� of (X�)�∈A is de�ned asℬ[

⋃

�∈A
X�].

Remark 6.3. The �-algebra generated byℱ is also the coarsest algebra for which all sets
in ℱ are measurable.

Example 6.4. The open setsℱ of a topological space (X,ℱ) generate a �-algebra, known
as the Borel �-algebra ℬX of that space.

Example 6.5. The Lebesgue �-algebra ℒ of Lebesgue measurable sets on a Euclidean
space ℝn is the join of the Borel �-algebra ℬℝn and of the algebras of null sets and their
complements (also called co-null sets). See theorem 8.19.

Example 6.6. Letℝ = [−∞,+∞] be the extended real number system. We de�ne Borel
sets in ℝ by ℬ

ℝ
=

{
E ⊂ ℝ ∶ E ∩ ℝ ∈ ℬℝ

}
.

Remark 6.7. It’s clear that ℬ
ℝ
can be generated by A1 = {[−∞, a) ∶ a ∈ ℝ}, A2 =

{[−∞, a] ∶ a ∈ ℝ}, A3 = {(a,∞] ∶ a ∈ ℝ}, or A4 = {[a,∞] ∶ a ∈ ℝ}.

Remark 6.8. In the next we abbreviate themeasurable space (ℝ,ℬ
ℝ
) asℝ or [−∞,+∞],

and we employ the notation “real-valued” to mean “ℝ-valued”.

Example 6.9 (Borel measurable). A map f ∶ X → Y from one topological space to
another is said to be Borel measurable if it is measurable once X and Y are equipped
with their respective Borel �-algebras.
In particular, continuous maps are Borel measurable, since the collection {E ∈

ℬY ∶ f−1(E) ∈ ℬX} is a �-algebra that contains all open subsets of Y and hence is ℬY.
But the converse statement is false, and the counterexample can be easily derived via
proposition 6.14.
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Example 6.10 (Lebesgue measurable). A map f ∶ ℝn → Y is said to be Lebesgue
measurable if it is measurable from ℝn (with the Lebesgue �-algebra) to Y (with the
Borel �-algebra).

In the next, we introduce some basic methods of judging measurability.

Proposition 6.11. Let (X,X) and (Y, Y) be measurable spaces. If Y is generated by ℰ,
then f ∶ X → Y is measurable i� f−1(E) is measurable for all E ∈ ℰ.

Proof. The “only if” implication is trivial. For the converse statement, note that
{
E ⊂ Y ∶ f−1(E) ∈ X

}
is a �-algebra that contains ℰ and hence contains Y. �

Corollary 6.12. Let f ∶ (X,X) → ℝ and Y = f−1(ℝ). Then f is measurable i�
f−1({−∞}) ∈ X, f−1({∞}) ∈ X, and f is measurable on Y.

Proposition 6.13. Let (X,X) and (Y, Y) bemeasurable spaces. IfX = A∪BwhereA, B ∈
X, then a map f ∶ X → Y is measurable i� f is measurable on A and on B.

Proof. For any E ∈ Y, (f|A)−1(E) = f−1(E) ∩ A, (f|B)−1(E) = f−1(B) ∩ A, and f−1(E) =
(f|A)

−1(E) ∪ (f|B)
−1(E). The result follows. �

6.B. Pointwise limit of measurable maps. In the next we introduce some basic
properties related to pointwise limit.

Proposition 6.14. Let (X,X) be ameasurable space, let (Y,ℬY) be ametric space equipped
with its Borel �-algebra, and let fn ∶ X → Y be measurable maps for each n ∈ ℕ such that
the pointwise limit of {fn} exists. Then f(x) = limn→∞ fn(x) is measurable.

Proof. Since Y is a metric space, ℬY is generated by the open balls

GY ∶= {BY(y, r) ∶ y ∈ Y, r > 0} .

Consequently, it su�ces to show that f−1(G) ∈ X for any G ∈ GY. For G ∶= BY(y, r),
we have

f(x) ∈ BY(y, r)⟺ ∃k = k(x),N = N(x) ∈ ℕ, ∀n ≥ N ∶ fn(x) ∈ BY (y, r −
1

k
) .

Then,

f−1(G) =
⋃

k∈ℕ
1

k
<r

⋃

N∈ℕ

⋂

n≥N

f−1n (BY (y, r −
1

k
))

and hence f−1(G) ∈ X. �

Proposition 6.15. Let (X,X) be ameasurable space, let (Y,ℬY) be a completemetric space
equipped with its Borel �-algebra, and let fn ∶ X → Y bemeasurablemaps for each n ∈ ℕ.
Then E ∶= {x ∶ limn→∞ fn(x) exists} is a measurable set.

Proof. De�ne

Am,n,j ∶= {x ∈ X ∶ |fn(x) − fm(x)| <
1

j
} .
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Note that

x ∈ E ⟺ ∀j ∈ ℕ, ∃M = M(j), N = N(j) ∈ ℕ, ∀m ≥ M, n ≥ N ∶ x ∈ Am,n,j.

Hence

E =

∞⋂

j=1

⋃

M∈ℕ

⋃

N∈ℕ

⋂

m≥M

⋂

n≥N

Am,n,j,

which is measurable. �

Remark 6.16. After giving the concept of measure, we can show that if fn converges
to f a.e., then fn converges to f almost uniformly. See Egoro�’s theorem 7.7. We will
derive more properties via measures, which will be introduced later.

Remark 6.17. Moreover, a measurable map can be approximated by a continuous map.
In fact, under good conditions (X = ℝn, �∗ is a Borel regular outermeasure, and �∗(A) <
∞), anymeasurable map f onA is almost continuous onA. This is Lusin’s theorem. One
can refer to [Evaa] section 1.2.

6.C. Approximation— pointwise limit of simple functions. The above properties
inspire us that we may approximate a measurable map via simple measurable maps. We
will apply this idea to measurable functions.
First we introduce some basic properties.

Proposition 6.18 (Properties ofmeasurable functions). Let (X,X) be ameasurable space.

(1) If f, g ∶ X → [−∞,+∞] are measurable, then so are

f + g, fg, |f|, min {f, g} , and max {f, g} .

The function f

g
is also measurable, provided g ≠ 0 on X.

(2) If the functions fk ∶ X → [−∞,+∞] are measurable (k = 1, 2,⋯), then

inf
k≥1

fk, sup
k≥1

fk, lim inf
k→∞

fk, and lim sup
k→∞

fk

are also measurable.

Proof. Trivial. Note that

lim inf
k→∞

fk = sup
m≥1

inf
k≥m

fk, lim sup
k→∞

fk = inf
m≥1

sup
k≥m

fk

for the last assertion. �

Remark 6.19. If f is measurable, then the positive part f+(x) ∶= max {f(x), 0} and the
negative part f−(x) ∶= max {−f(x), 0} are measurable. If f+ and f− are measurable,
then f = f+ − f− is measurable.

Now we show that any measurable functions is a pointwise limit of some
sequence simple functions. This approximation is like doing a �ner and �ner division
of the space, and the process of re�nement needs to use the property of f, not just the
property of the space.
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De�nition 6.20 (Simple function). Let (X,X) be ameasurable space. A simple function
on X is a �nite linear combination of characteristic functions of sets inX.

Remark 6.21. A function f ∶ X → ℝ (or ℂ) is simple i� f is measurable and the range
of f is a �nite subset of ℝ (or ℂ).

Theorem 6.22 (From simple functions to measurable functions). Let (X,X) be a
measurable space.
(1) If f ∶ X → [0,∞] is measurable, there is a sequence ('n) of simple functions such that

0 ≤ '1 ≤ '2 ≤ ⋯ ≤ f, 'n → f pointwise, and 'n → f uniformly on any set on which
f is bounded.

(2) If f ∶ X → ℂ is measurable, there is a sequence ('n) of simple functions such that
0 ≤ |'1| ≤ |'2| ≤ ⋯ ≤ |f|, 'n → f pointwise, and 'n → f uniformly on any set on
which f is bounded.

Proof. Suppose that f is real-valued. For n = 0, 1, 2⋯ and 0 ≤ k ≤ 22n − 1, let

Ekn = f−1((k2−n, (k + 1)2−n]) and Fn = f−1((2n, +∞])

and de�ne

'n =

22n−1∑

k=0

k2−n�Ekn + 2n�Fn

Then 0 ≤ '1 ≤ '2 ≤ ⋯ ≤ f and

if f(x) ≤ 2n, then 0 ≤ f(x) − 'n(x) ≤ 2−n

Then (1) follows.
Suppose that f is complex-valued. If f = g + iℎ, we can apply part (1) to the positive

and negative parts of g and ℎ, obtaining sequences  +n ,  −n , �+n , �−n of non-negative simple
functions that increse to g+, g−, ℎ+, ℎ−. Let'n =  +n− 

−
n+i(�

+
n−�

−
n ); then (2) follows. �

Remark 6.23. Let’smake a simple summary of approximations ofmeasurable functions.
(1) In the pointwise sense, we have the above theorem and Egoro�’s theorem 7.7. On the

other hand, if X is LCH and f is LSC and non-negative, we have proposition 11.14
(5).

(2) We can approximate ameasurablemap by a continuousmap. One can refer to [Evaa]
section 1.2 for Lusin’s theorem.

(3) In the sense of convergence in measure, we have theorem 7.10.
(4) In the sense of convergence in Lp, any f ∈ Lp can be approximated by continuous

functions, which will be showed in section 11. See corollary 11.10.

6.D. Pullback — Borel �-algebra, product measurable space. In the next we
introduce pullback and use it to study more spaces, such as the product spaces. Pullback
is a typical example that embodies the interaction between spaces and maps on these
spaces.

De�nition 6.24 (Pullback). Given a map f ∶ X → Y from a set X to a measurable space
(Y, Y), the pullback f−1(Y) of Y is de�ned as the �-algebra f−1(Y) ∶=

{
f−1(E) ∶ E ∈ Y

}
.
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More generally, given a family (f� ∶ X → Y�)�∈A of maps into measurable spaces
(Y�, Y�), we can from the �-algebra

⋁

�∈A
f−1� (Y�) generated by the f�’s.

Remark 6.25. Pullback is a basic tool to describe the relation between di�erent �-
algebras and to construct new �-algebra. From another perspective, f−1(Y) is the
coarsest �-algebra on X that makes f measurable, and

⋁

�∈A
f−1� (Y�) is the coarsest �-

algebra on X that makes f� simultaneously measurable.

Example 6.26 (Restriction). If E is a subset of ameasurable space (Y, Y), the pullback of
Y under the inclusion map � ∶ E → Y is called the restriction of Y to E, and is denoted
by Y|E.

Proposition 6.27. LetM be a topological space and let N be its open subset. Then ℬN ⊂

ℬM andℬN = ℬM|N .

Proof. If E ⊂ N is open in N, then E is open inM and �−1
N
(E) = E. Hence ℬN ⊂ ℬM and

ℬN ⊂ ℬM|N. On the other hand, the collection
{
E ∈ ℬM ∶ �−1

N
(E) ∈ ℬN

}
is easily seen to

be a �-algebra onM that contains the open subsets ofM and henceℬM. In other words,
�−1
N
(E) ∈ ℬN for all E ∈ ℬM, and hence ℬM|N ⊂ ℬN. Thus ℬN = ℬM|N. �

Example 6.28 (Cartesian product). Let (X�, X�)�∈A be a family of measurable spaces,
then the Cartesian product

∏

�∈A
X� has canonical projection maps �� ∶

∏

�∈A
X� →

X� for each � ∈ A. The product �-algebra
∏

�∈A
X� is de�ned as the �-algebra on

∏

�∈A
X� generated by the ��’s as in de�nition 6.24.

Proposition 6.29. Let (X�, X�)�∈A be a family of measurable spaces, and let X� be
generated byℱ�, � ∈ A. Then

∏

�∈A
X� is generated byX1 =

{
�−1� (E�) ∶ E� ∈ ℱ�, � ∈ A

}
.

If A is at most countable and X� ∈ ℱ� for all �,
∏

�∈A
X� is generated by X2 =

{∏

�∈A
E� ∶ E� ∈ ℱ�

}
.

Proof. Obviously ℬ[X1] ⊂
∏

�∈A
X�. On the other hand, for each �, the collection {E ⊂

X� ∶ �
−1
� (E) ⊂ ℬ[X1]} is easily seen to be a �-algebra on X� that contains ℱ� and hence

X�. In other words, �−1� (E) ∈ ℬ[X1] for all E ∈ X�, � ∈ A, and hence
∏

�∈A
X� ⊂

ℬ[X1].
Now suppose that A is at most countable. Note that if E� ∈ X�, then �−1� (E�) =∏

�∈A
E� where E� = X for � ≠ �. Hence

∏

�∈A
X� ⊂ ℬ[X2]. Also note that

∏

�∈A
E� =

⋂

�∈A
�−1� (E�) ∈

∏

�∈A
X�, so ℬ[X2] ⊂

∏

�∈A
X�. �

Proposition 6.30. LetX1,⋯ ,Xn bemetric spaces and letX =
∏n

j=1
Xj, equipped with the

product metric. Then
∏n

j=1
ℬXj

⊂ ℬX . If the Xj’s are separable, then
∏n

j=1
ℬXj

= ℬX .

Proof. By proposition 6.29,
∏n

j=1
ℬXj

is generated by the sets �−1
j
(Uj), 1 ≤ j ≤ n, where

Uj is open in Xj. Since these sets are open in X, we get
∏n

j=1
ℬXj

⊂ ℬX.
Suppose now that Cj is a countable dense set in Xj. Letℱj be the collection of balls in

Xj with rational radius and center in Cj. Then it’s clear that ℬXj
is generated by ℱj and

ℬX is generated by
{∏n

j=1
Ej ∶ Ej ∈ ℱj

}
. Hence

∏n

j=1
ℬXj

= ℬX by proposition 6.29. �

Corollary 6.31. ℬℝn =
∏n

j=1
ℬℝ.
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Remark 6.32. More generally, let (X�)�∈A be an at most countable family of second
countable topological spaces. Then the Borel �-algebra of the product space (with the
product topology) is equal to the product of the Borel �-algebras of the factor spaces.

Remark 6.33. The Lebesgue �-algebra on ℝn is not the product of n copies of the one-
dimensional Lebesgue �-algebra, as it contains some additional null sets; however, it is
the completion of that product. See theorem 8.19.

Proposition 6.34. Let (X,X) and (Y�, Y�) (� ∈ A) be measurable spaces. Then f ∶

(X,X) → (
∏

�∈A
Y�,

∏

�∈A
Y�) if measurable i� f� = ��◦f is measurable for all �.

Proof. If f is measurable, so is each f� since the composition of measurable maps is
measurable. Conversely, if each f� is measurable, then for all E� ∈ Y�, f−1(�−1� (E�)) =
f−1� (E�) ∈ X. Hence f is measurable via proposition 6.11 and proposition 6.29. �

Corollary 6.35. Let (X,X) be a measurable space. A function f ∶ X → ℂ is measurable
i�ℜf andℑf are measurable.

Proof. This follows since ℬℂ = ℬℝ × ℬℝ by proposition 6.34. �

6.E. Measurability of sections. In the next we introduce some basic properties of the
sections.

De�nition 6.36 (Sections). Let (X,X) and (Y, Y) be measurable spaces. If E ⊂ X×Y, for
x ∈ X and y ∈ Y, we de�ne the x-section Ex and the y-section Ey of E by

Ex = {y ∈ Y ∶ (x, y) ∈ E} , and Ey = {x ∈ X ∶ (x, y) ∈ E} .

Also, if f is a map on X × Y we de�ne the x-section fx and the y-section fy of f by

fx(y) = fy(x) = f(x, y).

Proposition 6.37. Let (X,X) and (Y, Y) be measurable spaces. If E is measurable with
respect toX × Y, then the section Ex is measurable in Y for every x ∈ X, and similarly the
section Ey is measurable inX for every y ∈ Y.

Proof. We only prove that Ex is measurable in Y for every x ∈ X, and the other is similar.
Given x ∈ X, we de�ne

�x ∶ Y → X × Y, y ↦ (x, y).

Via proposition 6.29, X × Y is generated by {A × B ∶ A ∈ X, B ∈ Y}. Note that

∀A ∈ X, ∀B ∈ Y ∶ �−1x (A × B) = {
B, x ∈ A;

∅, x ∉ A.

It follows that �x is measurable, and hence Ex = �−1x (E) is measurable. �

Corollary 6.38. Sections of Borel-measurable sets are again Borel-measurable.

Remark 6.39. Sections of Lebesgue-measurable sets are not necessarily Lebesgue-
measurable.

Corollary 6.40. Let f be measurable map on (X × Y,X × Y).T Then fx is Y-measurable
for all x ∈ X, and fy isX-measurable for all y ∈ Y.
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Proof. Note that (fx)−1(E) = (f−1(E))x and (fy)−1(E) = (f−1(E))y. Then the desired
result follows from proposition 6.37. �

7. Measures

Nowwe endowmeasurable spaces with ameasure, turning them intomeasure spaces.
We will introduce the basic theory of measures in this section.

7.A. Basic knowledge.

De�nition 7.1 (Measures). A (non-negative)measure � on ameasurable space (X,X) is
a function � ∶ X → [0,+∞] such that
(1) �(∅) = 0;
(2) (Countable additivity) �(

⋃∞

n=1
En) =

∑∞

n=1
�(En) whenever (En)∞n=1 is a sequence of

disjoint measurable sets.
We refer to the triplet (X,X, �) as ameasure space.

De�nition 7.2. A measure space (X,X, �) is �nite if �(X) < ∞; it is probability space
if �(X) = 1 (and then we call � a probability measure). It is �-�nite if X can be covered
by countably many subsets of �nite measure.
A measurable set E is a null set if �(E) = 0. A property on points x in X is said to hold

for almost every x ∈ X (or almost surely, for probability spaces) if it holds outside of a
null set. We abbreviate almost every and almost surely as a.e. and a.s. respectively. The
complement of a null set is said to be a co-null set or to have full measure.
A measure space is said to be complete if every subset of a null set is measurable (and

then we call � a completemeasure).
If X is a topological space, then measures onℬX is called Borel measures.

Example 7.3. Let (X,X) be a measurable space.
(1) (Dirac measures) Given a point x ∈ X, we de�ne the Dirac measure �x to be the

measure such that �x(E) = 1 when x ∈ E and �x(E) = 0 otherwise. This is a
probability measure.

(2) (Countingmeasures)We de�ne the countingmeasure# by de�ning#(E) to be the
cardinality |E| of E when E is �nite, or +∞ otherwise.

(3) Any�nite non-negative linear combination ofmeasures is again ameasure; any�nite
covex combination of probability measures is again a probability measure.

Example 7.4 (Push-forward). If f ∶ X → Y is a measurable map from one measurable
space (X,X) to another (Y, Y), and � is a measure on X, we de�ne the push-forward
f∗� ∶ Y → [0, +∞] by the formula f∗�(E) ∶= �(f−1(E)); this is a measure on (Y, Y).

Proposition 7.5. Let (X,X, �) be a measure space. Then
(1) (Monotonicity) If E ⊂ F are measurable sets, then �(E) ≤ �(F).
(2) (Countable subadditivity) If E1, E2,⋯ are a countable sequence of measurable sets,

then �(
⋃∞

n=1
En) ≤

∑∞

n=1
�(En). (Of course, one also has subadditivity for �nite

sequence.)
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(3) (Monotone convergence for sets) IfE1 ⊂ E2 ⊂ ⋯aremeasurable, then�(
⋃∞

n=1
En) =

limn→∞ �(En).
(4) (Dominated convergence for sets) If E1 ⊃ E2 ⊃ ⋯ are measurable, and �(E1) is

�nite, then �(
⋂∞

n=1
En) = limn→∞ �(En).

Proof. Trivial. �

Remark 7.6. (4) can fail if �(E1) is in�nite. Just consider En = (n,+∞).

7.B. Approximations — Egoro�’s theorem, convergence in measure. In the next
wemake a littlemore approximations ofmeasurablemaps via themeasure. (We not only
use pointwise limit as before.)

Theorem 7.7 (Egoro�’s theorem). Let (X,X, �) be ameasure space with �(X) < ∞, letY
be a metric space, and let f1, f2,⋯ and f be measurable functions from (X,X) to (Y,ℬY)

such that fn → f X-almost everywhere. Then for every " > 0 there exists E ⊂ X such that
�(E) < " and fn → f uniformly on Ec.

Proof. For j, k = 1, 2,⋯ de�ne

Cjk ∶=

∞⋃

n=k

{
x ∈ X ∶ |fn(x) − f(x)| > 2−j

}

Then Cj,k+1 ⊂ Cjk for all j, k; and so, since �(X) < ∞,

lim
k→∞

�(Cjk) = � (

∞⋂

k=1

Cjk) = 0,

and hence there exists an integer N(j) such that �(Cj,N(j)) < "2−j. Putting E ∶=
⋃∞

j=1
Cj,N(j), then we have

�(E) ≤

∞∑

j=1

�(Cj,N(j)) < ",

and for each j, eachx ∈ Ec, and alln ≥ N(i), we have |fn(x)−f(x)| ≤ 2−j. Consequently
fn → f uniformly on Ec. �

Now, via the measure, we introduce a new mode of convergence.

De�nition7.8 (Convergence inmeasure). Asequence (fn) ofmeasurable complex-valued
functions on a measure space (X,X, �) is called Cauchy in measure if for every " > 0,

� ({x ∶ |fn(x) − fm(x)| ≥ "}) → 0 asm, n → ∞,

and that (fn) converges in measure to f if for every " > 0,

� ({x ∶ |fn(x) − f(x)| ≥ "}) → 0 as n → ∞.

Remark 7.9. Some people also talk about local convergence in measure, and the
corresponding topology of (local) convergence in measure.

Theorem 7.10. Let (X,X, �) be ameasure space. Suppose that (fn) is Cauchy inmeasure.
Then there is a measurable function f such that fn → f in measure, and there is a
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subsequence (fnj) that converges to f a.e. Moreover, if also fn → g in measure, then g = f

a.e.

Proof. We can choose a subsequence (gj) = (fnj) of (fn) such that �(Ej) ≤ 2−j where
Ej ∶=

{
x ∈ X ∶ |gj(x) − gj+1(x)| ≥ 2−j

}
. Set Fk =

⋃∞

j=k
Ej and F =

⋂∞

k=1
Fk. It follows

that �(Fk) ≤
∑

j≥k
2−j = 21−k, and hence �(F) = 0. Note that for x ∈ Fc

k
and for

ℎ ≥ j ≥ k we have

(7.1) |gℎ(x) − gj(x)| ≤

ℎ−1∑

l=j

|gl+1(x) − gl(x)| ≤

ℎ−1∑

l=j

2−l ≤ 21−j.

It follows that (gj) is pointwise Cauchy on Fc.
Set f(x) = limj→∞ gj(x) for x ∈ Fc and f(x) = 0 for x ∈ F. It easily follows from

proposition 6.14 that f is measurable, and gj → f a.e. It follows from (7.1) that |gj(x) −
f(x)| ≤ 21−j for x ∈ Fc

k
. Since �(Fk) → 0 as k → 0, gj → f in measure. Note that

{x ∶ |fn(x) − f(x)| ≥ "} ⊂ {x ∶ |fn(x) − gj(x)| ≥
1

2
"}

⋃
{x ∶ |gj(x) − f(x)| ≥

1

2
"} .

It follows that fn → f in measure. Likewise, if fn → g in measure, note that

{x ∶ |f(x) − g(x)| ≥ "} ⊂ {x ∶ |f(x) − fn(x)| ≥
1

2
"}

⋃
{x ∶ |fn(x) − g(x)| ≥

1

2
"} .

Hence � ({x ∶ |f(x) − g(x)| ≥ "}) = 0 for all " > 0. It follows then f = g a.e. �

Remark 7.11. One can refer to [For] for more relations among di�erent modes of
convergence, such as the convergence in L1.

7.C. Completion, completele spaces. In the next we introduce the completion of a
measure and the complete measure spaces.

Theorem 7.12 (Completion). Let (X,X, �) be a measure space. Let N =

{N ∈ X ∶ �(N) = 0} andX = {E ∪ F ∶ E ∈ X and F ⊂ N for someN ∈ N}. ThenX is a
�-algebra, and there is a unique extension � of � to a complete measure onX.

Proof. To show thatX is a �-algebra, it su�ces to prove thatX is closed under countable
unions and complements. SinceX andN are closed under countable unions, so isX. If
E ∪ F ∈ X where E ∈ X and F ⊂ N ∈ N, we can assume that E ∩ N = ∅ (otherwise,
replaceF andN byF⧵E andN⧵E). Then (E∪F)c = (E∪N)c∪(N⧵F)where (E∪N)c ∈ X

and N ⧵ F ⊂ N ∈ N. Hence (E ∪ F)c ∈ X.
If E ∪ F ∈ X as above, we set �(E ∪ F) = �(E). It’s obvious that � is well-de�ned and

is the only measure on X that extends �. �

Remark 7.13. The completion is the uniqueminimal complete re�nement. See the next
proposition. In particular, the completion of the Borel�-algebrawith respect to Lebesgue
measure is known as the Lebesgue �-algebra.

Proposition 7.14. Let (X,X, �) and (X,X1, �1) be measure spaces satisfying X ⊂ X1 ⊂

X and �1 = �|X1
. Then the completion of (X,X1, �1) is still (X,X, �), and (X,X1, �1) is

complete i� (X,X1, �1) = (X,X, �).
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Proof. Trivial. �

Proposition 7.15. Let (X,X, �) be a complete measure space, and let f, g, fn ∶ X → ℝ

(or ℂ).
(1) If f is measurable and f = g a.e., then g is measurable.
(2) If fn is measurable for n ∈ ℕ and fn → f a.e., then f is measurable.

Proof. Trivial. �

Proposition 7.16. Let (X,X, �) be a measure space and let (X,X, �) be its completion. If
f is anX-measurable function on X, there is anX-measurable function g such that f = g

�-a.e.

Proof. If f = �E where E ∈ X, then the conclusion just follows from the de�nition of
�. For the general case, choose a sequence ('n) of X-measurable simple functions that
converges pointwise to f by theorem 6.22. For each n let  n be anX-measurable simple
function with  n = 'n except on a set En ⊂ X with �(En) = 0. Choose N ∈ X such that
�(N) = 0 and

⋃∞

n=1
En ⊂ N, and set g = limn→∞  n�X⧵N. Then g is X-measurable via

proposition 6.14 and g = f on Nc. �

7.D. Outer measure, elementary sets. In the next we introduce the concept of outer
measure, which can be regarded as the predecessor of measure in the following sense:
Take ℝ2 for example. One draws a grid of rectangles in the plane and approximates

the area of E from below by the sum of the areas of the rectangles in the grid that are
subsets of E, and from above by the sum of the areas of the rectangles in the grid that
intersect E. The limits of these approximations as the grid is taken �ner and �ner give
the “inner area” and “outer area” of E, and if they are equal, their common value is the
“area” of E.

De�nition 7.17 (Outer measure). An outer measure on a nonempty set X is a function
�∗ ∶ P(X) → [0, +∞] that satis�es
(1) �∗(∅) = 0.
(2) (Monotonicity) �∗(A) ≤ �∗(B) if A ⊂ B.
(3) (Countable subadditivity) �∗(

⋃∞

n=1
An) ≤

∑∞

n=1
�∗(An).

The most common way to obtain outer measures is to start with a family ℰ of
“elementary sets” on which a notion of measure is de�ned (such as rectangles in the
plane) and then to approximate arbitrary sets “from the outside” by countable unions of
members of ℰ.

Proposition 7.18. Given ℰ ⊂ P(X) and � ∶ ℰ → [0, +∞] that satis�es
(1) ∅ ∈ ℰ and �(∅) = 0;
(2) There exists (En)∞n=1 ⊂ ℰ with X =

⋃∞

n=1
En.

For any A ⊂ X, de�ne

�∗(A) = inf {

∞∑

n=1

�(En) ∶ En ∈ ℰ and A ⊂

∞⋃

n=1

En} .

Then �∗ is an outer measure.
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Proof. Obviously, �∗ ∶ P(X) → [0, +∞] makes sense, �∗(∅) = 0, and �∗(A) ≤ �∗(B) if
A ⊂ B. To prove the countable subadditivity, suppose that (An)

∞
n=1

⊂ P(X) and " > 0. For
each n there exists (Ekn)∞k=1 ⊂ ℰ such that A ⊂

⋃∞

k=1
Ekn and that

∑∞

k=1
�(Ekn) ≤ �∗(An) +

"2−n. Since
⋃∞

n=1
An ⊂

⋃∞

n,k=1
Ekn , we have �∗(A) ≤

∑∞

n=1
�∗(An) + ". Since " is arbitrary,

we are done. �

7.E. Correspondence between outer measures and measures. The fundamental
step that leads from outer measures to measures is as follows.

Theorem 7.19 (Carathéodory’s theorem). If �∗ is an outer measure on X, the collection

X = {A ⊂ X ∶ �∗(E) = �∗(E ∩ A) + �∗(E ∩ Ac), ∀E ⊂ X}

of �∗-measurable sets is a �-algebra, and the restriction of �∗ toX is a complete measure.

Remark 7.20. Some motivations for the notion of �∗-measurability can be obtained by
referring to the discussion above forℝ2. If E is “well-behaved” set such thatA ⊂ E, then
the derived equation �∗(A) = �∗(E∩A) = �∗(E)−�∗(E∩Ac) says that the outermeasure
of A, �∗(A), is equal to the “inner measure” of A, �∗(E) − �∗(E ∩ Ac).

Proof. Obviously X is closed under complements. By subadditivity it’s clear that X is
closed under �nite intersections and unions and is �nite additive. To show that X is a
�-algebra it su�ces to show thatX is closed under countable disjoint unions. If (An)

∞
n=1

is a sequence of disjoint sets in X, let Bk =
⋃k

n=1
An and B =

⋃∞

n=1
An. Then for E ⊂ X,

�∗(E ∩ Bk) = �∗(E ∩ Bk ∩ Ak) + �∗(E ∩ Bk ∩ A
c

k
)

= �∗(E ∩ Ak) + �∗(E ∩ Bk−1)

and hence �∗(E ∩ Bk) =
∑k

n=1
�∗(E ∩ An). Therefore,

�∗(E) = �∗(E ∩ Bk) + �∗(E ∩ Bc
k
)

≥

k∑

n=1

�∗(E ∩ An) + �∗(E ∩ Bc) ≥

∞∑

n=1

�∗(E ∩ An) + �∗(E ∩ Bc)

≥ �∗ (

∞⋃

n=1

(E ∩ An)) + �∗(E ∩ Bc)

= �∗(E ∩ B) + �∗(E ∩ Bc) ≥ �∗(E)

Hence B ∈ X. Moreover, taking E = B we get �∗(B) =
∑∞

n=1
�∗(An), so �∗ is countably

additive on X. Finally, if �∗(A) = 0, for any E ⊂ X we have

�∗(E) ≤ �∗(E ∩ A) + �∗(E ∩ Ac) = �∗(E ∩ Ac) ≤ �∗(E)

so that A ∈ X. Therefore �∗|X is a complete measure. �

Remark 7.21. Let (X,X) be a measurable space. Via proposition 7.18 we see that any
measure � onX will also induce an outermeasure �∗, andwewill see in proposition 7.24
that �∗|X = �. So some people regard measures and outer measures as the same things.

7.F. Premeasure on algebra, from premeasure to outer measure. More precisely,
we can construct an outer measure from a premeasure on a algebra.
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De�nition 7.22 (Algebra). An algebra of sets on X is a nonempty collectionA of subsets
of X that is closed under �nite unions and complements (and hence is closed under �nite
intersections and contains∅ and X).

De�nition 7.23 (Premeasure). If A ⊂ P(X) is an algebra, a function �0 ∶ A → [0,+∞]

is called a premeasure if
(1) �0(∅) = 0;
(2) (Countable additivity) If (An)

∞
n=1

is a sequence of disjoint sets inA such that
⋃∞

n=1
An ∈

A, then �0(
⋃∞

n=1
An) =

∑∞

n=1
�0(An).

Proposition 7.24 (Premeasure induces outer measures). Let A ⊂ P(X) be an algebra,
and let �0 be a premeasure onA. De�ne

�∗ ∶ P(X) → [0, +∞], E ↦ inf {

∞∑

n=1

�0(An) ∶ An ∈ A,E ⊂

∞⋃

n=1

AN} .

Then
(1) �∗|A = �0;
(2) Every set inA is �∗-measurable.

Proof. LetA ∈ A. IfA ⊂
⋃∞

n=1
An withAn ∈ A, setting Bk = A∩(Ak ⧵

⋃k−1

n=1
An) then the

Bk’s are disjoint members ofAwhose union isA, so �0(A) =
∑∞

k=1
�(Bk) ≤

∑∞

k=1
�0(Ak).

It follows that �0(A) ≤ �∗(A), and the reverse inequality is obvious.
If A ∈ A, E ⊂ X and " > 0, there is a sequence (Bn)∞n=1 ⊂ A with E ⊂

⋃∞

n=1
Bn and

∑∞

n=1
�0(Bn) ≤ �∗(E) + ". Since �0 is additive on A, we have

�∗(E) + " ≥

∞∑

n=1

�0(Bn ∩ A) +

∞∑

n=1

�0(Bn ∩ A
c) ≥ �∗(E ∩ A) + �∗(E ∩ Ac) ≥ �∗(E).

Since " is arbitrary, A is �∗-measurable. �

7.G. Frompremeasure tomeasure— extension comparison. Since outer measure
induces a measure, we get a extension for a premeasure. Moreover, we can compare the
extensions, and in many cases the extension is unique.

Theorem 7.25 (Extension comparison). Let A ⊂ P(X) be an algebra, let �0 be a
premeasure on A, and let X be the �-algebra generated by A. It follows that the outer
measure �∗ given by proposition 7.24 extends �0 to a measure � on X. If � is another
measure on X that extends �0, then �(E) ≤ �(E) for all E ∈ X, with equality when
�(E) < ∞. If �0 is �-�nite, then � is the unique extension of �0 to a measure onX.

Proof. The �rst assertion follows fromCarathéodory’s theorem 7.19 and proposition 7.24
since the �-algebra of �∗-measurable sets includes A and hence X.
As for the second assertion, note that if E ∈ X and E ⊂

⋃∞

n=1
An where An ∈ A,

then �(E) ≤
∑∞

n=1
�(An) =

∑∞

n=1
�0(An). It follows that �(E) ≤ �(E). Also, if we set

A =
⋃∞

n=1
An, we have

�(A) = lim
k→∞

� (

∞⋃

n=1

An) = lim
k→∞

� (

∞⋃

n=1

An) = �(A).
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If �(E) < ∞, we can choose the An’s so that �(A) < �(E) + ", and hence

�(E) ≤ �(A) = �(A) = �(E) + �(A ⧵ E) ≤ �(E) + �(A ⧵ E) ≤ �(E) + "

Since " is arbitrary, �(E) = �(E).
Finally, suppose that X =

⋃∞

n=1
An with �0(An) < ∞, where we can assume that the

An’s are disjoint. Then for any E ∈ X,

�(E) =

∞∑

n=1

�(E ∩ An) =

∞∑

n=1

�(E ∩ An) = �(E),

so � = �. �

Remark 7.26. The same statements of course apply for the completion X of X.

Remark 7.27. The uniqueness of extension in theorem 7.25 can convince us that the
constructed measure via the above methods is unique.

7.H. From elementary family to algebra, product measure. In the next we
introduce a basic method to generate an algebra.

De�nition 7.28 (Elementary family). An elementary family G is a collection of subsets of
X satisfying the following properties.
(1) ∅ ∈ G;
(2) If E, F ∈ G, then E ∩ F ∈ G;
(3) If E ∈ G, then Ec is a �nite disjoint union of elements in G.

Theorem 7.29. The collection A of �nite disjoint unions of elements in an elementary
family G forms an algebra.

Proof. One can refer to [Rai]. �

Remark 7.30. Two premeasure � and � on an algebra A generated by an elementary
family G coincide i� they coincide on G.

Now we give a direct application, constructing the product measure.

Corollary 7.31 (Product measure). Let (X1, X1, �1),⋯ , (Xn, Xn, �n) be measure spaces,
and let (

∏n

j=1
Xj,

∏n

j=1
Xj) be the product measure space. Then

(1) (Rectangle algebra) We de�ne a rectangle to be a set of the form
∏n

j=1
Aj with Aj ∈

Xj, and then the collection G of rectangles forms an elementary family, and hence the
collection A of �nite disjoint unions of rectangles is an algebra. Clearly, the �-algebra
generated byA is

∏n

j=1
Xj;

(2) (Premeasure) Then we de�ne a premeasure �0 onA by �0
(∏n

j=1
Aj

)
=

∏n

j=1
�0(Aj)

and linear extension.
(3) (Product measure) Finally, we get a product measure � on

∏n

j=1
Xj as in theorem

7.25. The measure is referred to as the product measure of the �1,⋯ , �n and is denoted
by

∏n

j=1
�j.

Moreover, if the �j’s are �-�nite so that the extension from A to
∏n

j=1
Xj is uniquely

determined via theorem 7.25.
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7.I. From algebra to �-algebra. Finally, we introduce a lemma to show how to
generate a �-algebra via an algebra.

Lemma 7.32 (The monotone class lemma). We de�ne a monotone class on a space X
to be a subset D of P(X) that is closed under countable incresing unions and countable
decreasing intersections. Clearly, the intersection of any family of monotone classes is a
monotone class, so for any ℰ ∈ P(X) there is a unique smallest monotone class containing
ℰ, called the monotone class generated by ℰ.
If A if an algebra of subsets of X, then the monotone class D generated by A coincides

with the �-algebra generated byA.

Proof. One can refer to [For] lemma 2.35. �
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8. Lebesgue measure

8.A. Construction of Lebesgue measure. There are three methods to construct the
Lebesgue measure on ℝn:
(1) Construct both outer measurem∗ and inner measurem∗, and then we de�ne

ℒ0 = {A ⊂ ℝn ∶ m∗(A) < ∞,m∗(A) = m∗(A)}

ℒ = {A ⊂ ℝn ∶ A ∩M ∈ ℒ0, ∀M ∈ ℒ0}

Thenℒ is the collection of all Lebesgue-Measurable sets, and the Lebesgue measure
can be de�ned asm(A) = sup {m(A ∩M) ∶ M ∈ ℒ0}. One can refer to [Jon] for this
method.

(2) Consturct the outer measurem∗, and thenm∗ induces the Lebesgue measurem. We
will introduce this method in this subsection.

(3) Use the Riesz representation theorem for Radonmeasures, which will be introduced
later.

In the next we introduce method 2. As in proposition 7.18, we start with a family of
“elementary sets” ℰ to de�ne the outer measure. ℰ can be the set of all cubes or be the
set of all balls (see theorem 11.31). Here we choose cubes.

8.B. Elementary sets — boxes and cubes, Lebesgue (outer) measure.

De�nition 8.1 (Box and cube). Abox I inℝn is given by the product ofn compact intervals
I = [a, b] ∶=

∏n

j=1
[aj, bj] where a = (a1,⋯ , an) and b = (b1,⋯ , bn), and aj ≤ bj,

1 ≤ j ≤ n, are real numbers. The volume |I| of I is de�ned by |I| =
∏n

j=1
|bj − aj|. A

box is called a cube if all its sides have the same length. the interior of a box I is given by
I◦ = (a, b) ∶=

∏n

j=1
(aj, bj). A union of boxes is said to be almost disjoint if the interiors

of the boxes are disjoint. We denote by dist(E1, E2) = inf {|x1 − x2| ∶ x1 ∈ E1, x2 ∈ E2} the
distance of two subsets E1, E2 ⊂ ℝn.

Theorem 8.2 (Lebesgue measure). Letm∗ ∶ P(ℝn) → [0, +∞] be de�ned By

m∗(E) ∶= inf {

∞∑

n=1

|Qn| ∶ (Qn)
∞
n=1

is a countable cover of E by cubes}

and set

ℒ(ℝn) ∶= {E ⊂ ℝn ∶ m∗(A) = m∗(A ∩ E) + m∗(A ∩ Ec), ∀A ⊂ ℝn}

Then
(1) m∗ is an outer measure; the so-called Lebesgue outer measure.
(2) If dist(E1, E2) > 0, thenm∗(E1 ∪ E2) = m∗(E1) + m∗(E2).
(3) ℒ(ℝn) is a �-algebra that containsℬℝn .
Moreover,m = m∗|ℒ(ℝn) ∶ ℒ(ℝ

n) → [0, +∞] is a complete measure.

Proof. (1) It follows from proposition 7.18 thatm∗ is an outer measure.
(2) Choose dist(E1, E2) > � > 0 and �x " > 0. There exists a cover (Qn)

∞
n=1

by cubes
of E ∶= E1 ∪ E2 so that

∑∞

n=1
|Qn| ≤ m∗(E) + ". We may assume that each Qn

has diameter less than �, after possibly subdividing Qn. Then each Qn can intersect
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at most one of E1 or E2. Hence setting Jk = {n ∶ Qn ∩ Ek ≠ ∅}, k = 1, 2, we have
J1 ∩ J2 = ∅, and Ek ⊂

⋃

n∈Jk
Qn. Therefore,

m∗(E) ≤ m∗(E1) + m∗(E2) ≤
∑

n∈J1

|Qn| +
∑

n∈J2

|Qn| ≤

∞∑

n=1

|Qn| ≤ m∗(E) + "

Since " is arbitrary, we are done.
(3) It follows from Carathéodory’s theorem 7.19 that ℒ(ℝn) is a �-algebra. In order to

prove that ℬℝn ⊂ ℒ(ℝn) it su�ces to prove that ℒ(ℝn) contains all closed subsets of
ℝn. Let F ⊂ ℝn be closed, and let A ⊂ ℝn. It su�ces to prove

m∗(A) ≥ m∗(A ∩ F) + m∗(A ∩ Fc).

WLOG, we assume thatm∗(A) < ∞. Set

A0 ∶= {x ∈ A ∶ dist(x, F) ≥ 1}

Aj ∶=
{
x ∈ A ∶ (j + 1)−1 ≤ dist(x, F) < j−1

}
, j ≥ 1

Then by (2) we have that for each n ∈ ℕ,
n∑

j=0

m∗(A2j) ≤ m∗
⎛

⎜

⎝

n⋃

j=0

A2j

⎞

⎟

⎠

≤ m∗(A)

n∑

j=0

m∗(A2j+1) ≤ m∗
⎛

⎜

⎝

n⋃

j=0

A2j+1

⎞

⎟

⎠

≤ m∗(A)

and hence
∑∞

j=1
m∗(A) < ∞. Therefore

∑∞

j=n+1
m∗(Aj) → 0 as n → ∞ and

m∗(A ∩ F) + m∗(A ∩ Fc) ≤ m∗(A ∩ F) + m∗
⎛

⎜

⎝

n⋃

j=0

Aj

⎞

⎟

⎠

+

∞∑

j=n+1

m∗(Aj)

= m∗
⎛

⎜

⎝

(A ∩ F) ∪

n⋃

j=0

Aj

⎞

⎟

⎠

+

∞∑

j=n+1

m∗(Aj)

≤ m∗(A) +

∞∑

j=n+1

m∗(Aj)

Hencem∗(A) ≥ m∗(A ∩ F) + m∗(A ∩ Fc). Done.
Finally, it follows from Carathéodory theorem 7.19 thatm is a complete measure. �

Remark 8.3. The completion of
(
ℝn, ℬℝn , m∗|ℬ(ℝn)

)
is

(
ℝn, ℒ(ℝn),m∗|ℒ(ℝn)

)
.

Remark 8.4. We can choose the “elementary sets” to be the open cubes (the interiors
of cubes) to de�ne the Lebesgue measure. Namely, putting

�∗(E) ∶= inf {

∞∑

n=1

|Pn| ∶ (Pn)
∞
n=1

is a countable cover of E by open cubes} ,

then �∗(E) = m∗(E).
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Proof. It’s clear that �∗(E) ≥ m∗(E). On the other hand, �x " > 0, and then given
a countable cover by cubes (Qn)

∞
n=1

of E with
∑∞

n=1
|Qn| ≤ m∗(E) + ", we can �nd a

countable sequence of open cubes (Pn) with Qn ⊂ Pn and |Pn| < |Qn| + "2−n, and hence
m∗(E) + " ≥

∑∞

n=1
|Qn| >

∑∞

n=1
(|Pn| − "2−n) =

∑∞

n=1
|Pn| − ". Since " is arbitrary, we get

that �∗(E) ≤ m∗(E). We are done. �

Remark 8.5. In this construction, we beginwith the “elementary sets”ℰ and then de�ne
m∗ and m. In fact we can also begin with a algebra A, and then de�ne the premeasure
m0, which impliesm∗ andm.
More precisely, the collection A of all �nite disjoint unions of sets of the form F ∩ G,

where F is closed and G is open, is an algebra. AlthoughA is a little complicated and we
don’t construct the Lebesguemeasure via it, butwe can show the uniqueness of Lebesgue
measure via this algebra and corresponding premeasurem|A by theorem 7.25.

8.C. Examples — generalized Cantor sets, Cantor-Lebesgue function.

Example 8.6. There are some basic examples.

(1) One-point sets are null sets.
(2) The Cantor set C is a null set. (Moreover, card(C) = card(ℝ), and C is compact,

nowhere dense, totally disconnected and has no isolated points.)
(3) (The generalized Cantor set) If (�j)∞j=1 is any sequence of members in (0, 1), then,

we can de�ne a decreasing sequence (Kj)
∞

j=0
of closed sets as follows: K0 = [0, 1],

and Kj is obtained by removing the open middle �j-th from each of the intervals
that make up Kj−1. The resulting limiting set K =

⋂∞

j=1
Kj is called a generalized

Cantor set. It’s clear thatm(K) = limk→∞m(Kj) =
∏∞

j=1
(1−�j), which can achieve

any number in [0, 1).
On the other hand, to achieve any number a ∈ (0, 1) directly, we can remove the

middle 1−a

3n+1
from each closed interval at stage n, thereby removing a total of

(1 − a)

∞∑

n=0

2n

3n+1
= 1 − a.

(4) For a cube I = [a, b], we havem([a, b]) = |||[a, b]
|||.

(5) Let E =
⋃∞

j=1
Qj be an almost disjoint union of cubes, thenm(E) =

∑∞

j=1
|Qj|.

Remark 8.7. ℒ(ℝn) ≠ P(Rn) if we admit the axiom of choice.

Example 8.8 (Cantor-Lebesgue function). We construct the Cantor-Lebesgue function
f in the following steps.

(1) Each x ∈ [0, 1] has a base-3 decimal expansion x =
∑∞

j=1
aj3

−j where aj = 0, 1 or
2. This expansion is unique unless x = p3−k for some intergers p, k, in which case
x has two expansions: one with aj = 0 for j > k and one with aj = 2 for j > k.
Assuming p is not divisible by 3, one of these expansions will have ak = 1 and the
other will have a0 = 0 or 2. If we agree always to use the latter expansion, we see
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that

a1 = 1 i� 1

3
< x <

2

3

a1 ≠ 1 and a2 = 1 i� 1

9
< x <

2

9
or 7
9
< x <

8

9

and so forth. Also note that if x =
∑∞

j=1
aj3

−j and y =
∑∞

j=1
bj3

−j, then x < y i�
there exists an n such that an < bn and aj = bj for j < n.

(2) The Cantor set C is the set of all x ∈ [0, 1] that have a base-3 expansion x =
∑∞

j=1
aj3

−j with aj ≠ 1 for all j. Thus C is obtained from [0, 1] by removing the

open middle third ( 1
3
,
2

3
), then removing the open middle thirds ( 1

9
,
2

9
) and ( 7

9
,
8

9
) of

the two remaining intervals, and so forth.
(3) De�ne the Cantor-Lebesgue function f ∶ [0, 1] → [0, 1] by

f(x) = {

∑∞

j=1
aj2

−j, x =
∑∞

j=1
2aj3

−j ∈ C for aj ∈ {0, 1} ;

sup
y≤x,y∈C

f(y), x ∈ [0, 1] ⧵ C.

Remark 8.9. The Cantor function challenges naive intuitions about continuity
and measure; though it is continuous everywhere and has zero derivative almost
everywhere, f(x) goes from 0 to 1 as x goes from 0 to 1, and takes on every value
in between. The Cantor function is the most frequently cited example of a real
function that is uniformly continuous (precisely, it is Hölder continuous of exponent
� = log 2∕ log 3) but not absolutely continuous. It is constant on intervals of the form
(0.x1x2x3⋯xn022222⋯ , 0.x1x2x3⋯xn200000⋯), and every point not in the Cantor
set is in one of these intervals, so its derivative is 0 outside of the Cantor set. On the
other hand, it has no derivative at any point in an uncountable subset of the Cantor set
containing the interval endpoints described above.

8.D. Filling problems.

Proposition 8.10. Every open setU ⊂ ℝn is a countable almost disjoint union of cubes.

Proof. Consider the collection A0 of cubes of side length 1 de�ned by the lattice ℤn. Set

U0 ∶= {Q ∈ A0 ∶ Q ⊂ U} , and D0 ∶= {Q ∈ A0 ∶ Q ∩ U ≠ ∅,Q ∩ Uc ≠ ∅} .

Let A1 be the collection of cubes that we obtain by subdividing each cube in D0 into 2n

cubes of side length 1

2
, and set

U1 ∶= {Q ∈ A1 ∶ Q ⊂ U} , and D1 ∶= {Q ∈ A1 ∶ Q ∩ U ≠ ∅,Q ∩ Uc ≠ ∅} .

Continue this process. Then U =
⋃

Q∈U
Q where U ∶=

⋃∞

j=1
Uj is a countable almost

disjoint union of cubes. �

Proposition 8.11. Let U ⊂ ℝn be open, � > 0. There exists a countable collection G of
disjoint closed cubes inU such that |Q| < � for each B ∈ G and

m
⎛

⎜

⎝

U ⧵
⋃

Q∈G

Q
⎞

⎟

⎠

= 0
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Proof. Fix 0 < �1 < �2 < 1. WLOG we assume thatm(U) < ∞ (otherwise we apply the
conclusion to Um = {x ∈ U ∶ m < |x| < m + 1} for m = 0, 1,⋯). Via proposition 8.10
and subdividing, there exists a �nite collection (Qj)

M1

j=1
of almost disjoint cubes inU such

that |Qj| < � for j = 1,⋯ ,M1, and

m
⎛

⎜

⎝

U ⧵

M1⋃

j=1

Qj

⎞

⎟

⎠

≤ �2m(U)

Via a method like in remark 8.4, we can assume that Qj is disjoint and

m
⎛

⎜

⎝

U ⧵

M1⋃

j=1

Qj

⎞

⎟

⎠

≤ �1m(U)

Now letting U2 ∶= U ⧵
⋃M1

j=1
Qj, there exists, for the same reason, a �nite collection

(Qj)
M2

j=M1+1
of isjoint cubes in U2 such that

m
⎛

⎜

⎝

U ⧵

M2⋃

j=1

Qj

⎞

⎟

⎠

= m
⎛

⎜

⎝

U2 ⧵

M2⋃

j=M1+1

Qj

⎞

⎟

⎠

≤ �1m (U2) ≤ �2
1
m (U)

Continue this process to obtain a countable collection of disjoint balls such that

m
⎛

⎜

⎝

U ⧵

Mk⋃

j=1

Qj

⎞

⎟

⎠

≤ �k
1
m (U)

since �k
1
→ 0 as k → ∞, the theorem is proved ifm(U) < ∞. We are done. �

8.E. Regularity, Radon measures on ℝn. Our next aim is to show the regularity of
Lebesgue measure on ℝn. First, we build the framework of Radon measures on ℝn.

De�nition 8.12 (Regularity). Let X be a topological space. A measure � on a �-algebra
X ⊃ ℬX is called outer regular if

�(E) = inf {�(U) ∶ E ⊂ U,U is open} , ∀E ∈ X

and inner regular if

�(E) = sup {�(K) ∶ K ⊂ E,K is compact} , ∀E ∈ X

If � is both outer and inner regular, it is called regular.
An outer measure �∗ onℝn is call Borel regular if for each E ⊂ ℝn, there exists a Borel

set B ⊃ E such that �∗(E) = �∗(B).

De�nition 8.13 (Radon measure on ℝn). A Radon measure on ℝn is a Borel measure
that is �nite on compact sets.

Remark 8.14. As in de�nition 11.2, more generally, a Radon measure on a LCH space
is a Borel measure that not only has �niteness on compact sets, but also has regularity.
In fact, on ℝn, �niteness on compact sets implies regularity. See theorem 8.16.

Remark 8.15. Moreover, as pointed out in remark 7.21, some people regard outer
measures and measures as the same things. Actually, under that identi�cation, a Radon
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measure � on ℝn is equivalent to a Radon outer measure �∗ on ℝn, where a Radon
outer measure is an outer measure �∗ on ℝn satisfying:

(1) �∗ is Borel regular;
(2) All Borel sets are �∗-measurable;
(3) �∗(K) < ∞ for each compact set K ⊂ ℝn.

See proposition 8.17.

Now we give detailed explanations of the above remarks.

Theorem 8.16 (Regularity of Radon measure on ℝn). Each Radon measure � on ℝn is
�-�nite and regular. For each Borel setA and each " > 0 there is an open setU and a closed
set F so that

(8.1) F ⊂ A ⊂ U, and �(U ⧵ F) ≤ ".

Proof. Obviously � is �-�nite, since ℝn =
⋃∞

n=1
Bn(0). Let we prove (8.1).

First we assume that � is �nite. LetA be the set of all Borel sets A that satisfy (8.1). It
su�ces to prove that A is a �-algebra that contains all closed subsets.
It’s clear thatA is closed under complements. To show thatA is a �-algebra it su�ces

to show thatA is closed under countable unions. Suppose thatAj ∈ A, j ≥ 1, and " > 0.
So there exist openUj’s and closed Fj’s such that Fj ⊂ Aj ⊂ Uj and �(Uj ⧵ Fj) ≤ "2−j−1.
Then U ∶=

⋃∞

j=1
Uj is open and Fk ∶=

⋃k

j=1
Fj is closed for �nite k. Note that Fk ⊂

⋃∞

j=1
Aj ⊂ U and

U ⧵ Fk ⊂
⎛

⎜

⎝

∞⋃

j=1

(Uj ⧵ Fj)
⎞

⎟

⎠

⋃⎛

⎜

⎝

∞⋃

j=1

(Fj ⧵ Fk)
⎞

⎟

⎠

.

Since � is �nite, for k su�ces large, we have �
(⋃∞

j=1
Fj

)
− �(Fk) <

"

2
, and hence

�(U ⧵ Fk) ≤

∞∑

j=1

�(Uj ⧵ Fj) + �
⎛

⎜

⎝

∞⋃

j=1

Fj

⎞

⎟

⎠

− �(Fk) < ".

Thus
⋃∞

j=1
Aj ∈ A.

Let F be a closed subset. Setting Uj = {x ∶ dist(x, F) < 1

j
}, then Uj is open for each j

and
⋃∞

j=1
Uj = F. Since � is �nite, limj→∞ �(Uj) = �(F). It follows that F ∈ A.

Assume that � is not �nite. Let A be a Borel set and let " > 0 be given. It’s clear that
�F(E) ∶= �(E ∩ F) is a �nite Radon measure on ℝn if F ∈ ℬℝn and F ⊂ K for some
compact subsetK. By the above, for j = 1, 2,⋯, there exists a closed set Cj ⊂ (Bj(0) ⧵A)

with �Bj(0)
(
Bj(0) ⧵ (A ∪ Cj)

)
= �

(
Bj(0) ⧵ (A ∪ Cj)

)
≤ "2−j. ThenU ∶=

⋃∞

j=1
(Bj(0)⧵Cj)

is open, A ⊂ U, and

�(U ⧵ A) ≤

∞∑

j=1

�
(
Bj(0) ⧵ (A ∪ Cj)

)
≤ ".
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Similarly, there exists a closed set Fj ⊂ Aj ∶= A∩ {x ∈ ℝn ∶ i ≤ |x| < i + 1}with �(Aj ⧵

Fj) ≤ "2−j−1. Then F ∶=
⋃∞

j=0
Fj ⊂

⋃∞

j=0
Aj = A, and

�(A ⧵ F) ≤

∞∑

j=0

�(Aj ⧵ Fj) ≤ "

It remains to show that F is closed. It’s well known that for a locally �nite collection
(Si)i∈I of subsets of a topological space X, we have

⋃

i∈I
Si =

⋃

i∈I
Si. The conclusion

follows.
Finally we prove that � is regular. The outer regular easily follows from (8.1).

Moreover, from the above we know that

(8.2) �(A) = sup {�(F) ∶ F ⊂ A, F is closed} , ∀A ∈ ℬℝn .

Note that for any closed F ⊂ ℝn the sets Kj = F ∩ Bj(0) are compact and �(F) =
limj→∞ �(Kj). It follows that � is inner regular. �

Proposition 8.17. Let � be a Radon measure on ℝn. Then the outer measure �∗ induced
by proposition 7.18 is a Radon outer measure (see remark 8.15 for de�nition). Conversely,
if an outer measure �∗ onℝn is a Radon outer measure, then �∗|ℬℝn

is a Radon measure.

Proof. Suppose that� is a Radonmeasure onℝn. As pointed out in remark 7.21, �∗|ℬℝn
=

�. Then (2) and (3) in remark 8.15 follows. If �∗(E) = ∞, take B = ℝn. Suppose that
�∗(E) < ∞. For each k ≥ 1, choose a countable collection Ak of Borel sets so that

E ⊂
⋃

A∈Ak

A =∶ Bk, and
∑

A∈Ak

�(A) ≤ �∗(E) +
1

k

Then B =
⋂∞

k=1
Bk is a Borel set that satis�es E ⊂ B and

�∗(B) ≤ �(Bk) ≤
∑

A∈Ak

�(A) ≤ �∗(E) +
1

k
, ∀k

Hence �∗(E) = �∗(B).
The converse statement is obvious. �

For more properties of Randon measures on ℝn, one can refer to [Evaa].

8.F. Regularity of Lebesguemeasure, F� and G� sets. In the next we come back the
regularity of Lebesgue measure.

De�nition 8.18 (F� and G� sets). An F� set is a countable union of closed sets, and a G�

set is a countable intersection of open sets.

Theorem 8.19 (Properties of the Lebesguemeasure). Letm denote the Lebesguemeasure
and letm∗ denote the Lebesgue outer measure.
(1) m∗ is Borel regular.
(2) m|ℬℝn

is a Radon measure, andm is regular and �-�nite.
(3) A set E ⊂ ℝn is Lebesgue measurable i� there is an F� set A and a G� set B satisfying

A ⊂ E ⊂ B andm(B ⧵ A) = 0.
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Moreover, the completion of
(
ℝn, ℬℝn , m|ℬ(ℝn)

)
is (ℝn, ℒ(ℝn),m). In particular, ℒ(ℝn) is

the completion of the Borel �-algebraℬℝn with respect to the Lebesgue measure.

Proof. (1) Ifm∗(E) = ∞, take B = ℝn. Suppose thatm∗(E) < ∞. For each k ≥ 1, choose
a countable collection Ak of cubes so that

E ⊂
⋃

Q∈Ak

Q =∶ Bk, and
∑

Q∈Ak

|Q| ≤ m∗(E) +
1

k

Then B =
⋂∞

k=1
Bk is a Borel set that satis�es E ⊂ B and

m∗(B) ≤ m∗(Bk) ≤
∑

Q∈Ak

|Q| ≤ m∗(E) +
1

k
, ∀k

Hencem∗(E) = m∗(B).
(2) It’s clear thatm|ℬℝn

has �niteness on compact sets and hence is a Randon measure.
Thusm is also �-�nite. Via theorem 8.16,

∀B ∈ ℬℝn ∶ m(B) = inf {m(U) ∶ B ⊂ U,U is open}
= sup {m(K) ∶ K ⊂ B,K is compact} .

If E ∈ ℒ(ℝn), by (1) there exists a Borel set B with E ⊂ B and m(E) = m∗(E) =

m∗(B) = m(B), and hence

m(E) = m(B) = inf {m(U) ∶ B ⊂ U,U is open}
≥ inf {m(U) ∶ E ⊂ U,U is open} ≥ m(E)

which implies thatm is outer regular.
To see thatm is inner regular, let E ⊂ ℝn be measurable, and suppose �rst that E

is contained in a cubeQ. Let " > 0. Sincem(Q⧵E) < ∞ andm is outer regular, there
exist an open set U ⊃ (Q ⧵ E) withm(U) ≤ m(Q ⧵ E) + ". The set K ∶= Q ⧵ U ⊂ E

is compact and satis�es

m(E) = m(Q) − m(Q ⧵ E) ≤ m(Q) − m(U) + "

≤ m(Q) − m(Q ∩ U) + " = m(K) + "

If E is not contained in a cube, for each j ≥ 1, there is a compact Kj ⊂ [−j, j]n so
thatm(Kj) ≥ m(E ∩ [−j, j]n) −

1

j
. Hencem(Kj) → m(E) as k → ∞ and hencem is

inner regular.
(3) Assume that E is Lebesgue measurable. By (2) there exist open sets Gj’s and closed

sets Fj’s satisfying Fj ⊂ E ⊂ Gk and m(Gj ⧵ Fj) ≤
1

j
. Then sets F =

⋃∞

j=1
Fj and

G =
⋂∞

j=1
Gj are as required.

Conversely, suppose that there exist such F and G for E. It su�ces to show that
for any A ⊂ ℝn we have

m∗(A ∩ E) + m∗(A ∩ Ec) = m∗(A).

Since we havem∗(A∩F)+m∗(A∩Fc) = m∗(A), it su�ces to show thatm∗(A∩F) =

m∗(A ∩ E) and m∗(A ∩ Ec) = m∗(A ∩ Fc). Note that A ∩ F ⊂ A ∩ E ⊂ A ∩ G and
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A ∩ Gc ⊂ A ∩ Ec ⊂ A ∩ Fc. Also note that

m∗ ((A ∩ G) ⧵ (A ∩ F)) = m∗ (A ∩ (G ⧵ F)) ≤ m∗ (G ⧵ F) = 0,

and similarly m∗ ((A ∩ Fc) ⧵ (A ∩ Gc)) = 0. It follows that m∗(A ∩ E) = m∗(A ∩ F)

andm∗(A ∩ Ec) = m∗(A ∩ Fc). We are done.
Finally, it follows from (3) and theorem 7.12 that ℒ(ℝn) ⊂ ℬℝn and m|ℒ(ℝn) =

m|ℒ(ℝn), where
(
ℝn, m|ℒ(ℝn), m

)
is the completion of

(
ℝn, m|ℒ(ℝn), m

)
. Then it follows

from proposition 7.14 that the completion of
(
ℝn, ℬℝn , m|ℬ(ℝn)

)
is (ℝn, ℒ(ℝn),m), since

(ℝn, ℒ(ℝn),m) is complete. �

8.G. Existence of non-measurable sets.

Theorem 8.20 (Existence of non-measurable sets). On ℝn consider the equivalence
relation x ∼ y i� x − y ∈ ℚn. The axiom of choice allows us to choose exactly one element
in each equivalence class and to gather these elements in one set N; such a set is called a
Vitali set. N is not Lebesgue measurable.
Moreover, given E ⊂ ℝn, thenm(E) = 0 i� every subset of E is Lebesgue measurable.

Proof. Note that

ℝn =
⋃

x∈N

(x + ℚn) =

∞⋃

j=1

(rj +N)

where ℚn = {r1, r2,⋯} and these are two disjoint union. To show that N ∉

ℒ(ℝn), via theorem 8.16, it su�ces to prove that m∗(N) > 0 and m∗(N) ∶=

sup {�(F) ∶ F ⊂ A, F is compact} = 0.
First note that m∗(N) > 0; otherwise via theorem 8.19 we have m(E) = m∗(E) = 0,

and hencem(rk +N) = 0 for each k, which implies thatm(ℝn) = 0, a contradiction.
Then we show that m∗(E) = 0. Given any compact set K ⊂ E. Then setting

D = B1(0) ∩ ℚ
n we know that

⋃

r∈D
(r + K) is a disjoint union and is bounded. Hence

m
(⋃

r∈D
(r + K)

)
=

∑

r∈D
m(K) < ∞, and it follows thatm(K) = 0. Thusm∗(E) = 0.

Now we prove the second assertion. The “only if” implication follows from theorem
8.19. On the other hand, suppose that A is a Lebesgue measurable set with m(A) > 0.
Note that

A =

∞⋃

j=1

(
(rj +N) ∩ A

)
,

and

0 < m(A) = m∗(A) ≤

∞∑

j=1

m∗
(
(rj +N) ∩ A

)
,

Hence there exist k ≥ 1 such that B ∶= (rk + N) ∩ A has positive outer measure. Also
note that

m∗(B) ∶= sup {�(F) ∶ F ⊂ B, F is compact}
≤ sup {�(F) ∶ F ⊂ (rk +N), F is compact} = 0

Hence B is not Lebesgue measurable. We are done. �
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Remark 8.21. In the previous proof the axiom of choice plays an essential role. In fact,
Solovay constructed a model in which all axioms of Zermelo–Frankel set theory, except
the axiom of choice, hold and in which every subset of R is Lebesgue measurable.

8.H. Uniqueness, product property. In the next we introduce the uniqueness of
Lebesgue measure.

De�nition 8.22 (Translation invariant). We call a measure � on ℝn translation
invariant if it satis�es that if E is measurable and x ∈ ℝn, then x + E is measurable
and �(x + E) = �(E).

Theorem 8.23 (Uniqueness of Lebesgue measure). There are some editions.
(1) m|ℬℝn

is the unique measure onℬℝn satisfyingm([a, b]) = |||[a, b]
|||.

(2) m∗ is the unique Borel regular outer measure such that all Borel sets are measurable
andm∗([a, b]) = |||[a, b]

|||.
(3) m|ℬℝn

is the unique translation invariant Randon measure onℬℝn up to a scaling.

Proof. For (1), let G be the collection of sets of the form F ∩ G, where F is closed and G
is open. Then G is an elementary family. Via theorem 7.29, lettingA be the collection of
all �nite disjoint unions of sets in G, then A is an algebra. Via theorem 7.25 and remark
7.30, it su�ces to show that any Borel measure � onℝn satisfying �([a, b]) = |||[a, b]

|||will
coincide withm on G, since the �-algebra generated byA is ℬℝn .
Via proposition 8.10, � coincide withm on all open sets. If F is closed and G is open,

set Gj ∶= {x ∈ ℝn ∶ dist(x, F) < 1

j
}. Then Gj is open, Gj ⊃ Gj+1, and F =

⋂∞

j=1
Gj. If

�(G) < ∞, thenm(G) = �(G) < ∞ and hence

�(F ∩ G) = �
⎛

⎜

⎝

∞⋂

j=1

(Gj ∩ G)
⎞

⎟

⎠

= lim
j→∞

�(Gj ∩ G) = lim
j→∞

m(Gj ∩ G) = m
⎛

⎜

⎝

∞⋂

j=1

(Gj ∩ G)
⎞

⎟

⎠

= m(F ∩ G)

If �(G) = ∞, then

� (F ∩ G ∩ (−k, k)n) = m (F ∩ G ∩ (−k, k)n)

and letting k → ∞ we have �(F ∩ G) = m(F ∩ G). Then (1) follows.
Let �∗ be a Borel regular outer measure such that all Borel sets are measurable and

�∗([a, b]) = |||[a, b]
|||. By (1) and Carathéodory’s theorem 7.19, �∗ coincide withm∗ on all

Borel sets. Let E ⊂ ℝn. Since they are Borel regular, there exist two Borel sets B1, B2 ⊃ E

such that �∗(B1) = �∗(E) and m∗(B2) = m∗(E). Setting B = B1 ∩ B2, it’s clear that
m∗(E) = m∗(B) = �∗(B) = �∗(E). Then (2) follows.
Let � be a translation invariant Randon measure on ℬℝn . Set �([0, 1)n) ∶= C < ∞.

Consider the grid of dyadic cubes of the form [a1, b1)×⋯×[an, bn) de�ned by the lattice
2−kℤn. Since these cubes are all translates of each other, we have

2kn�(Q) = �([0, 1)n) = Cm([0, 1)n) = C2knm(Q),

for each such cube Q. We may infer by the regularity that � vanishes on degenerate
boxes, and so �(Q) = Cm(Q) for each closed dyadic cube Q = [a1, b1] × ⋯ × [an, bn].
Also, We may infer by proposition 8.10 that �(E) = C�(E) for each open set E, and thus
for each Borel set E by the regularity of � andm. Then (3) follows. �
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Corollary 8.24. The (m + n)-dimensional Lebesgue measure space
(
ℝm+n, ℒ(ℝm+n),m|ℒ(ℝm+n)

)

is the completion of (ℝm × ℝn, ℒ(ℝm) × ℒ(ℝn),m|ℒ(ℝm) ×m|ℒ(ℝn)).

Proof. First we show that

ℬℝm+n ⊂ ℒ(ℝm) × ℒ(ℝn) ⊂ ℒ(ℝm+n).

The�rst inclusion follows from the fact that each cube inℝm+n belongs toℒ(ℝn)×ℒ(ℝm),
andℬℝm+n is the �-algebra generated by the cubes inℝm+n. It follows from theorem 8.19
(3) that E × ℝn and ℝm × F belong to ℒ(ℝm+n) if E ∈ ℒ(ℝm) and F ∈ ℒ(ℝn); then the
second inclusion follows via proposition 6.29.
Then note thatm|ℒ(ℝm+n) andm|ℒ(ℝm) ×m|ℒ(ℝn) coincide on boxes, and hence coincide

on ℬℝn via theorem 8.23 (1). Via theorem 8.19, the completion of
(
ℝn, ℬℝn , m|ℬ(ℝn)

)

is (ℝn, ℒ(ℝn),m). Hence, via proposition 7.14, it su�ces to show that m|ℒ(ℝm+n) and
m|ℒ(ℝm)×m|ℒ(ℝn) coincide onℒ(ℝm) ×ℒ(ℝn). For all E ∈ ℒ(ℝm) ×ℒ(ℝn) ⊂ ℒ(ℝm+n), it
follows from theorem 8.19 (3) that A ⊂ E ⊂ B for some A, B ∈ ℬℝn withm(B ⧵ A) = 0.
Note that

m(A) ≤ m|ℒ(ℝm) ×m|ℒ(ℝn)(A) ≤ m|ℒ(ℝm) ×m|ℒ(ℝn)(E) ≤ m|ℒ(ℝm) ×m|ℒ(ℝn)(B) = m(B).

Then the desired coincidence follows. We are done. �

For more properties such as invariance properties, one can refer to [Jon] or [Rai].
Moreover, since the completion of

(
ℝn, ℬℝn , m|ℬ(ℝn)

)
is (ℝn, ℒ(ℝn),m), some

conclusions of the Radon measure
(
ℝn, ℬℝn , m|ℬ(ℝn)

)
also apply to (ℝn, ℒ(ℝn),m).

Hence, one can refer to the section 11, which is about Radon measures, for more
properties of Lebesgue measures.
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9. Integration on a measure space

In this section we introduce the integration on a measure space and its properties.
First we �x the arithmetic in [0,∞]. We de�ne

a +∞ = ∞+ a = ∞ if a ∈ [0,∞];

a ⋅ ∞ = ∞ ⋅ a = {
∞, a ∈ (0,∞]

0, a = 0.

Then addition and multiplication in [0,∞] are commutative, associative, and
distributive. The cancellation laws have to be treated with some care; a + c = b + c

implies a = b only if c ∈ [0,∞), and ac = bc implies a = b only if c ∈ (0,∞).
In the next we de�ne the integration in three steps:

(1) De�ne the integration of non-negative simple functions;
(2) Induce the integration of non-negative measurable functions;
(3) Induce the integration ofmeasurable real-valued and complex-valued functions.

9.A. Integration on L+.

De�nition 9.1 (L+ space). Let (X,X, �) be a measure space. Then we de�ne

L+ = L+(X) ∶= the space of all measurable functions from X to [0,∞].

De�nition 9.2 (Integration of non-negative simple functions). Let (X,X, �) be a
measure space. The integration ∫ ' d� with respect to the measure � of a simple function
' ∶ X → [0,∞] with standard representation ' =

∑N

j=1
aj�Ej is de�ned by

∫ ' d� = ∫
X

' d� ∶=

N∑

j=1

aj�(Ej).

Moreover, if E ⊂ X, then we set

∫
E

' d� = ∫ '�E d� =

N∑

j=1

aj�(Ej ∩ E).

Proposition 9.3. Let ' and  be simple functions in L+.
(1) If c ∈ [0,∞), ∫ c' d� = c ∫ ' d�.
(2) ∫ (' +  ) d� = ∫ ' d� + ∫  d�.
(3) If ' ≤  , then ∫ ' d� ≤ ∫  d�.
(4) The map A ↦ ∫

A
' d� is a measure onX.

Proof. Trivial. Just use the common re�nement. �

Remark 9.4. In the next we will see that in (4) we can change ' to any f ∈ L+.

Remark 9.5. The integration itself is of course of great signi�cance. But on the other
hand, a new perspective of studyingmeasures is inspired: themeasures form functionals
on a function space via the integration. (They �nally form functionals on L1.)
More precisely, under good conditions, we have theRiesz representation theorem11.6.
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Now we induce the integration of functions in L+.

De�nition 9.6 (Integration of non-negative measurable functions). Let (X,X, �) be a
measure space. The integration ∫ f d� with respect to the measure � of a function f ∈ L+

is de�ned by

∫ f d� = sup {∫
X

' d� ∶ 0 ≤ ' ≤ f, ' is simple} .

Moreover, if E ⊂ X, then we set

∫
E

f d� = ∫ f�E d�.

Remark 9.7. By proposition 9.3 (3) we know that two de�nitions ∫ f d� agree when f
is simple. Moreover, it’s obvious from the de�nition that for f, g ∈ L+,

∫ f d� ≤ ∫ g d� whenever f ≤ g, and ∫ cf d� = c ∫ f d� if c ≥ 0.

Also, the integration has additivity. See corollary 9.14 for the general cases.

Proposition 9.8. Let (X,X, �) be a measure space. If f ∈ L+, then ∫ f d� = 0 i� f = 0

a.e.

Proof. If f is simple, the conclusion is trivial. In general, if f = 0 a.e. and ' is simple
with 0 ≤ ' ≤ f, then ' = 0 a.e. and hence ∫ f d� = sup

0≤'≤f
∫ ' d� = 0. On the

other hand, if it false that f = 0 a.e., then it follows that �(En) > 0 for some n where
En ∶=

{
x ∶ f(x) <

1

n

}
, since {x ∈ X ∶ f(x) > 0} =

⋃∞

n=1
En. Note that f >

1

n
�En ; hence

∫ f d� ≥
1

n
�(En) > 0. Then the conclusion follows. �

Proposition 9.9. Let (X,X, �) be a measure space. If f ∈ L+ and ∫ f d� < ∞, then
A ∶= {x ∶ f(x) = ∞} is a null set and B ∶= {x ∶ f(x) > 0} is �-�nite.

Proof. Trivial. �

9.B. (Improved) monotone convergence theorem, Fatou’s lemma. Theorem 6.22
shows that f can be approximated pointwisely by a sequence of monotonely incresing
simple functions (which is uniformly when f is bounded). Actually this monotone
approximation leads to the approximation in the sense of integration. More precisely,
we have the monotone convergence theorem.

Theorem 9.10 (The monotone convergence theorem). Let (X,X, �) be a measure space.
If (fn) is a sequence in L+ such that fj ≤ fj+1 for all j, and f = limj→∞ fj, then f ∈ L+,
and ∫ f d� = limj→∞ ∫ fj d�.

Proof. Since f = sup
j≥1

fj, f is measurable via proposition 6.18. It’s clear that ∫ f d� ≥
∫ fj d� for all j, and hence ∫ f d� ≥ limj→∞ ∫ fj d�, where (∫ fj d�)∞j=1 is incresing and
hence the limit makes sense.
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For the converse inequality, �x � ∈ (0, 1). It su�ces to show that for any simple
function ' with 0 ≤ ' ≤ f we have

lim
j→∞

∫ fj d� ≥ � ∫ ' d�.

Setting Ej ∶=
{
x ∶ fj(x) ≥ a'(x)

}
, then E1 ⊂ E2 ⊂ ⋯ and X =

⋃∞

j=1
Ej. Hence

∫ fj d� ≥ ∫
Ej

fj d� ≥ a ∫
Ej

' d�.

It follows that

lim
j→∞

∫ fj d� ≥ a lim
j→∞

∫
Ej

' d� = a ∫ ' d�,

since E ↦ ∫
E
' d� is a measure. We are done. �

Remark 9.11. Theorem 9.10 and theorem 6.22 give us a new method to de�ne the
integration of f ∈ L+. But in this way we need to show that the de�ned integration
is independent from the choice of ('n).

Remark 9.12. In fact, in the monotone incresing theorem, if fn increses to f a.e., we
already have ∫ f d� = limn→∞ ∫ fn d�. We will show this later.

Remark 9.13. The hypothesis that the sequence (fn) be incresing, at least a.e., is
essential for the monotone convergence theorem. For example, consider (ℝ,ℒ(ℝ),m)
and fn = �(n,n+1).

Corollary 9.14 (Additivity). Let (X,X, �) be a measure space. If (fn) is a �nite or in�nite
sequence in L+ and f =

∑∞

n=1
fn, then ∫ f d� =

∑∞

n=1
∫ fn d�.

Proof. First we prove the statement for the sum of two functions f1 and f2. By theorem
6.22, there exist two sequences ('j)∞j=1 and ( j)

∞

j=1
of non-negative simple functions that

increse tof1 andf2. Then ('j+ j)∞j=1 increses tof1+f2, so by themonotone convergence
theorem 9.10 and proposition 9.3,

∫ (f1 + f2) d� = lim
j→∞

∫ ('j +  j) d� = lim
j→∞

∫ 'j d� + lim
j→∞

∫  j d� = ∫ f1 d� + ∫ f1 d�.

Hence, by induction, ∫
(∑N

j=1
fj

)
d� =

∑N

j=1
∫ fj d� for any �nite N. Letting N → ∞

and applying the monotone convergence theorem 9.10 again, we obtain the conclusion.
�

Corollary 9.15. Let (X,X, �) be a measure space. If f ∈ L+ and set �(E) = ∫
E
f d� for

E ∈ X, then � is a measure onX, and for any g ∈ L+,

(9.1) ∫ g d� = ∫ fg d�.

Proof. Let (En)∞n=1 is a sequence of disjoint sets in X. Then via corollary 9.14,

� (

∞⋃

n=1

En) = ∫

∞∑

n=1

f�En d� =

∞∑

n=1

∫ f�En d� =

∞∑

n=1

�(En)
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It follows that � is a measure on X. By de�nition, (9.1) holds for g = �E, E ∈ X.
Moreover, via corollary 9.14, for each non-negative simple function we have

∫

N∑

j=1

aj�Ej d� =

N∑

j=1

aj ∫ �Ej d� =

N∑

j=1

aj ∫ f�Ej d� = ∫ f

N∑

j=1

aj�Ej d�,

and hence (9.1) holds for non-negative simple functions. The general case follows from
theorem 6.22 and the monotone convergence theorem 9.10. �

Remark 9.16. This corollary inspires us that we may represent a measure via a give
measure. Actually, we have the Radon-Nikodym-Lebesgue theorem 10.18.

Now we come back to remark 9.12 and improve the monotone convergence theorem.

Corollary 9.17 (Improved monotone convergence theorem). Let (X,X, �) be a measure
space. If (fn) ⊂ L+, f ∈ L+, and fn increses to f a.e., then ∫ f d� = limn→∞ ∫ fn d�.

Proof. If fn(x) increses to f(x) for x ∈ E and �(Ec) = 0, then f − f�E = 0 a.e. and
fn − fn�E = 0 a.e., so by the monotone convergence theorem 9.10, we have ∫ f d� =

∫ f�E d� = limn→∞ ∫ fn�E d� = limn→∞ ∫ fn d�. �

Remark 9.18. Actually under the purposes of integration, we can alter functions on
null sets. Thus via proposition 6.13 and proposition 6.14, limj→∞ fj can be regarded as
an a.e.-de�ned measurable function under the purposes of integration, and hence we
can remove the hypothesis that f is in L+ in the above corollary.

As remark 9.13 said, being incresing is essential for the monotone convergence
theorem. If we remove this condition, we also have Fatou’s lemma.

Theorem 9.19 (Fatou’s lemma). Let (X,X, �) be a measure space. If (fn) ⊂ L+, then

∫ lim inf
n→∞

fn d� ≤ lim inf
n→∞

∫ fn d�.

Proof. Setting gk ∶= inf n≥k fn ∈ L+, then gk increses to lim inf n→∞ fn, and hence

∫ lim inf
n→∞

fn d� = lim
k→∞

∫ gk d�.

Therefore, it su�ces to show that

∫ gk d� ≤ inf
j≥k

∫ fj d�.

Note that gk = inf n≥k fn ≤ fj for all j ≥ k. It follows that ∫ gk d� ≤ ∫ fj d� for all j ≥ k.
Then the conclusion follows. �

Corollary 9.20. Let (X,X, �) be a measure space. If (fn) ⊂ L+, f ∈ L+ and fn → f a.e.,
then ∫ f d� ≤ lim inf n→∞ ∫ fn d�.

9.C. Integration ofmeasurable functions, the dominated convergence theorem.
Now we induce the integration of measure real-valued and complex-valued functions.
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De�nition 9.21 (Integration of measurable functions). Let (X,X, �) be ameasure space.
If f ∶ X → [−∞,+∞] is measurable, then the integration ∫ f d� with respect to the
measure � of f is de�ned by

∫ f d� = ∫ f+ d� − ∫ f− d�.

We shall be mainly concerned with the case where ∫ f+ d� and ∫ f− d� are both �nite;
we then say that f is integrable. Since |f| = f+ + f−, it’s clear that f is integrable i�
∫ |f| d� < ∞.
Next, if f ∶ X → ℂ is measurable, then the integration ∫ f d� with respect to the

measure � of f is de�ned by

∫ f d� = ∫ ℜf d� + i ∫ ℑf d�.

We say that f is integrable if ∫ |f| d� < ∞. More generally, if E ∈ X, f is integrable
on E if ∫

E
|f| < ∞. Since |f| ≤ |ℜf| + |ℑf| ≤ 2|f|, f is integrable i�ℜf and ℑf are

both integrable. We denote the space of complex-valued integrable functions by L1(�) (or
L1(X, �), or L1(�), or simply L1.).

Remark 9.22. Sometimes we also write the integration in the following form:

∫ f(x) d�(x) = ∫ f d�.

Proposition 9.23. Let (X,X, �) be a measure space.

(1) (Linearity) The set of integrable real-valued (or complex-valued) functions on X is a
real (or complex) vector space, and the integration is a linear functional on it.

(2) (Monotony) If f and g are real-valued and f ≤ g, then

∫ f d� ≤ ∫ g d�.

(3) (Triangle inequality) If f ∈ L1, then
|||||||
∫ f d�

|||||||
≤ ∫ |f| d�.

(4) (� − additivity) If (En)∞n=1 is a sequence of disjoint sets inX and f ∈ L1, then

∫
⋃∞

n=1
En

f d� =

∞∑

n=1

∫
En

f d�

(5) If f ∈ L1, then {x ∶ f(x) ≠ 0} is �-�nite.
(6) If f, g ∈ L1, then ∫

E
f d� = ∫

E
g d� for all E ∈ X i� ∫ |f − g| d� = 0 i� f = g a.e.

Proof. Trivial. �

Remark 9.24. This proposition shows that for the purposes of integration it makes no
di�erence if we alter functions on null sets (this is feasible via proposition 6.13). In this
fashion we can treatℝ-valued functions that are �nite a.e. asℝ-valued functions for the
purposes of integration.
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With this in mind, we shall �nd it more convenient to rede�ne L1(�) to be the set of
equivalence classes of a.e.-de�ned integrable functions on X, where f and g are
considered equivalent i� f = g a.e. This new L1(�) is still a complex vector space, andwe
shall still employ the notation “f ∈ L1(�)” to mean that f is an a.e.-de�ned integrable
function.
Moreover, under the new de�nition, L1(�) is a metric space with distance function

�(f, g) = ∫ |f − g| d�. We shall refer to the convergence with respect to this metric as
convergence in L1; thus fn → f in L1 i� ∫ |fn − f| d� → 0.

Now we present the last of the three basic convergence theorems.

Theorem 9.25 (The dominated convergence theorem). Let (X,X, �) be ameasure space.
Let (fn) be a sequence in L1 such that

(1) fn → f a.e., and
(2) there exists a non-negative g ∈ L1 such that |fn| ≤ g a.e. for all n.

Then f ∈ L1 and ∫ f d� = limn→∞ fn d�.

Proof. It follows from proposition 6.18 and proposition 6.13 that f is measurable
(perhaps after rede�nition on a null set). Since |f| ≤ g a.e., we have f ∈ L1. By taking
real and imaginary parts it su�ces to assume that fn and f are real-valued, in which
case we have g + fn ≥ 0 a.e. and g − fn ≥ 0 a.e. Thus by Fatou’s lemma 9.19,

∫ g d� + ∫ f d� ≤ lim inf
n→∞

∫ (g + fn) d� = ∫ g d� + lim inf
n→∞

∫ fn d�,

∫ g d� − ∫ f d� ≤ lim inf
n→∞

∫ (g − fn) d� = ∫ g d� − lim sup
n→∞

∫ fn d�,

Therefore, lim inf n→∞ ∫ fn d� ≥ ∫ f d� ≥ lim sup
n→∞

∫ fn d�, and the result follows.
�

Corollary 9.26 (Improved additivity). Let (X,X, �) be ameasure space. Suppose that (fj)
is a sequence in L1 such that

∑∞

j=1
∫ |fj| d� < ∞. Then

∑∞

j=1
fj converges a.e. to a function

in L1, and ∫
(∑∞

j=1
fj

)
d� =

∑∞

j=1
∫ fj d�.

Proof. By corollary 9.14, we have

∫

∞∑

j=1

|fj| d� =

∞∑

j=1

∫ |fj| d� < ∞,

so the function g =
∑∞

j=1
|fj| is in L1. In particular, by proposition 9.9, g is �nite for a.e.

x, and for each such x the series
∑∞

j=1
fj(x) converges. Moreover, |

∑n

j=1
fj| ≤ g for all

n, so we can apply the dominated convergence theorem 9.25 to the sequence of partial
sum to obtain ∫

(∑∞

j=1
fj

)
d� =

∑∞

j=1
∫ fj d�. �

For more application, such as the conclusions about the integration depending on
parameters, one can refer to [For] or [Rai].
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9.D. Product measure, Fubini-Tonelli theorem. In the next we introduce the
integration theory under the productmeasures, inwhichwekeep thenotations in section
6. First we show that the product measure can be represented by integration.

Theorem 9.27 (Product measure). Let (X,X, �) and (Y, Y, �) be �-�ntie measure spaces.
If E ∈ X × Y, then the functions x ↦ �(Ex) and y ↦ �(Ey) are measurable on X and Y,
respectively, and

(� × �)(E) = ∫
X

�(E) d�(x) = ∫
Y

�(Ey) d�(y).

Proof. First suppose that � and � are �nite, and let D be the set of all E ∈ X × Y for
which the conclusions of the theorem are true. If E = A × B, then �(Ex) = �A(x)�(B)

and �(Ey) = �(A)�B(y), so clearly E ∈ D. By additivity it follows that �nite disjoint
unions of rectangles are in D, so by corollary 7.31 lemma 7.32 it su�ces to show that
A is a monotone class. If (En) is an incresing sequence in D and E =

⋃∞

n=1
En, then

the functions fn(y) = � ((En)
y) are measurable and increse pointwise to f(y) = � (Ey).

Hence f is measurable via proposition 6.18, and by the monotone convergence theorem
9.10,

∫ �(Ey) d�(y) = lim
n→∞

∫ � ((En)
y) d�(y) = lim

n→∞
� × �(En) = � × �(E).

Likewise � × �(E) = ∫ �(Ex)d�(x), so E ∈ D. Similarly, if (En) is a decreasing sequence
inD and E =

⋂∞

n=1
En, then we apply the dominated convergence theorem 9.25 to derive

that E ∈ D, where the function y ↦ � ((En)
y) is in L1(�) because � ((En)) ≤ �(X) < ∞

and �(Y) ≤ ∞, and the majorant function can be chosen as y ↦ � ((E1)
y). Thus ℱ is a

monotone class, and the proof is complete for the case of �ntie measure spaces.
Finally, if � and � are �-�nite, we can write X × Y as the union of an increasing

sequence (Xj×Yj) of rectangles of �ntie measure. If E ∈ X×Y, the preceding argument
applies to E ∩ (Xj × Yj) for each j to give

� × �
(
E ∩ (Xj × Yj)

)
= ∫ �Xj(x)�(Ex ∩ Yj) d�(x) = ∫ �Yj(y)�(E

y ∩ Xj) d�(y),

and we apply the monotone convergence theorem 9.10 to yield the desired result. �

Moreover, we have the Fubini-Tonelli theorem.

Theorem 9.28 (Fubini-Tonelli theorem). Let (X,X, �) and (Y, Y, �) be �-�ntie measure
spaces.

(1) If f ∈ L+(X × Y), then the functions

'(x) = ∫
Y

fx d� and  (y) = ∫
X

fy d�

are in L+(X) and L+(Y) respectively, and

(9.2) ∫
X×Y

f d(� × �) = ∫
X

' d� = ∫
Y

 d�.
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(2) If f ∶ X → ℂ and

∫
X

'∗ d� < ∞, where '∗(x) ∶= ∫
Y

|f|x d�,

then f ∈ L1(� × �).
(3) If f ∈ L1(� × �), then fx ∈ L1(�) for �-a.e. x ∈ X, fy ∈ L1(�) for �-a.e. y ∈ Y, the

a.e.-de�ned functions ' and  are in L1(�) and L1(�) respectively, and (9.2) holds.

Proof. The de�nitions in (1) of ' and  make sense by corollary 6.40. Theorem 9.27
implies (1) in the case that f = �E for E ∈ X × Y, and hence (1) holds for all non-
negative simple functions. In the general case, let (fn) be a sequence of simple functions
that increse pointwise to f as in theorem 6.22. The monotone convergence theorem
9.10 implies, �rst, that the corresponding 'n and  n increse to ' and  respectively, and,
second that

∫
X

' d� = lim
n→∞

∫
X

'n d� = lim
n→∞

∫
X×Y

fn d(� × �) = ∫
X×Y

f d(� × �),

∫
Y

 d� = lim
n→∞

∫
Y

 n d� = lim
n→∞

∫
X×Y

fn d(� × �) = ∫
X×Y

f d(� × �),

which is (9.2). This establishes (1).
(2) follows by applying (1) to |f|.
For (3), by taking the positive and negative parts of real and imaginary parts of f,

WLOG we may assume that f ∈ L+ ∩ L1. Then (3) follows from (1) and proposition
9.9. �

Remark 9.29. Theorem 9.28 can false if one of the measure spaces if not �-�ntie.
Consider the following example:
If X = Y = [0, 1], � the Lebesgue measure, � the counting measure, and f(x, y) = 1

for x = y and f(x, y) = 0 otherwise, then

∫
X

f(x, y) d�(X) = 0 and ∫
Y

f(x, y) d�(y) = 1

for all x, y ∈ [0, 1] so that

∫
X

(∫
Y

f(x, y) d�(y)) d�(x) = 1 ≠ 0 = ∫
Y

(∫
X

f(x, y) d�(x)) d�(y).

(The function f = �x=y is measurable since {x = y} =
⋂∞

n=1
Qn where Qn ∶=

([
0

n
,
1

n

]
×

[
0

n
,
1

n

])
∪⋯ ∪

([
n−1

n
,
n

n

]
×

[
n−1

n
,
n

n

])
is measurable.)

Theorem 9.30 (Fubini-Tonelli theorem for complete measures). Let (X,X, �) and
(Y, Y, �) be �-�ntie measure spaces, and let (X × Y,ℒ, �) be the completion of (X × Y,X ×

Y, � × �).
(1) If f ∈ L+(�), then fx is Y-measurable for �-a.e. x ∈ X, fy is X-measurable for �-a.e.

y ∈ Y, and the functions

'(x) = ∫
Y

fx d� and  (y) = ∫
X

fy d�
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are a.e.-de�ned and measurable on their domains respectively, and

(9.3) ∫
X×Y

f d(� × �) = ∫
X

' d� = ∫
Y

 d�.

(2) If f ∶ X → ℂ and

∫
X

'∗ d� < ∞, where '∗(x) ∶= ∫
Y

|f|x d�,

then f ∈ L1(� × �).
(3) If f ∈ L1(� × �), then fx ∈ L1(�) for �-a.e. x ∈ X, fy ∈ L1(�) for �-a.e. y ∈ Y, the

a.e.-de�ned functions ' and  are in L1(�) and L1(�) respectively, and (9.2) holds.

Proof. This easily follows from Fubini-Tonelli theorem 9.28 and proposition 7.16. �

Remark 9.31. In this theorem we regard an a.e.-de�ned function as a function de�ned
on a co-null set E, and we call E the domain of it.

9.E. The transformation of integration, polar coordinates. In the next, we
introduce the transformation of integration. For the general cases, we have the following
proposition: (Recall the concept of push-forward in example 7.4.)

Proposition 9.32. Let (X,X, �) and (Y, Y, �) be measure spaces, and let f ∶ X → Y be a
measurable map. Then g◦f ∈ L1(�) i� g ∈ L1(f∗�), and

(9.4) ∫
Y

g d(f∗�) = ∫
X

g◦f d�.

Proof. ForE ∈ Y and g = �E, (9.4) follows from�E◦f = �f−1(E). So (9.4) holds for simple
function and hence for L+ functions by theorem 6.22 and the monotone convergence
theorem 9.10. In particular, (9.4) holds for |g| and so g◦f ∈ L1(�) i� g ∈ L1(f∗�).
Finally by taking the positive and negative parts of real and imaginary parts of g, (9.4)
holds for complex-valued functions. �

In the next we focus on the Lebesgue measurem.

Theorem 9.33. Suppose that T ∈ GL(n,ℝ).
(1) If f is a Lebesgue measurable function (or Borel measurable) onℝn, so is f◦T. If f ≥ 0

or f ∈ L1(m), then

(9.5) ∫ f(x) dm(x) = |det T| ∫ f◦T(x) dm(x).

(2) If E ∈ ℒ(ℝn) (orℬℝn), then T(E) ∈ ℒ(ℝn) (orℬℝn), andm(T(E)) = |det T|m(E).

Proof. First suppose that f is Borel measurable. Then f◦T is Borel measurable since T
is continuous and hence Borel measurable. If (9.5) holds for transformations T and S, it
also holds for T◦S since

∫ f(x) dm(x) = |det T| ∫ f◦T(x) dm(x) = |det T| |det S| ∫ (f◦T)◦S(x) dm(x)

= |||det(T◦S)
||| ∫ f◦(T◦S)(x) dm(x).
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Hence it su�ces to prove (9.5) when T is of the following three types:

T1(x1,⋯ , xj,⋯ , xn) = (x1,⋯ , cxj,⋯ , xn) (c ≠ 0),

T2(x1,⋯ , xj,⋯ , xn) = (x1,⋯ , xj + cxk,⋯ , xn) (k ≠ j),

T3(x1,⋯ , xj,⋯ , xk,⋯ , xn) = (x1,⋯ , xk,⋯ , xj,⋯ , xn).

This is a simple consequence of Fubini-Tonelli theorem9.30: forT3 interchange the order
of integration in the variables xj and xk, and for T1 and T2 we integrate �rst with respect
to xj and use the one-dimensional formulas

∫ f(t) dm(t) = |c| ∫ f(ct) dm(t), ∫ f(t + a) dm(t) = ∫ f(t) dm(t).

Since det T1 = c, det T2 = 1, det T3 = −1, in this case (9.5) is proved. Moreover, if E is
a Borel set, so is T(E) since T−1 is continuous and hence Borel measurable. By taking
f = �T(E), we obtainm(T(E)) = |det T|m(E).
The result for Lebesguemeasurable functions and sets now follows from theorem8.19.

�

Corollary 9.34. Lebesgue measure is invariant under orthogonal transformations.

Next we shall generalize theorem 9.33 to di�erentiable maps.

Theorem 9.35 (Transformation formula). Let U,V ⊂ ℝn be open and let f ∈ C1(U, V)

be bijective. If g is a Lebesgue measurable (or Borel measurable) function onV, then g◦f is
Lebesgue measurable (or Borel measurable) on U. If g ≥ 0 or g ∈ L1(V), then we have the
transformation formula

∫
U

g(f(x))
||||Jf(x)

|||| dm(x) = ∫
V

g(y) dm(y),

where Jf = det
(
)f

)x

)
is the Jacobi determinant of f. In particular, for Lebesgue measurable

(or Borel measurable) E ⊂ U, f(E) is Lebesgue measurable (or Borel measurable), and

m(f(E)) = ∫
E

||||Jf(x)
|||| dm(x)

Proof. One can refer to [For] or [Rai]. �

In the next we introduce the integration under the polar coordinates.

De�nition 9.36 (Polar coordinates). LetSn−1 = {x ∈ ℝn ∶ |x| = 1}denote the unit sphere
inℝn. The map

' ∶ ℝn ⧵ {0} → (0,∞) × Sn−1, x ↦ (|x|,
x

|x|
)

de�nes a di�eomorphism with inverse (r, y) ↦ ry; we call (r, y) = '(x) the polar
coordinates of x.
Let � be the measure on (0,∞) de�ned by �(E) = ∫

E
rn−1 dm(r).
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Theorem 9.37 (Polar coordinates). There is a unique Borel measure � on Sn−1 such that
'∗m = � × �. If f is Borel measurable onℝn and f ≥ 0 or f ∈ L1(m), then

∫
ℝn

f(x) dm(x) = ∫
(0,∞)

∫
Sn−1

f(ry)rn−1 d�(y) dm(r).

Proof. By proposition 9.32 and Fubini-Tonelli theorem 9.28, it su�ces to show that there
is a unique Borel measure � on Sn−1 such that '∗m = � × �. For Borel sets E ∈ Sn−1 we
de�ne

�(E) ∶= n ⋅ m
(
'−1 ((0, 1] × E)

)
.

It su�ces to show that � is a Borel measure � on Sn−1 such that '∗m = � × �.
Since the map E ↦ '−1 ((0, 1] × E) maps Borel sets to Borel sets and commutes with

unions, intersections, and complements, � is a Borel measure on Sn−1.
Note the following points:

(1) For N ∈ ℕ and a �xed Borel set E ⊂ Sn−1, the collection GN,E of the form (a, b] × E,
where b ≤ N, forms an elementary family. Via theorem 7.29, letting AN,E be the
collection of all �nite disjoint unions of sets in G, then AN,E is an algebra;

(2) Borel rectangles in (0,∞) × Sn−1 are disjoint countable unions of sets in
⋃

N∈ℕ,E∈ℬSn−1
AN,E;

(3) The collection G of rectangles forms an elementary family, and hence the collection
A of �nite disjoint unions of rectangles is an algebra via theorem 7.29. Clearly, the
�-algebra generated by A is

∏n

j=1
Xj.

Thus to show that '∗m = � × �, it su�ces to show that '∗m = � × � holds on (a, b] × E
where E ⊂ Sn−1, which follows from theorem 9.33. We are done. �

Remark 9.38. The formula of previous theorem can be extended to Lebesgue
measurable functions by considering the completion of �.

Remark 9.39. In particular, if f(x) = g(|x|), it yields

∫
ℝn

f(x) dm(x) = �(Sn−1) ∫
(0,∞)

g(r)rn−1 dm(r).

Example 9.40. We have the following basic examples.

∫
ℝn

e−a|x|
2

dm(x) =
(�

a

)n∕2
, a > 0,

�(Sn−1) =
2�n∕2

Γ(n∕2)
, and m(Bn) =

�n∕2

Γ(n∕2 + 1)
.

9.F. Riemann integration v.s. Lebesgue intergration. In the next we introduce
the relation between Riemann integration and Lebesgue intergration. One can refer to
[Mei] or [Jon] for a detailed introduction to Riemann integration, which is relatively
elementary and so we won’t give the whole details.
First we introduce the semicontinuity to help us study continuity.

De�nition 9.41 (Semicontinuity). Let X be a topological space, and let f ∶ X →

[−∞,+∞]. Thenf is called lower semicontinuous if {x ∶ f(x) > a} is open for alla ∈ ℝ,
and f is called upper semicontinuous if {x ∶ f(x) < a} is open for all a ∈ ℝ.
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In particular, let X = ℝn and let x ∈ ℝn. Then f is called lower semicontinuous at
x if for any t < f(x) there exists � > 0 such that for all y ∈ B�(x), t < f(y); and f is
called upper semicontinuous at x if for any t > f(x) there exists � > 0 such that for all
y ∈ B�(x), t > f(y).
We abbreviate lower semicontinuous and upper semicontinuous as LSC and USC

respectively.

Remark 9.42. It follows from remark 6.6 that LSC or USC functions are Borel
measurable.

Proposition 9.43. Let f ∶ ℝn → [−∞,+∞] and de�ne

f(x) = lim inf
y→x

f(y), and f(x) = lim sup
y→x

f(y).

Then

(1) f ≤ f ≤ f, where f is LSC and f is USC.

(2) f is continuous at x⟺ f is LSC and USC at x⟺f(x) = f(x) = f(x).
(3) f is LSC⟺f(x) = f(x).

Proof. Easy. One can refer to [Jon]. �

Remark 9.44. See proposition 11.14 for more properties of LSC functions.

De�nition 9.45 (Step functions and Riemann integration). Let I be a box in ℝn. A
Lebesgue measurable function � ∶ I → [−∞,+∞] is called a step function if there exists
an almost disjoint collection

{
Ij
}N

j=1
of subboxes if I satisfying

⋃N

j=1
Ij = I and that �|I◦

j
is

constant for each j.
Let f ∶ I → ℝ be a bounded function. We all f Riemann integrable if for any " > 0,

there exist step functions � and � on I such that

� ≤ f ≤ �, ∫
I

(� − �) dm < ".

If f is Riemann integrable, then we de�ne

(R) ∫
I

f(x) dx = sup {∫
I

� dm ∶ � ≤ f, � is a step function}

= inf {∫
I

� dm ∶ f ≤ �, � is a step function} .

Remark 9.46. For any step function � we have

(R) ∫
I

�(x) dx = ∫
I

� dm.

Theorem 9.47 (Riemann integration). Let f be a bounded function on a box I. Then

(1) f is Riemann integrable⟺f is continuous a.e.
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(2) If f is Riemann integrable, then f is measurable and its Riemann integration and
Lebesgue integration on I are equal:

(R) ∫
I

f(x) dx = ∫
I

f dm.

Proof. (1) is well-known. One can refer to [Mei] or [Jon]. In the next we give a direct
proof of (2).
Suppose that f is Riemann integrable. Then there exist two sequences of step

functions (�j)∞j=1 and (�j)
∞

j=1
on I such that

�j ≤ f ≤ �j, ∫
I

(�j − �j) dm <
1

j
, ∀j.

It follows that �j ≤ f and f ≤ �j, and hence via proposition 9.43 (2) we have

�j ≤ f ≤ f ≤ f ≤ �j, a.e.

since �j and �j are continuous a.e. Setting g = sup
j≥1

�j and ℎ = inf j≥1 �j then g and ℎ
are Lebesgue measurable with

g ≤ f ≤ f ≤ f ≤ ℎ, a.e.

Note that

∀j ∶ ∫
I

(ℎ − g) dm ≤ ∫
I

(�j − �j)dm <
1

j
⟹ ∫

I

g dm = ∫
I

ℎ dm.

It follows form proposition 9.23 (6) that

g = f = f = f = ℎ, a.e.

(This also implies f is continuous a.e. via proposition 9.43 (2).) Since f = ℎ a.e. and ℎ
is Lebesgue measurable, via proposition 7.15, f is also Lebesgue measurable. Note that

(R) ∫
I

f(x) dx ≤ ∫
I

�j dm < ∫
I

�j dm +
1

j
≤ ∫

I

f dm +
1

j
, ∀j;

(R) ∫
I

f(x) dx ≥ ∫
I

�j dm > ∫
I

�j dm −
1

j
≥ ∫

I

f dm −
1

j
, ∀j.

The desired result follows. �

For more properties of Riemann integration, one can refer to [Jon].
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10. Signed measures and differentiation

The principal theme of this section is the concept of di�erentiating a measure � with
respect to another measure � on the same �-algebra.
As pointed out in [For], in developing the theory of di�erentiation, it is useful to

generalize the concept of measures so as to allow measures to assume negative or even
complex values. There are three reasons for this.
(1) First, in applications such “signed measures” can represent things such as electric

charge that can be either positive or negative.
(2) Second, the di�erentiation theory proceeds more naturally in the more general

seting.
(3) Finally, complex measures have a functional-analytic signi�cance in section 11.

10.A. Signed measure.

De�nition 10.1 (Signedmeasure). Let (X,X) be ameasurable space. A signedmeasure
on (X,X) is a function � ∶ X → [−∞,+∞] such that
(1) �(∅) = 0;
(2) � assumes at most one of the values ±∞;
(3) If (Ej) is a sequence of disjoint sets in X, then �

(⋃∞

j=1
Ej

)
=

∑∞

j=1
�(Ej), where the

latter sum converges absolutely if �
(⋃∞

j=1
Ej

)
is �nite.

De�nition 10.2. Everymeasure is a signedmeasure; for emphasis we shall sometimes refer
to measures as positive measures.
If � is a signed measure on (X,X), a set E ∈ X is called positive (resp. negative, null)

for � if �(F) ≥ 0 (resp. �(F) ≤ 0, �(F) = 0) for all F ∈ X such that F ⊂ E.
Two signed measures � and � on (X,X) are called mutually singular, or that � is

singular with respect to �, or vice versa, if there exist E, F ∈ X such that E ∩ F = ∅,
E ∪ F = X, E is null for �, and F is null for �, and we denote this relation by � ⟂ �.

Remark 10.3. Informally speaking, mutual singularity means that � and � live on
disjoint sets.

The following are some basic properties of signed measures.

Proposition 10.4. Let � be a signed measure on a measurable space (X,X).
(1) If (Ej) is an incresing sequence inX, then �

(⋃∞

j=1
Ej

)
= limj→∞ �(Ej).

(2) If (Ej) is a decreasing sequence in X and �(E1) is �nite, then �
(⋂∞

j=1
Ej

)
=

limj→∞ �(Ej).
(3) Any measurable subset of a positive set is positive.
(4) The union of any countable family of positive sets is positive.

Proof. Trivial. �

Example 10.5. Let (X,X) be a measurable space.
(1) If �1 and �2 are measures onX, and at least one of them is �ntie, then � = �1 −�2 is

a signed measure.
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(2) If � is a measure onX and f ∶ X → [−∞,+∞] is a measurable function such that at
least one of ∫ f+ d� and ∫ f− d� is �nite (in which case we shall call f an extended
�-integrable function), then � ∶ X → [−∞,+∞], E ↦ ∫

E
f d� is a signed measure.

We will see that every signed measure can be represented in either of these two forms.
See the next subsection.

10.B. Decomposition theorems, standard integration representation. Now we
prove the above claims.

Theorem 10.6 (Decomposition theorems). There are two editions of decomposition
theorems.

(1) (The Hahn decomposition theorem) If � is a signed measure on a measurable space
(X,X), there exist a positive set P and a negative set N for � such that P ∪ N = X and
P ∩ N = ∅. If P′ andN′ an another such pair, then P∆P′ = N∆N′ is null for �.

(2) (The Jordandecomposition theorem) If � is a signedmeasure on ameasurable space
(X,X), there exist unique positive measures �+ and �− such that � = �+ − �− and
�+ ⟂ �−.

Proof. WLOG, we assume that � does not assume the value +∞. (Otherwise, consider
−�.) Set

M = sup {�(E) ∶ E is positive} .

Thus there is a sequence (Pj) of positive sets such that �(Pj) → M. Set

P =

∞⋃

j=1

Pj and N = X ⧵ P.

Then P is positive via proposition 10.4. In the next we show that N is negative.
N has the following basic properties: If E ⊂ N is positive and �(E) > 0, then E ∪ P is

positive and �(E ∪ P) = �(E) + �(P) > M, which is impossible; it follows that if A ⊂ N

and �(A) > 0, there exists B ⊂ A with �(B) > �(A). Indeed, since A cannot be positive,
there exists C ⊂ Awith �(C) < 0; thus if B = A⧵C, we have �(B) = �(A)−�(C) > �(A).
Now we prove that N is negative. Suppose for contradiction, and then via the

properties above we can specify a sequence of subsets (Aj) of N and a sequence (nj)
of positive integers as follows: n1 is the smallest integer for which there exist a set B ⊂ N

with �(B) > n−1
1
, and A1 is such a set. Proceeding inductively, nj is the smallest integer

for which there exists a set B ⊂ Aj−1 with �(B) > �(Aj−1) + n−1
j
, and Aj is such a set.

Setting A =
⋂∞

j=1
, then

+∞ > �(A) = lim
j→∞

�(Aj) >

∞∑

j=1

n−1
j
,

so nj → ∞ as j → ∞. But once again, there exists B ⊂ A with �(B) > �(A) + n−1 for
some integer n. For j su�ciently large we have n < nj, and B ⊂ Aj−1, which contradicts
the construction of nj and Aj. Thus the assumption that N is not negative is untenable.
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Moreover, if P′, N′ is another pair of sets as in the statement of the theorem, we have
P ⊂ P′ ⊂ P and P ⊂ P′ ⊂ N′, so that P ⧵ P′ is both positive and negative, hence null;
likewise for P′ ⧵ P. Then (1) follows.
For (2). Let X = P ∪ N be a Hahn decomposition as above, and de�ne

�+(E) = �(E ∩ P) and �−(E) = −�(E ∩ N).

Then clearly � = �+ − �− and �+ ⟂ �−. If also � = �+ − �− and �+ ⟂ �−, let E, F ∈ X

be such that E ∩ F = ∅, E ∪ F = X, and �+(F) = �−(E) = 0. Then X = E ∪ F is
another Hahn decomposition for �, so P∆E is a �-null set. Therefore, for any A ∈ X,
�+(A) = �+(A ∩ E) = �(A ∩ E) = �(A ∩ P) = �+(A), and likewise �− = �−. �

Corollary 10.7 (Standard integration representation). If � is a signed measure on a
measurable space (X,X), then

�(E) = ∫
E

f d�,

where � = �+ + �− and f = �P − �N , X = P ∪ N being a Hahn decomposition for �.

10.C. Variation, integration, derivative, absolutely continuous. In the next we
introduce the following concepts, which are vital in di�erentiation theory.

De�nition 10.8 (Variation, integration). The measures �+ and �− in theorem 10.6 are
called the positive and negative variations of �, and � = �+ − �− is called the Jordan
decomposition of �.
Furthermore, we de�ne the total variation of � to be the measure |�| de�ned by |�| =

�+ + �−.
A signed measure � is called �nite (resp. �-�nite) if |�| is �nite (resp. �-�nite).
Moreover, integration with respect to a signed measure � is de�ned in the obvious way:

L1(�) ∶= L1(�+) ∩ L1(�−); ∫ f d� ∶= ∫ f d�+ − ∫ f d�−, ∀f ∈ L1(�).

Remark 10.9. It’s clear that any E ∈ X is �-null i� |�|(E) = 0, and � ⟂ � i� |�| ⟂ � i�
�+ ⟂ � and �− ⟂ �.

De�nition 10.10 (Derivative). Let �, � be two signed measures on a measurable space
(X,X). A �-measurable function f ∶ X → [−∞,+∞] is called the derivative of � with
respect to �, if we have

�(E) = ∫
E

f d�, ∀E ∈ X,

which is denoted by d� = f d�.

De�nition 10.11 (Absolutely continuous). Let (X,X) be a measurable space, let � be a
signed measure on X, and let � be a positive measure on X. We say that � is absolutely
continuous with respect to � and write

� ≪ �

if �(E) = 0 for every E ∈ X for which �(E) = 0.
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Remark 10.12. It’s clear that any � ≪ � i� |�| ≪ � i� �+ ≪ � and �− ≪ �.
One can extend the notion of absolute continuity to the case where � is a signed-

measure, but we shall have no need of this more general de�nition.

Remark 10.13. The term “absolute continuity” has the background of real-variable
theory. Actually the names of some other above notations come from the di�erentiation
theory on ℝ as well.

Example 10.14. Let (X,X) be a measurable space.

(1) If� is ameasure onX andf is an extended�-integrable function, the signedmeasure
� de�ned by �(E) = ∫

E
f d� is clearly absolutely continuous with respect to �.

(2) If �1,⋯ , �n are measure on X, then �j ≪
∑n

j=1
�j for all j.

Proposition 10.15. Let (X,X) be ameasurable space, let � be a signedmeasure onX, and
let � be a positive measure onX.

(1) (Absolute continuity is in a sense the antithesis of mutual singularity) If � ⟂ � and
� ≪ �, then � = 0.

(2) � ≪ � i� for every " > 0 there exists � > 0 such that |�(E)| < " whenever �(E) < �.

Proof. Trivial. �

Corollary 10.16. Let � be a measure on a measurable space (X,X). If f ∈ L1(�), then for
every " > 0 there exists � > 0 such that ||||∫E f d�

|||| < " whenever �(E) < �.

Proof. Apply proposition 10.15 (2) toℜf and ℑf. �

10.D. Radon-Nikodym-Lebesgue theorem. Nowwe come back to the di�erentiation
theory. First, we give an intuitive and precise characterization of the antithesis of being
mutually singular in a special case.

Lemma 10.17. Suppose that � and � are �nite measures on a measurable space (X,X).
Either � ⟂ �, or there exist " > 0 and E ∈ X such that �(E) > 0 and E is a positive set for
� − "�.

Proof. Let X = Pn ∪ Nn be a Hahn decomposition for � − n−1�, and let P =
⋃∞

j=1
Pj and

N =
⋂∞

j=1
Nj = Pc. ThenN is a negative set for �−n−1� for alln, i.e., 0 ≤ �(N) ≤ n−1�(N)

for all n, so �(N) = 0. If �(P) = 0, then � ⟂ �. If �(P) > 0, then �(Pn) > 0 for some n,
and Pn is a positive set for � − n−1�. �

Theorem 10.18 (The Radon-Nikodym-Lebesgue Theorem). Let � be a �-�nite signed
measure and let � be a �-�nite positive measure on a measurable space (X,X). There exist
unique �-�nite signed measures �, � onX such that

� = � + �, � ⟂ �, � ≪ �

Moreover, there is an extended �-integrable function f ∶ X → ℝ such that d� = f d�, and
any such two functions are equal �-a.e.
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Proof. Case 1: Suppose that � and � are �nite positive measures. Our framework is that
we �rst �nd f and then de�ne d� = d� − f d�. Set

ℱ = {f ∶ X → [0,+∞] ∶ ∫
E

f d� ≤ �(E), ∀E ∈ X} .

It’s clear that ℱ is nonempty, and if f, g ∈ ℱ, thenmax {f, g} ∈ ℱ. Hence

M ∶= sup {∫ f d� ∶ f ∈ ℱ} ≤ �(X) < ∞.

Choose a sequence (fn) ⊂ ℱ such that ∫ fn d� → M. Setting gn = max {f1,⋯ , fn} and
f = sup

n≥1
fn, then gn ∈ ℱ, gn increses pointwise to f, and ∫ gn d� ≥ ∫ fn d�. It follows

that limn→∞ ∫ gn d� → M and hence, by the monotone convergence theory 9.10, f ∈ ℱ

and ∫ f d� = M.
We calim that the measure d� = d� − f d�, which is positive since f ∈ ℱ, is singular

with respect to �. If not, by lemma 10.17, there exist E ∈ X and " > 0 such that �(E) > 0

and E is a positive set for � − "�. But then

"�E d� ≤ d� = d� − f d� ⟹ f + "�E ∈ ℱ, where ∫ (f + "�E) d� = M + "�(E) > M.

This contradicts the de�nition ofM.
Thus the existence of �, f and d� = f d� is proved. As for the uniqueness, if also

d� = d�1 + f1d�, we have d� − d�1 = (f1 − f) d� and hence

(� − �1) ⟂ � and (� − �1) ≪ �

By proposition 10.15 (1) we know � = �1, and hence f1 = f �-a.e.
Case 2: Suppose that � and � are �-�nite positive measures. Then X is a countable

disjoint union of �-�nite sets and a countable disjoint union of �-disjoint sets; by taking
intersections of these we obtain a disjoint sequence (Aj) ⊂ X such that �(Aj) and �(Aj)

are �nite for all j and X =
⋃∞

j=1
Aj. Set

�j(E) = �(E ∩ Aj) and �j(E) = �(E ∩ Aj).

By the reasoning above, for each j we have d�j = d�j+fj d�j where �j ⟂ �j. Obviously,
WLOG we may assume that fj = 0 on Ac

j
. Setting � =

∑∞

j=1
�j and f =

∑∞

j=1
fj, it’s

clear that d� = d� + f d�, � ⟂ �, and d� and f d� are �-�nite, as desired. Uniqueness
follows as before.
The General Case: If � is a signed measure, we apply the preceding argument to �+

and �− and subtract the results. �

10.E. Lebesgue decomposition, Radon-Nikodym derivative, Chain rule. Based
on Radon-Nikodym-Lebesgue theorem 10.18, we give the following new de�nitions.

De�nition 10.19 (Lebesgue decomposition and Radon-Nikodym derivative). The
decomposition � = �+�where � ⟂ � and � ≪ � in the Radon-Nikodym-Lebesgue theorem
10.18 is called the Lebesgue decomposition of � with respect to �.
In the case where � ≪ �, Radon-Nikodym-Lebesgue theorem 10.18 says that d� = f d�

for some f, where f is called the Radon-Nikodym derivative of � with respect to �. We
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denote it by d�∕d�:

d� =
d�

d�
d�.

Proposition 10.20 (Chain rules). Suppose that � is a �-�nite signedmeasure and �, � are
�-�nite measures on (X,X) such that � ≪ � and � ≪ �.
(1) If g ∈ L1(�), then g(d�∕d�) ∈ L1(�) and

∫ g d� = ∫ g
d�

d�
d�.

(2) We have � ≪ � and
d�

d�
=
d�

d�

d�

d�
� − a.e.

Proof. Trivial. �

10.F. Complexmeasure, Radon-Nikodym-Lebesgue theorem, total variation. In
the next we generalize the conclusions to ℂ.

De�nition 10.21 (Complex measure). A complex measure on a measurable space
(X,X) is a map � ∶ M → ℂ such that
(1) �(∅) = 0;
(2) If (Ej) is a sequence of disjoint sets in X, then �

(⋃∞

j=1
Ej

)
=

∑∞

j=1
�(Ej), where the

series converges absolutely.

De�nition 10.22. Let � be a complex measure on a measurable space (X,X). We shall
write �r and �i for the real and imaginary parts of �, and then we set

L1(�) ∶= L1(�r) ∩ L
1(�i), ∫ f d� ∶= ∫ f d�r + ∫ f d�i, ∀f ∈ L1(�).

If � and � are complex measures, we say that � ⟂ � if �a ⟂ �b for a, b = r, i, and if � is a
positive measure, we say that � ≪ � if �r ≪ � and �i ≪ �.

Remark 10.23. If � is a complex measure, then �r and �i are �nite signedmeasures, and
hence the range of a complex measure is a bounded subset of ℂ.

One has merely to apply the preceding theorems to the real and imaginary parts
separately to generalize them to complex measures. In particular:

Theorem 10.24 (The Radon-Nikodym-Lebesgue Theorem). Let � be a complex measure
and let� be a �-�nite positivemeasure on ameasurable space (X,X). There exist a complex
measure � and an f ∈ L1(�) such that � ⟂ � and d� = d� + f d�. If also �1 ⟂ � and
d� = d�1 + f1 d�, then � = �1 and f = f1 �-a.e.

Based on this we can show that the total variation of a complex measure is well-
de�ned.

De�nition 10.25 (Total variation). The total variation of a complex measure � is the
positive measure |�| determined by the property that if d� = f d� where � is a positive
measure, then d|�| = |f| d�.
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Proposition 10.26. Let � be a complex measure on a measurable space (X,X).
(1) Setting � = |�r| + |�i|, then d� = f d� for some f ∈ L1(�).
(2) De�nition 10.25 is well-de�ned.
(3) De�nition 10.25 agrees with the previous de�nition of � when � is a signed measure.

Proof. (1) follows fromRadon-Nikodym-Lebesgue theorem 10.24. To show (2), it su�ces
to show that |�| is independent of the choice of � and f, which easily follows from chain
rules 10.20. Finally, (3) follows from decomposition theorems 10.6. These are easy, one
can refer to [For] for details. �

For more properties of complex measures, one can refer to [For].

10.G. Pointwise Di�erentiation on ℝn, coincidence of two derivatives. In the
next, we come back to the di�erentiation on ℝn.

De�nition 10.27 (Pointwise Di�erentiation on ℝn). Let � be a signed or complex Borel
measure onℝn. Then the pointwise derivative of � with respect tom is de�ned by

F(x) = lim
r→0

�(B(x, r))

m(B(x, r))
,

when it exists.

Remark 10.28. We can change balls into any family of sets that shrink nicely. See the
Lebesgue di�erentiation theorem 10.36.

Remark 10.29. In the next when we apply the Radon-Nikodym-Lebesgue theorem
10.24, thenm denotes the measurem|ℬℝn

.

We have the natural question:

Question 10.30. For the nice case that � ≪ m where � is a complex Borel measure onℝn,
by Radon-Nikodym-Lebesgue theorem 10.24 we have d� = f dm for some f ∈ L1(m). It
follows that the pointwise derivative satis�es:

F(x) = lim
r→0

1

m(B(x, r))
∫
B(x,r)

f dm.

Then people will think, is it true that F = f almost everywhere (with respect tom)?

Remark 10.31. From the point of view of the function f, this may be regarded as a
generalization of the fundamental theorem of calculus: the derivative of the inde�nite
integration (namely, �) is f. (Actually f is the derivative of � with respect tom.)

The answer is yes! We summarize the (stronger) conclusions as follows. (We will use
the technical lemma corollary 11.10 in section 11.)

Theorem 10.32. Let f ∈ L1
loc
, then

lim
r→0

1

m(B(x, r))
∫
B(x,r)

f(y) dm(y) = f(x), form-a.e. x.

Moreover,

lim
r→0

1

m(B(x, r))
∫
B(x,r)

|f(y) − f(x)| dm(y) = 0, form-a.e. x.
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Proof. It su�ces to show that for N ∈ N, Arf(x) → f(x) form-a.e. x with |x| ≤ N. But
for |x| ≤ N and r ≤ 1 the values Arf(x) depend only on the values f(y) for |y| ≤ N + 1,
so by replacing f with f�B(0,N+1) we may assume that f ∈ L1.
Via corollary 11.10 we can �nd a continuous integrable function g such that

(10.1) ∫ |g(y) − f(y)| dm(y) < ".

Continuity of g implies that

lim
r→0

1

m(B(x, r))
∫
B(x,r)

g(y) dm(y) = g(x), ∀x ∈ ℝn.

Therefore

lim sup
r→0

|||||||||

1

m(B(x, r))
∫
B(x,r)

f(y) dm(y) − f(x)

|||||||||

≤ lim sup
r→0

|||||||||

1

m(B(x, r))
∫
B(x,r)

[f(y) − g(y)] dm(y)

|||||||||

+ |f − g|(x)

≤ lim sup
r→0

1

m(B(x, r))
∫
B(x,r)

|||f(y) − g(y)||| dm(y) + |f − g|(x).

Hence, if we set

A� ∶= {x ∈ ℝn ∶ lim sup
r→0

|||||||||

1

m(B(x, r))
∫
B(x,r)

f(y) dm(y) − f(x)

|||||||||

> �} ;

B�,g ∶= {x ∈ ℝn ∶ lim sup
r→0

1

m(B(x, r))
∫
B(x,r)

|||f(y) − g(y)||| dm(y) > �} ;

C�,g ∶= {x ∈ ℝn ∶ |f − g|(x) > �} .

Then

A� ⊂ B�∕2,g ∪ C�∕2,g, and A0 =

∞⋃

n=1

A1∕n,

and hence it su�ces to show thatm(A1∕n) = 0 for each n. Note that

m
(
C�,g

)
≤
1

�
∫
C�,g

|f − g| dm ≤
"

�
.

It su�ces to show thatm
(
B�,g

)
= O("), which is derived in the following lemma. Hence

the �rst assertion follows.
For the second assertion, let D be a countable dense subset of ℂ, and for each d ∈ D

we set

Ed = {x ∈ ℝn ∶ lim sup
r→0

|||||||||

1

m(B(x, r))
∫
B(x,r)

|f(y) − d| dm(y) − |f(x) − d|

|||||||||

> 0} .

By the �rst assertion it follows thatm(Ed) = 0 for each d ∈ D, and hence E ∶=
⋃

d∈D
Ed

also satis�es m(E) = 0. Then if x ∉ E, for any " > 0, we can choose d ∈ D with
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|f(x) − d| < "; then

lim sup
r→0

1

m(B(x, r))
∫
B(x,r)

|f(y) − f(x)| dm(y)

≤ lim sup
r→0

1

m(B(x, r))
∫
B(x,r)

|f(y) − d| dm(y) + "

≤ |f(x) − d| + " < 2".

Since " is arbitrary, the second assertion follows. �

10.H. Hardy-Littlewood maximal function, Lebesgue di�erentiation theorem.
Moreover, via using the technical lemma, Vitali’s covering theorem 11.33, we will get
the Lebesgue di�erentiation theorem.

Lemma 10.33. For every f ∈ L1
loc
, we de�ne theHardy-Littlewood maximal function

Hf by

Hf(x) = sup
r>0

1

m(B(x, r))
∫
B(x,r)

|f(y)| dm(y).

Then Hf is Borel measurable, and there is a constant C > 0 such that for all f ∈ L1 and
all � > 0, we have

(10.2) m ({x ∈ ℝn ∶ Hf(x) > �}) ≤
C

�
∫ |f(x)| dm(x).

Proof. The �rst assertion is easy, and one can refer to [For] for details. In the next, we
prove the second assertion (10.2). Set

E = {x ∈ ℝn ∶ Hf(x) > �} .

Note that

x ∈ E ⟺ ∃rx > 0 ∶
1

m(B(x, rx))
∫
B(x,rx)

|f(y)| dm(y) > �

⟺ ∃rx > 0 ∶ m(B(x, rx)) <
1

�
∫
B(x,rx)

|f(y)| dm(y)

Then the desired result easily follows from Vitali’s covering theorem 11.33. �

Remark 10.34. In fact, this lemma is stronger than what we need, since we change
“lim sup

r→0
” to “sup

r>0
”. For the general case, the corresponding proposition is lemma

11.35.

De�nition 10.35 (Shrink nicely). A family (Er)r>0 of Borel subsets ofℝn is said to shrink
nicely to x ∈ ℝn if
(1) Er ⊂ B(x, r) for each r;
(2) There is a constant � > 0, independent of r, such thatm(Er) > �m (B(x, r)).

Theorem 10.36 (The Lebesgue di�erentiation theorem). Suppose that f ∈ L1
loc
. Then

lim
r→0

1

m(Er)
∫
Er

|f(y) − f(x)| dm(y) = 0, form-a.e. x.
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for every family (Er)r>0 that shrinks nicely to x.

Proof. For some � > 0 we have
1

m(Er)
∫
Er

|f(y) − f(x)| dm(y) ≤
1

Er
∫
B(x,r)

|f(y) − f(x)| dm(y)

≤
1

�m(B(x, r))
∫
B(x,r)

|f(y) − f(x)| dm(y).

Then the conclusion follows from theorem 10.32. �

For more conclusions, such as the di�erentiation theory on ℝ, one can refer to [For].

10.I. A New framework of derivatives. We will see in the next section that we can
build a new framework of derivatives; that is, a framework of di�erentiating Radon
measures with respect to Radon measures.
The key points are theorem 11.36, theorem 11.37 and theorem 11.38. Now we show

how these theorems imply the classical conclusions. In the next we admit all conclusions
in section 11. New readers can skip this subsection �rst

Proposition 10.37. Every complex Borel measure � on ℝn has a Randon-Nikodym-
Lebesgue representation

(10.3) d� = d� + f dm,

where � ⟂ m and f ∈ L1(m). Then, we have

(10.4) f(x) = lim
r→0

�(B(x, r))

m(B(x, r))
= lim

r→0

1

m(B(x, r))
∫
B(x,r)

f dm, form-a.e. x,

and

(10.5) lim
r→0

�(B(x, r))

m(B(x, r))
= 0 form-a.e. x.

Moreover, for any g ∈ L1(m), we have

(10.6) lim
r→0

1

m(B(x, r))
∫
B(x,r)

g dm = g(x), form-a.e. x.

Proof. By remark 11.26 we know that every complex Borel measure � on ℝn is a
complex Radonmeasure. Applying theorem 11.36 and theorem 11.37 to the positive and
negative parts of real and imaginary parts of �, we �nd the Randon-Nikodym-Lebesgue
representation 10.3, and then formulas (10.4) and (10.5) easily follows.
Since g dm is Radon measure (which is absolutely continuous with respect to m),

formula (10.6) follows from (10.4). �

Lemma 10.38. If f ∈ L+(ℝn), then f dm is Radon i� f ∈ L1
loc
(m), where

L1
loc
(m) ∶= {f ∶ ℝn → ℂ ∶ ∫

K

|f| dm < ∞ for all bounded measurable set K ⊂ ℝn} .

Moreover, for a signed measure � onℝn with

d� = d� + f dm
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where � ⟂ m and f is an extendedm-integrable function, � is Radon i� f ∈ L1
loc
.

Proposition 10.39. If f ∈ L1
loc

and d� = d� + f dm where � ⟂ m, we have

f(x) = lim
r→0

�(B(x, r))

m(B(x, r))
= lim

r→0

1

m(B(x, r))
∫
B(x,r)

f dm, form-a.e. x,

and

lim
r→0

�(B(x, r))

m(B(x, r))
= 0 form-a.e. x.

Moreover, if g ∈ L1
loc
(m), then

lim
r→0

1

m(B(x, r))
∫
B(x,r)

g dm = g(x), form-a.e. x.

Proof. Note that � is Radon via the lemma 10.38. Similarly, by applying theorem 11.36
and theorem 11.37 to �, the results easily follow. �

Corollary 10.40 (Coincidence of two derivatives). If � is a signed or complex Randon
measure with � ≪ m, then the derivative of � with respect to m, which exists via Randon-
Nikodym-Lebesgue theorem 10.18 or 10.24, equals to the pointwise derivative of � with
respect tom form-a.e. x.



Zhiyao Xiong 97

11. Radon measures

The subject of this section is Radonmeasures and integration theory on LCH spaces. A
great signi�cance of Radonmeasure is that we can approximate functions by continuous
functions in Sobolev spaces.

11.A. LCH space, Radon measure, positive linear functionals on Cc(X, ℂ).

De�nition 11.1 (LCH space). We call X an LCH space if it is locally compact and
Hausdor�.

De�nition 11.2 (Radon measure). Let X be an LCH space. A Randon measure on X is
a Borel measure that is �nite on all compact sets, outer regular on all Borel sets, and inner
regular on all open sets.

Remark 11.3. Randon measures are also inner regular on �-�nite sets. See theorem
11.8.

De�nition 11.4 (Positive linear functionals on Cc(X, ℂ)). Let Cc(X, ℂ) be the space of
complex-valued continuous functions on X with compact support. A linear functional I on
Cc(X, ℂ) will be called positive if I(f) ≥ 0 whenever f ≥ 0.

De�nition 11.5. If U is open in X and f ∈ Cc(X, ℂ), we shall write f ≺ U to mean that
0 ≤ f ≤ 1 and suppf ⊂ U.

11.B. Riesz Representation Theorem. Aswe said in remark 9.5, wewill establish the
relation between Radon measures and functionals.

Theorem 11.6 (Riesz Representation Theorem). Let X be an LCH space. If I is a positive
linear functional on Cc(X, ℂ), there is a unique Radon measure � on X such that I(f) =
∫ f d� for all f ∈ Cc(X, ℂ). Moreover, � satis�es

(11.1) �(U) = sup {I(f) ∶ f ∈ Cc(X, ℂ), f ≺ U} , ∀ open subsetU ⊂ X,

and

(11.2) �(K) = inf {I(f) ∶ f ∈ Cc(X, ℂ), f ≥ �K} , ∀ compact subset K ⊂ X.

Proof. Let us begin by establishing uniqueness. If � is a Radonmeasure such that I(f) =
∫ f d� for all f ∈ Cc(X, ℂ), and U ⊂ X is open, then clearly I(f) ≤ �(U) whenever
f ≺ U. On the other hand, if K ⊂ U is compact, by Urysohn’s lemma there is an f ∈

Cc(X, ℂ) such that f ≺ U and f = 1 on K, and hence �(K) ≤ ∫ f d� ≤ I(f) ≤ �(U).
Since � is inner regular, it follows that (11.1) is satis�ed. Thus � is determined by I on
open sets, and hence on all Borel sets because of outer regularity.
This argument proves the uniqueness of � and also suggests how to go about proving

existence. The outline is as follows.
(1) We de�ne �(U) for any open subset U by (11.1), and then de�ne

�∗(E) = inf {�(U) ∶ U ⊃ E,U is open} .

(2) �∗ is an outer measure, and �∗(U) = �(U) for any open subset U.
(3) Every open set is �∗-measurable, and hence � ∶= �∗|ℬX

is a Borel measure.
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(4) � satis�es (11.2).
(5) I(f) = ∫ f d� for all f ∈ Cc(X, ℂ).
One can refer to [For] for details. �

Remark 11.7. Obviously, for all Radon measure �, the map f ↦ ∫ f d� is a positive
linear functional on Cc(X, ℂ). Hence we derive the correspondence between Radon
measures and positive linear functionals.
More generally, if� is a Borelmeasure onX such that�(K) < ∞ for every compactK ⊂

X, then clearly Cc(X, ℂ) ⊂ L1(�), so the map f ↦ ∫ f d� is a positive linear functional
on Cc(X, ℂ). Then people will think, is such measure already the corresponding Radon
measure? The answer is no, but if we add some new condition to the space, the answer
will be yes. See theorem 11.13.

11.C. Conclusions of regularity — �-�nite, F� and G�, �-compact.

Theorem 11.8. Every Radon measure on an LCH space X is inner regular on all of its
�-�nite sets.

Proof. Suppose that � is Radon and E is �-�nite Borel set. If �(E) < ∞, for any " > 0 we
can choose an open U ⊃ E such that �(U) < �(E) + " and a compact F ⊂ U such that
�(F) > �(U) − ". Since �(U ⧵ E) < ", we can also choose an open V ⊃ U ⧵ E such that
�(V) < ". Setting K = F ⧵ V, then K is compact, K ⊂ E, and

�(K) = �(F) − �(F ∩ V) > �(E) − " − �(V) > �(E) − 2".

Thus � is inner regular on E.
On the other hand, if �(E) = ∞, E is an increasing union of sets Ej with �(Ej) < ∞

and �(Ej) → ∞. Thus for any N ∈ ℕ there exists j such that �(Ej) > N, and hence, by
the preceding argument, there exists a compactK ⊂ Ej with �(K) > N. Hence � is inner
regular on E. �

Corollary 11.9. Every �-�nite Radon measure on an LCH space X is regular. If an LCH
space X is �-compact, every Radon measure on X is regular.

Corollary 11.10. Let X be an LCH space. If � is a Radon measure on X, then Cc(X, ℂ) is
dense in Lp(�) for 1 ≤ p < ∞.

Proof. Via proposition 12.7 (2), it su�ces to show that for any Borel setE with �(E) < ∞,
�E can be approximated in the Lp norm by elements of Cc(X,ℂ).
Given " > 0, by theorem 11.8 there exist a compact K ⊂ E and an open U ⊃ E such

that �(U ⧵ K) < ". and by Urysohn’s lemma we can choose f ∈ Cc(X, ℂ) such that
�K ≤ f ≤ �U. Then ‖�E − f‖p ≤ �(U ⧵ K)1∕p < "1∕p. We are done. �

Remark 11.11. It follows from corollary 11.10, theorem 8.19, proposition 7.16 and
proposition 9.23 that Cc(ℝn) is dense in Lp(m).

Theorem 11.12. Let X be an LCH space. Suppose that � is a �-�nite Radon measure on
X and E is a Borel set in X.
(1) For every " > 0 there exist an openU and a closed F with F ⊂ E ⊂ U and �(U⧵F) < ".
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(2) There exist an F� set A and a G� set B such that A ⊂ E ⊂ B and �(B ⧵ A) = 0.

Proof. Write E =
⋃∞

j=1
Ej where the Ej’s are disjoint and have �nite measure. For each

j, choose an open Uj ⊃ Ej with �(Uj) < �(Ej) < "2−j−1, and set U =
⋃∞

j=1
Uj. Then U

is open, and �(U⧵E) ≤
∑∞

j=1
�(Uj ⧵Ej) <

"

2
. Similarly, for Ec, we obtain an openV ⊃ Ec

with �(V ⧵ Ec) < "

2
. Let F = Vc. Then F is closed, F ⊂ E, and

�(U ⧵ F) = �(U ⧵ E) + �(E ⧵ F) = �(U ⧵ E) + �(V ⧵ Ec) < "

Then (1) follows.
By (1) there exist open sets Gj’s and closed sets Fj’s satisfying Fj ⊂ E ⊂ Gk andm(Gj ⧵

Fj) ≤
1

j
. Then sets F =

⋃∞

j=1
Fj and G =

⋂∞

j=1
Gj are as required. �

Theorem 11.13. Let X be an LCH space in which every open set is �-compact (which is
the case, for example, ifX is second countable). Then every Borel measure onX that is �nite
on compact sets is regular and hence Radon.

Proof. If � is a Borel measure on X such that �(K) < ∞ for every compact K ⊂ X,
then clearly Cc(X, ℂ) ⊂ L1(�), so the map f ↦ ∫ f d� is a positive linear functional
on Cc(X, ℂ). Let � be the associated Radon measure according to Riesz representation
theorem 11.6.
If U ⊂ X is open, let U =

⋃∞

j=1
Kj where each Kj is compact. Choose f1 ∈ Cc(X, ℂ)

such thatf ≺ U andf = 1 onK1. Proceeding inductively, forn > 1 choosefn ∈ Cc(X, ℂ)

such that fn ≺ U and fn = 1 on
⋃n

j=1
Kj and on

⋃n−1

j=1
supp(fj). Then fn increses

pointwise to �U as n → ∞, and hence

�(U) = lim
n→∞

∫ fn d� = lim
n→∞

∫ fn d� = �(U)

by the monotone convergence theorem 9.10.
Next, if E is any Borel set and " > 0, by theorem 11.12 there exists an open V ⊃ E and

a closed F ⊂ E with �(V ⧵ F) < ". Since V ⧵ F is open, �(V ⧵ F) = �(V ⧵ F) < ". In
particular, �(V) ≤ �(E)+" and hence � is outer regular. Also, �(F) ≥ �(E)−". Note that
F is �-compact since X is �-compact, so there exist compact Kj ⊂ F with �(Kj) → �(F).
It follows that � is inner regular. Thus � is regular, and equal to � by Riesz representation
theorem 11.6. �

11.D. LSC functions, integration approximation. In the next we introduce some
properties of LSC functions, and then use them to derive a new method of integration
approximation.

Proposition 11.14. Let X be a topological space.
(1) IfU is open in X, then �U is LSC.
(2) If f is LSC and c ∈ [0,∞), then cf is LSC.
(3) If S is a family of LSC functions and f(x) = sup {g ∶ g ∈ S}, then f is LSC.
(4) If f1 and f2 are LSC, so is f1 + f2.
(5) If X is an LCH space and f is LSC and non-negative, then

f(x) = sup {g(x) ∶ g ∈ Cc(X, ℂ), 0 ≤ g ≤ f} .
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Proof. One can refer to [For] proposition 7.11. �

Proposition 11.15. If � is a Radon measure and f is non-negative Borel measurable
function, then

∫ f d� = inf {∫ g d� ∶ g ≥ f, g is LSC} .

If {x ∶ f(x) > 0} is �-�nite, then

∫ f d� = sup {∫ g d� ∶ 0 ≤ g ≤ f, g is USC} .

Proof. Let ('n) be a sequence of non-negative simple functions that increse pointwise to
f. Then f = '1 +

∑∞

n=2
('n −'n−1), and each term in this series is a non-negative simple

function, so we can write f =
∑∞

j=1
aj�Ej where aj > 0. Given " > 0, for each j choose

an open Uj ⊃ Ej such that �(Uj) ≤ �(Ej) + "2−ja−1
j
. Then g =

∑∞

j=1
aj�Uj

is LSC by
proposition 11.14. Note that g ≥ f, and ∫ g d� ≥ ∫ f d� + "; this establishes the �rst
assertion.
For the second, if a > ∫ f d�, let N be large enough so that

∑N

j=1
aj�(Ej) > a.

Since the Ej’s are �-�nite, by theorem 11.8 there are compact sets Kj ⊂ Ej such that
∑N

j=1
aj�(Kj) > a. Thus if g =

∑N

j=1
aj�Kj , then g is USC, g ≤ f, and ∫ g d� > a. �

Proposition 11.16. Let S be a family of non-negative LSC functions on an LCH space X
that is direct by ≤ (that is, for every g1, g2 ∈ S there exists g ∈ S such that g1 ≤ g and
g2 ≤ g.) Set

f(x) = sup {g(x) ∶ g ∈ S} .

If � is any Radon measure on X, then

∫ f d� = sup {∫ g d� ∶ g ∈ S} .

Proof. It easily follows from proposition 11.14 and the monotone convergence theorem
9.10. One can refer to [For] for details. �

Corollary 11.17. If � is Radon and f is non-negative and LSC, then

∫ f d� = sup {∫ g d� ∶ g ∈ Cc(X, ℂ), 0 ≤ g ≤ f} .

Proof. It follows from proposition 11.14 (5) and proposition 11.16. �

11.E. Cc(X, ℂ)∗ = C0(X, ℂ)
∗, Jordan decomposition of C0(X,ℝ)∗. Nowwe generalize

the Riesz representation theorem 11.6 to the case of bounded linear functionals. First
we still consider the positive linear functional.

Proposition 11.18. Let X be an LCH space, and let I be a positive linear functional on
Cc(X, ℂ). Then I is bounded with respect to the uniform norm ‖ ⋅ ‖∞ i� the associated
Radon measure � satis�es �(X) < ∞.

Proof. By Riesz representation theorem 11.6 (11.1),

�(X) = sup {I(f) ∶ f ∈ Cc(X, ℂ), 0 ≤ f ≤ 1}
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It follows that

sup
f∈Cc(X,ℂ)

‖f‖∞≤1

I(f)

‖f‖∞
< ∞ ⟹ �(X) < ∞.

The converse statement is obvious. We are done. �

Remark 11.19. We have identitied the positive bounded linear functionals on Cc(X, ℂ):
they are given by integration against �nite Radon measures.

In the next, we generalize positive bounded linear functionals on Cc(X, ℂ) to all I ∈
Cc(X, ℂ)

∗. The key fact is that Cc(X, ℂ)∗ can be reduced to Cc(X,ℝ)∗ and that Cc(X,ℝ)∗

has a “Jordan decomposition”.
Before doing this generalization, we do some small technical treatments. Note that

Cc(X, ℂ) is not always complete, and Cc(X, ℂ) and its completion have the same dual
space. Sometimes it brings convenience if we realize this.

De�nition 11.20 (Vanishes at in�nity and C0(X, ℂ)). LetX be a topological space and let
f ∈ C(X,ℂ). We say that f vanishes at in�nity if for every " > 0 the set {x ∶ |f(x)| ≥ "}

is compact, and we de�ne

C0(X, ℂ) = {f ∈ C(X,ℂ) ∶ f vanishes at in�nity} .

Proposition 11.21. If X is an LCH space, then C0(X, ℂ) is the closure of Cc(X, ℂ) in the
space (C(X,ℂ), ‖ ⋅ ‖∞).

Proof. One can refer to [For] proposition 4.35. �

Remark 11.22. Therefore, if X is an LCH space, then C0(X, ℂ) is the completion of
Cc(X, ℂ), and hence C0(X, ℂ)∗ = Cc(X, ℂ)

∗.

Now we focus on C0(X,ℂ)∗. As mentioned above, we note that any I ∈ C0(X, ℂ)
∗ is

uniquely determined by its restriction J to C0(X,ℝ), and we have J = J1 + iJ2 where
J1 and J2 are real linear functionals. Moreover, Cc(X,ℝ)∗ has the following “Jordan
decomposition”:

Proposition 11.23. If f ∈ C0(X,ℝ)
∗, there exist positive functionals I± ∈ C0(X,ℝ)

∗ such
that I = I+ − I−.

Proof. De�ne

I1 ∶ C0 (X, [0,∞)) ↦ ℝ, f ↦ sup {I(g) ∶ g ∈ C0(X,ℝ), 0 ≤ g ≤ f} .

and then de�ne

I+ ∶ C0(X,ℝ) → ℝ, f ↦ I1(f
+) − I1(f

−), and I− = I+ − I.

It’s easy to see that I± ∈ C0(X,ℝ)
∗. One can refer to [For] for details. �

Corollary 11.24. For any I ∈ C0(X, ℂ)
∗ there are �nite Radon measures �1,⋯ , �4 such

that I(f) = ∫ f d� where � = �1 − �2 + i(�3 − �4).
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11.F. Signed (or complex) Radon measure, Riesz representation theorem. To
establish a better correspondence, we introduce some new concepts.

De�nition 11.25 (Signed Radon measure and complex Radon measure). A signed
Radon measure is a signed Borel measure whose positive and nagative variations are
Radon, and a complex Radon measure is a complex Borel measure whose real and
imaginary parts are signed Radon measures. We denote the space of complex Radon
measures on X byM(X), and for � ∈ M(X) we de�ne

‖�‖ = |�|(X),

where |�| is the total variation of �.

Remark 11.26. Note that if � is a complex measure, then �r and �i are �nite signed
measures. Hence, via theorem 11.13, if X is an LCH space in which every open set is
�-compact, then every complex Borel measure is Radon.

Proposition 11.27. If � is a complex Borel measure, then � is Radon i� |�| is Radon.
Moreover,M(X) is a vector space and � ↦ ‖�‖ is a norm on it.

Proof. Trivial. �

Theorem 11.28 (Riesz representation theorem). Let X be an LCH space, and for � ∈

M(X) and f ∈ C0(X, ℂ) let I�(f) = ∫ f d�. Then the map Φ ∶ M(X) → C0(X, ℂ)
∗,

� ↦ I�, is an isometric isomorphism.

Proof. By corollary 11.24, the linear map Φ is surejective. It su�ces to show that ‖�‖ =
‖I�‖ for all � ∈ M(X). Note that

|||||||
∫ f d�

|||||||
≤ ∫ |f| d� ≤ ‖f‖∞‖�‖,

so I� ∈ C0(X)
∗ and ‖I�‖ ≤ ‖�‖. Moreover, if ℎ = d�∕d|�|, then |ℎ| = 1, and hence by

Lusin’s theorem, for any " > 0 there exists f ∈ Cc(X) such that ‖f‖∞ = 1 and f = ℎ

except on a set E with |�|(E) < "∕2. Then

‖�‖ = ∫ |ℎ|2 d|�| = ∫ ℎ d� ≤
|||||||
∫ f d�

|||||||
+

|||||||
∫

(
f − ℎ

)
d�

|||||||

≤
|||||||
∫ f d�

|||||||
+ 2|�|(E)

≤ ‖I�‖ + "

It follows that ‖�‖ ≤ ‖I�‖. So the proof is complete. �

Remark 11.29. One can refer to [For] or [Evaa] for Lusin’s theorem.

Corollary 11.30. If X is a compact Hausdor� space, then C(X,ℂ)∗ is isometrically
isomorphism toM(X).

For more properties of Radonmeasures, such as the products of Radonmeasures, one
can refer to [For].
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11.G. Filling problems and covering theorems for ℝn, Vitali, Besicovitch. Now
we come back to ℝn. We will introduce the di�erentiation of Radon measures with
respect to Radon measures, and the weak convergence of Radon measures.
Conclusions of �lling propblems are important tools of the di�erentiation theory.

Generally speaking, �lling problems are highly related to the covering theorems.5 In
the next we introduce �lling problems and covering theorems for ℝn �rst.

Theorem 11.31 (Filling theorem). There are two editions.
(1) (Filling open sets with balls – Lebesgue measure) Let U ⊂ ℝn be open, � > 0. There

exists a countable collection G of disjoint closed balls in U such that diamB < � for all
B ∈ G and

m
⎛

⎜

⎝

U ⧵
⋃

B∈G

B
⎞

⎟

⎠

= 0.

(2) (Filling open sets with balls – Borel outer measure) Let �∗ be an outer measure onℝn

such that all Borel sets are �∗-measurable, and letℱ be any collection of nondegenerate
closed balls. Let A denote the set of centers of the balls inℱ. Assume that

�∗(A) < ∞,

and

inf {r ∶ B(a, r) ∈ ℱ} = 0, ∀a ∈ A.

Then for each open setU ⊂ ℝn, there exists a countable collection G of disjoint balls in
ℱ such that

⋃

B∈G

B ⊂ U,

and

�∗
⎛

⎜

⎝

(A ∩ U) ⧵
⋃

B∈G

B
⎞

⎟

⎠

= 0.

Remark 11.32. We can set A = U in (2) to derive the normal �lling theorem for open
sets.

Proof. The framework and idea of the �rst assertion are as follows.
(1) WLOG we can assume thatm(U) < ∞; otherwise we apply the �nite conclusion to

Um ∶= {x ∈ U ∶ m < |x| < m + 1} , m = 0, 1,⋯ .

(2) It su�ces to cover a �xed percentage of measures at a time by �nite disjoint closed
balls.

(3) Since for each ball B ⊂ ℝn we have

(11.3)
m(B̂)

m(B)
= 5n.

5We also use Vitali’s covering theorem in the proof of Lebesgue di�erentiation theorem.
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where B̂ = B(x, 5r) for B = B(x, r). It su�ces to show that there exists a �nite
collection (Bj)Mj=1 of disjoint closed balls with

M⋃

j=1

B̂j ⊃ U.

This is the Vitali’s covering theorem, for which we will introduce later.

The framework and idea of the second assertion are as follows.

(1) It su�ces to cover a �xed percentage of measures at a time by �nite disjoint closed
balls.

(2) In this case we don’t (11.3), we turn to the Pigeonhole principle. This is the
Besicovitch’s covering theorem, which we will introduce later.

The left is trivial. It su�ces to show the following covering theorems. �

Theorem 11.33 (Covering theorems). There are two editions of covering theorems.

(1) (Vitali’s covering theorem) Let ℱ be any collection of nondegenerate closed balls in
ℝn with

sup {diam(B) ∶ B ∈ ℱ} < ∞.

Then there exists a countable familiar G of disjoint balls inℱ such that
⋃

B∈F

B ⊂
⋃

B∈G

B̂,

where B̂ = B(x, 5r) for B = B(x, r).
(2) (Besicovitch’s covering theorem) There exists a constant Nn, depending only on the

dimension n, with the following property:
Ifℱ is any collection of nondegenerate closed balls inℝn with

sup {diam(B) ∶ B ∈ ℱ} < ∞,

and if A is the set of centers of balls in ℱ, then there exists Nn countable collections
G1,⋯ , Gn of disjoint balls inℱ such that

A ⊂

Nn⋃

j=1

⋃

B∈Gj

B.

Proof. The framework and idea of Vitali’s covering theorem are as follows.

(1) It’s natural to �nd the maximal disjoint collection, which is certainly countable. The
di�culty is to ensure (B̂j) covers U.

(2) It su�ces to show that for each B ∈ ℱ, B ⊂ B̂j for some j. By the maximal property
of (B̂j), it follows that B ∩ Bj ≠ ∅ for some j. It su�ces to modify the construction
of (B̂j) such that there exists Bj with B ∩ Bj ≠ ∅ and diam(Bj) > 2diam(B).

(3) According to the requirements, we make a division of diameter:

ℱj ∶= {B ∈ ℱ ∶
D

2j
< diam(B) <

D

2j−1
} where D ∶= sup {diam(B) ∶ B ∈ ℱ} ,
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and choose Gk as any maximal disjoint subcollection of

⎧

⎨

⎩

B ∈ ℱk ∶ B ∩ B
′ = ∅, ∀B′ ∈

k−1⋃

j=1

Gj

⎫

⎬

⎭

.

(4) The left is trivial.
The framework and idea of Vitali’s covering theorem are as follows.
(1) Our basic framework is to �nd a covering model that covers A in countable steps,

and then divide it.
(2) For the covering model, a natural idea is to eliminate the gaps in order to ensure the

covering, and another natural idea is to ensure the basic separation, which ensures
that we can make reasonable division. We can create some basic models, in which
some parameters can be adjusted.

(3) An intuitive observation is that with a certain degree of separation, there must be
few “near balls”, so the division of “near balls” is actually easy to talk about. The key
is the handling of “distant balls”.

(4) Given a “distant ball”, we can make a rough estimate of the number of balls in front
that intersect it. Then, we adjust the parameters of the coveringmodel to ensure that
the intersectionnumbers have a�xedupper bound. Thenourwork canbe successful.

For a detailed proof of Besicovitch’s covering theorem, one can refer to [Evaa]. �

11.H. Di�erentiating Radon measures with respect to Radon measures. In the
next we introduce the di�erentiation theory of Radon measures. It’s the generalization
of that we introduced before. One can refer to [Evaa] for the proofs.

De�nition 11.34 (Di�erentiation of Radon measures). Let � and � be Radon measures
onℝn. For each x ∈ ℝn, de�ne

D��(x) =

⎧

⎨

⎩

lim sup
r→0

�(B(x, r))

�(B(x, r))
, if �(B(x, r)) > 0 for all r > 0;

+∞, if �(B(x, r)) = 0 for some r > 0.

and

D
�
�(x) =

⎧

⎨

⎩

lim inf
r→0

�(B(x, r))

�(B(x, r))
, if �(B(x, r)) > 0 for all r > 0;

+∞, if �(B(x, r)) = 0 for some r > 0.

If D��(x) = D
�
�(x) < ∞, we say � is di�erentiable with respect to � at x and write

D��(x) ∶= D��(x) = D
�
�(x).

D��(x) is thederivative of �with respect to�. We also callD�� thedensity of �with respect
to �.

Lemma 11.35. Let � and � be Radon measures onℝn. Fix 0 < � < ∞. Then

(1) A ⊂
{
x ∈ ℝn ∶ D

�
� ≤ �

}
implies �(A) ≤ ��(A).
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(2) A ⊂
{
x ∈ ℝn ∶ D�� ≤ �

}
implies �(A) ≥ ��(A).

(If A is not a Borel set, we regard � and � as Radon outer measures.)

Theorem 11.36 (Di�erentiating Radon measures). Let � and � be Radon measures on
ℝn. Then

(1) D�� exists and is �nite �-a.e.;
(2) D�� is �-measurable.

Theorem 11.37 (Randon-Nikodym-Lebesgue theorem). Let � and � be Radon measures
onℝn.

(1) Then

� = �ac + �s

where �ac and �s are Radon measures onℝn with

�ac ≪ � and �s ⟂ �.

(2) Furthermore,

D�� = D��ac, and D��s = 0 � − a.e.

and for any Borel set A we have

�(A) = ∫
A

D�� d� + �s(A).

Theorem 11.38 (Average properties). Let � be a Radon measure onℝn.

(1) If f ∈ L1
loc
(ℝ, �), then

lim
r→0

1

�(B(x, r))
∫
B(x,r)

f d� = f(x), for � − a.e. x ∈ ℝn.

(2) If f ∈ L
p

loc
(ℝ, �) for some 1 ≤ p < ∞, then

lim
r→0

1

�(B(x, r))
∫
B(x,r)

|||f − f(x)|||
p
d� = 0, for � − a.e. x ∈ ℝn.

(3) If f ∈ L
p

loc
(ℝ,m) for some 1 ≤ p < ∞, then

lim
B→{x}

1

�(B)
∫
B

|||f − f(x)|||
p
dm = 0, form − a.e. x ∈ ℝn.

where the limit is taken over all closed balls B containing x, as diam(B) → 0.

Theorem 11.39 (Points of density 1 and density 0). Let E ⊂ ℝn be Lebesgue-measurable.
Then

lim
r→0

m (B(x, r) ∩ E)

m (B(x, r))
= 1, form − a.e. x ∈ E

and

lim
r→0

m (B(x, r) ∩ E)

m (B(x, r))
= 0 form − a.e. x ∈ ℝn ⧵ E
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11.I. Weak convergence of Radonmeasures. Finally we introduce the properties of
weak convergence of Radon measures and their corollaries. These are not di�cult, one
can refer to [Evaa] for their proofs.

De�nition 11.40 (Weak convergence of Radon measures). Let �, �k (k = 1, 2,⋯) be
Radon measures on ℝn. Then we say that the measures (�k)∞k=1 converge weakly to the
measure �, written

�k ⇀ �,

if we have

lim
k→∞

∫
ℝn

f d�k = ∫
ℝn

f d�, ∀f ∈ Cc(ℝ
n).

Theorem 11.41 (Weak convergence). Let (�k)∞k=1 be a sequence of Radonmeasures onℝn

satisfying

sup
k≥1

�k(K) < ∞ for each compact set K ⊂ ℝn.

Then there exists a subsequence (�kj)
∞

j=1
and a Radon measure � such that

�kj ⇀ �.

Corollary 11.42. Let U ⊂ ℝn be open, let 1 ≤ p < ∞, and let (fk)∞k=1 be a sequence of
functions in Lp(U,m) satisfying

sup
k≥1

‖fk‖Lp(U,m) < ∞

Then we have the following conclusions about weak convergence:

(1) If 1 < p < ∞, then there exists a subsequence (fkj)
∞

j=1
and a function f ∈ Lp(U,m)

such that

fkj ⇀ f in Lp(U,m).

(2) If p = 1, and suppose also

lim
l→∞

sup
k≥1

∫
{|fk|≥l}

|fk| dm = 0,

then there exists a subsequence (fkj)
∞

j=1
and a function f ∈ L1(U,m) such that

fkj ⇀ f in L1(U,m).

Corollary 11.43 (Biting lemma). Assume that the open subsetU is boundedand let (fk)∞k=1
be a sequence of functions in L1(U,m) satisfying

sup
k≥1

‖fk‖L1(U,m) < ∞.

Then there exists a subsequence (fkj)
∞

j=1
and a function f ∈ L1(U,m) such that for each

� > 0 there exists a Lebesgue measurable set E ⊂ U with

m(E) < �,
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and

fkj ⇀ f in Lp(U ⧵ E,m).

For more properties of Radon measures, one can refer to [Evaa] and [For].
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12. Lp spaces

12.A. Lp space.

De�nition 12.1 (Lp space). Let (X,X, �) be ameasure space. Iff is ameasurable function
on X and 0 < p < ∞, we de�ne

‖f‖p = (∫ |f|p d�)

1∕p

,

(allowing the possibility that ‖f‖p = ∞), and we de�ne

Lp(X,X, �) =
{
f ∶ X → ℂ ∶ f is measurable and ‖f‖p < ∞

}
.

Moreover, if f is a measurable function on X and p = ∞, we de�ne

‖f‖∞ = inf {a ≥ 0 ∶ � ({x ∶ |f(x)| > a}) = 0} ,

with the convention that inf ∅ = ∞, and we de�ne

L∞(X,X, �) =
{
f ∶ X → ℂ ∶ f is measurable and ‖f‖∞ < ∞

}
.

We abbreviate Lp(X,X, �) by Lp(�), Lp(X), or simply Lp when this will cause no confusion.
If A is any nonempty set, we de�ne lp(A) to be Lp(�) where � is counting measure on

(A, P(A)), and we denote lp(ℕ) simply by lp.

Remark 12.2. As like in remark 9.24, we usually rede�ne Lp(�) to be the set of
equivalence classes of a.e.-de�ned Lp-integrable functions on X, where f and g
are considered equivalent i� f = g a.e.
This newLp(�) is still a complex vector space, andwe employ the notation “f ∈ Lp(�)”

to mean that f is an a.e.-de�ned integrable function.

Remark 12.3. In particular, ‖fr‖p = ‖f‖rpr for all 0 < p, r < ∞.

12.B. Hölder inequality, Minkowski inequality.

Proposition 12.4. Let (X,X, �) be a measure space. Let f and g be measurable functions
on X.
(1) (Hölder inequality) If 1 < p < ∞ and p−1 + q−1 = 1, then

(12.1) ‖fg‖1 ≤ ‖f‖p‖g‖q.

In particular, if f ∈ Lp and g ∈ Lq, then fg ∈ L1. Besides,

f ∈ Lp and g ∈ Lq ∶ ‖fg‖1 = ‖f‖p‖g‖q ⟺

�|f|p = �|g|q �-a.e. for some constants �, � with �� ≠ 0.

Moreover, if p = 1 and q = ∞we also have ‖fg‖1 ≤ ‖f‖1‖g‖∞. In particular, if f ∈ L1

and g ∈ L∞, then fg ∈ L1. Besides,

f ∈ L1 and g ∈ L∞ ∶ ‖fg‖1 = ‖f‖1‖g‖∞ ⟺

|g(x)| = ‖g‖∞ �-a.e. on {x ∈ X ∶ f(x) ≠ 0}.

(2) (Minkowski inequality) If 1 ≤ p ≤ ∞ and f, g ∈ Lp, then

(12.2) ‖f + g‖p ≤ ‖f‖p + ‖g‖p.
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Proof. For Hölder inequality, the case that p = 1 and q = ∞ is trivial, in the next we
assume that 1 < p < ∞. Note that the result is trivial if ‖f‖p = 0 or ‖g‖q = 0 (use
proposition 9.23), or if ‖f‖p = ∞ or ‖g‖q = ∞. Then, setting

a(x) =
|f(x)|

‖f‖p
and b(x) =

|g(x)|

‖g‖q
,

it follows from the Jesen inequality with respect to ex that

a(x)b(x) ≤
ap(x)

p
+
bq(x)

q
,

and hence

∫ a(x)b(x) d�(x) ≤
1

p
∫ ap(x) d�(x) +

1

q
∫ bq(x) d�(x) =

1

p
+
1

q
= 1.

Thus (12.1) follows, and if f ∈ Lp and g ∈ Lq, then fg ∈ L1; moreover, in this case
equality holds in (12.1) i� a(x) = b(x) �-a.e. i� �|f|p = �|g|q �-a.e. for some constants
�, � with �� ≠ 0.
For Minkowski inequality, the result is trivial if p = 1 or ∞, or if f + g = 0 �-a.e.

Otherwise, setting p−1 + q−1 = 1, it follows from Hölder inequality that

‖f + g‖
p

p = ‖(f + g)p‖1 ≤
‖‖‖‖|f + g|p−1|f|

‖‖‖‖1
+

‖‖‖‖|f + g|p−1|g|
‖‖‖‖1

≤
‖‖‖‖|f + g|p−1

‖‖‖‖q

(
‖f‖p + ‖g‖p

)

= ‖f + g‖
p−1

q(p−1)

(
‖f‖p + ‖g‖p

)

Note that q(p − 1) = p; then Minkowski inequality follows. �

The Minkowski inequality has the following generalized edition.

Proposition 12.5 (Minkowski inequality for integration). Let (X,X, �) and (Y, Y, �) be
�-�nite measure spaces, and let f be a measurable function on (X × Y,X × Y, � × �).

(1) If f ∈ L+(X × Y) and 1 ≤ p < ∞, then

⎛

⎜

⎝

∫
X

(∫
Y

f(x, y) d�(y))

p

d�(x)
⎞

⎟

⎠

1∕p

≤ ∫
Y

(∫
X

f(x, y)p d�(x))

1∕p

d�(y).

(2) If 1 ≤ p ≤ ∞, f(⋅, y) ∈ Lp(�) for �-a.e. y, and the function y ↦ ‖f(⋅, y)‖p is in L1(�),
then f(x, ⋅) ∈ L1(�) for �-a.e. x, the function x ↦ ∫ f(x, y) d�(y) is in Lp(�), and

‖‖‖‖‖‖‖
∫ f(⋅, y) d�(y)

‖‖‖‖‖‖‖p
≤ ∫ ‖f(⋅, y)‖

p
d�(y).

Proof. When p = 1, (1) is merely Fubini-Tonelli theorem 9.28. When 1 < p < ∞, set
p−1 + q−1 = 1 and set

H ∶ X → [0,∞], x ↦ ‖f(x, y)‖1;Y = ∫
Y

f(x, y) d�(y).
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Then for all g ∈ Lq(�), by Fubini-Tonelli theorem 9.28 and Hölder inequality 12.4 we
have

‖H(x)‖
p

p;X
= ‖Hp(x)‖1;X = ‖Hp−1(x)H(x)‖1;X

=
‖‖‖‖H

p−1(x)‖f(x, y)‖1;Y
‖‖‖‖1;X

=
‖‖‖‖‖H

p−1(x)f(x, y)‖1;Y
‖‖‖‖1;X

=
‖‖‖‖‖H

p−1(x)f(x, y)‖1;X
‖‖‖‖1;Y

≤
‖‖‖‖‖H

p−1(x)‖q;X‖f(x, y)‖p;X
‖‖‖‖1;Y

= ‖H(x)‖
p−1

p;X

‖‖‖‖‖f(x, y)‖p;X
‖‖‖‖1;Y

.

Then (1) follows.
When p < ∞, (2) follows from (1) with f replaced by |f| and Fubini-Tonelli theorem

9.28. Whenp = ∞, it is a simple consequence of themonotonicity of the integration. �

Remark 12.6. Setting (Y, Y, �) = (ℕ, P(ℕ), �) where � is the counting measure, by
Minkowski inequality for integration 12.5 we know that if (X,X, �) is a �-�nite measure
space and (fj)∞j=1 are a sequence functions in L

+(X), then for 1 ≤ p < ∞ we have

(12.3)
‖‖‖‖‖‖‖‖‖‖

∞∑

j=1

fj

‖‖‖‖‖‖‖‖‖‖p

≤

∞∑

j=1

‖fj‖p,

which is a generalization of Minkowski inequality 12.4. Since we have corollary 9.14, we
can remove the condition that X is �-�nite, and the above proof applies.

12.C. Banach, separability, dual, weak compact, uniformly convex.

Proposition 12.7. Let (X,X, �) be a measure space. Then

(1) (Lp, ‖ ⋅ ‖p) is a Banach space for 1 ≤ p ≤ ∞.
(2) For 1 ≤ p < ∞, the set Λ of simple functions f =

∑n

j=1
aj�Ej , where �(Ej) < ∞ for all

j, is dense in Lp.
(3) Let 1 < p < ∞ and p−1 + q−1 = 1, for each ' ∈ (Lp)∗ there exists g ∈ Lq such that

'(f) = ∫ fg d� for all f ∈ Lp, and hence Lq is isometrically isometric to (Lp)∗. The
same conclusion holds for p = 1 (and q = ∞) provided � is �-�nite.

Proof. It easily follows from Minkowski inequality 12.4 that (Lp, ‖ ⋅ ‖p) is an N.V.S. for
1 ≤ p ≤ ∞. It’s obvious that (L∞, ‖ ⋅ ‖∞) is Banach. In the next assume that 1 ≤ p < ∞.
Let (fn) be a Cauchy sequence in Lp, then

∀" > 0, ∃N = N(") ∈ ℕ, ∀n,m ≥ N ∶ ‖fn − fm‖p < ".

Hence there exists a sequence of strictly increasing numbers (nj)∞j=1 such that

‖‖‖‖‖
fnj+1 − fnj

‖‖‖‖‖p
<

1

2j
, ∀j ∈ ℕ.
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By (12.3) we know
‖‖‖‖‖‖‖‖‖‖

∞∑

j=1

|||||
fnj+1 − fnj

|||||

‖‖‖‖‖‖‖‖‖‖p

≤

∞∑

j=1

‖‖‖‖‖
fnj+1 − fnj

‖‖‖‖‖p
≤ 1,

and hence it follows from properties 9.9 that
∞∑

j=1

|||||
fnj+1 − fnj

|||||
< ∞, �-a.e.

Hence fnj converges to some measurable f �-a.e pointwisely via proposition 6.13 and
proposition 6.14. It follows from Fatou’s lemma 9.19 that

∀n ≥ N(") ∶ ‖fn − f‖p =

‖‖‖‖‖‖‖‖
lim inf
j→∞

|||||
fn − fnj

|||||

‖‖‖‖‖‖‖‖p

≤ lim inf
j→∞

‖fn − fnj‖p ≤ "

Hence fn converges to f in Lp. Then (1) follows.
For (2), clearly Λ ⊂ Lp. If f ∈ Lp, by theorem 6.22 choose a sequence (fn) of simple

functions such that 0 ≤ |f1| ≤ |f2| ≤ ⋯ ≤ |f|, fn → f pointwise. Then fn ∈ Lp and
|fn−f|

p ≤ 2p|f|p ∈ L1, so by the dominated convergence theorem 9.25, ‖fn−f‖p → 0.
Moreover, the simple functions fn =

∑Nn

j=1
�Ej , where the Ej’s are disjoint and the aj’s

are nonzero, must satisfy that �(Ej) < ∞ since
∑Nn

j=1
|aj|

p�(Ej) = ∫ |fn|
p d� < ∞. Then

(2) follows.
For (3), the existence of g follows fromRadon-Nikodym-Lebesgue theorem 10.24. One

can refer to [For] or [Tao] for details. �

Remark 12.8. When 0 < p < 1, (Lp, ‖ ⋅ ‖p) is not an N.V.S.

Remark 12.9. (2) is not true for p = ∞ in general. Consider f ≡ 1 on ℝ.

Proposition 12.10. There are some basic conclusions about separability.
(1) IfΩ is Lebesgue measurable (1 ≤ p ≤ ∞), then L∞(Ω,ℒ(Ω),m) is separable.
(2) IfΩ is Lebesgue measurable withm(Ω) > 0, then L∞(Ω,ℒ(Ω),m) is not separable.
(3) lp is separable (1 ≤ p ≤ ∞), but l∞ is not separable.

Proof. Easy. �

Now we prove a general conclusion about separability.

Lemma 12.11. Let (X,X, �) be a �-�nite measure space. IfX is countably generated, then
the metric spaces (X, d) is separable, where

d(A, B) = �(A∆B).

sketch of the proof. (1) WLOG we assume that � is �nite.
(2) Suppose C = {Cn ∶ n ∈ ℕ} generates X. De�ne An to be the algebra generated by

{C1, … , Cn}. Sicne An is �nite, A =
⋃

n
An is a countable algebra that generates X.

(3) We construct the outer measure

�∗(E) = inf {
∑

n

�(An) ∶ An ∈ Â, , E ⊂
⋃

n

An} .
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Carathéodory theorem 7.19 yields a complete measure that extends � to a larger �-
algebraℳ ⊃ X.

(4) From this construction, we know that anymeasurable set can be approximate by sets
in A, and hence (X,ℳ) is separable.

(5) The conclusion follows by taking rational linear combinations of sets (indicator
functions rather) in A.

�

Proposition 12.12. Let (X,X, �) be a measure space. Suppose that � is �-�nite and X is
separable (i.e. countably generated). Then Lp is separable for all 1 ≤ p < ∞.

Proof. By lemma 12.11 we know that (X, d) is separable. Let (An)n∈ℕ be a dense subset
in (X, d). We claim that the countable set span

ℚ
{An ∶ n ∈ ℕ} is dense in Lp.

Note that for A, B ∈ X we have

‖�A − �B‖
p

p = ∫ |�A − �B|
p = ∫

A⧵B

1 + ∫
B⧵A

1 = �(A∆B) = d(A, B)

It follows that d(Ank
, B) → 0 ⟺ ‖�Ank

− �B‖Lp → 0. By proposition 12.7 (2), simple
functions are dense in Lp, and then the conclusion easily follows.
One can suitably modify the proof for complex valued functions. �

One can refer to corollary 11.42 for the properties of weak compactness of Lp spaces.
One can refer to problem 3.43 (4) for the properties of uniform convexity of Lp spaces.

12.D. Convolution, regularization.

De�nition 12.13 (Convolution). Let f and g be measurable functions on ℝn. The
convolution of f and g is the function f ∗ g de�ned by

(f ∗ g)(x) = ∫
ℝn

f(x − y)g(y)dy

for all x such that the integration exists.

We introduce the following basic property �rst.

Proposition 12.14 (Basic properties of convolution). Assuming that all integrals blow
exist, we have
(1) f ∗ g = g ∗ f;
(2) (f ∗ g) ∗ ℎ = f ∗ (g ∗ ℎ).
(3) For z ∈ ℝn, �z(f ∗ g) = (�zf) ∗ g = f ∗ (�zg).
(4) If A is the closure of {x + y ∶ x ∈ supp(f), ∶ y ∈ supp(g)}, then supp(f ∗ g) ⊂ A.
Here we use the notation �yf(x) = (x − y).

Proof. Well-known. �

In the next we introduce some basic propositions which imply the existence of
convolution under some typical conditions.

Theorem 12.15 (Young). Let f ∈ L1(ℝn) and let g ∈ Lp(ℝn) with 1 ≤ p ≤ ∞. Then
f ∗ g(x) exists for a.e. x, f ∗ g ∈ Lp(ℝn), and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.
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Proof. Setting Φ(x, y) = g(x − y)f(y),6 then Φ(⋅, y) ∈ Lp for each y ∈ ℝn and we
have ∫ ‖Φ(⋅, y)‖p dy < ∞. Now the conclusion follows directly from the Minkowski
inequality for integration 12.5 (2), proposition 12.14 (1) and the translation invariance of
Lebesgue measure. �

Lemma 12.16. For 1 ≤ p < ∞, �z ∶ Lp → Lp is an isometric isomorphism and forf ∈ Lp,
z ∈ ℝn ↦ �zf ∈ Lp is continuous.

Proof. It easily follows from corollary 11.10. �

Proposition 12.17. Suppose that p, q ∈ [1,∞] and p and q are conjugate exponents,
f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(ℝn), ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q and if p, q ∈ (1,∞) then
f ∗ g ∈ C0(ℝ

n).

Proof. The existence of f ∗ g(x) and the estimate |f ∗ g|(x) ≤ ‖f‖p‖g‖q for all x ∈

ℝn is a simple consequence of Hölder inequality 12.4 and the translation invariance of
Lebesgue measure. In particular this shows ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q. By relabeling p and
q if necessary we may assume that p ∈ [1,∞). By Hölder 12.4 and lemma 12.16 we have

‖�z(f ∗ g) − f ∗ g‖
∞
= ‖�zf ∗ g − f ∗ g‖

∞
≤ ‖�zf − f‖

p
‖g‖q → 0 as z → 0.

It follows that f ∗ g is uniformly continuous.
Finally if p, q ∈ (1,∞), setting fm = f�|f|≤m and gm = g�|g|≤m, then by proposition

12.14 (4) and what we just proved, fn ∗ gn ∈ Cc(ℝ
n). Moreover,

‖f ∗ g − fm ∗ gm‖∞ ≤ ‖f ∗ g − fm ∗ g‖
∞
+ ‖fm ∗ g − fm ∗ gm‖∞

≤ ‖f − fm‖p ‖g‖q + ‖fm‖p ‖g − gm‖q

≤ ‖f − fm‖p ‖g‖q + ‖f‖
p
‖g − gm‖q → 0 asm → ∞.

Hence f ∗ g ∈ C0(ℝ
n) by proposition 11.21. �

Proposition 12.18. Let f ∈ Cc (ℝ
n) and g ∈ L1loc (ℝ

n). Then (f ∗ g)(x) is well de�ned
for every x ∈ ℝn, and (f ∗ g) ∈ C (ℝn).

Proof. Transform the conclusion into a local estimate, and then use Hölder inequality
12.4 and lemma 12.16. �

Now we introduce the property of di�erentiation.

Proposition 12.19. Suppose f and g are real-valued functions on ℝd. If f ∈ Ck
c (resp.

f ∈ Ck) and g ∈ L1loc (resp. g ∈ L1), then f ∗ g ∈ Ck and

D�(f ∗ g) = (D�f) ∗ g, for all � with |�| ≤ k.

In particular, if f ∈ C∞
c (resp. f ∈ C∞) and g ∈ L1

loc
(resp. g ∈ L1), then f ∗ g ∈ C∞.

Proof. It immediately follows from theorem 2.27 of [For]. �

Finally we introduce the regularizations.

De�nition 12.20 (molli�er). If ' is a smooth function on ℝn, n ≥ 1, satisfying the
following three requirements
6It will fail if we set Φ(x, y) = f(x − y)g(y).
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(1) It is compactly supported;

(2) ∫
ℝn

'(x) dx = 1;

(3) lim
"→0

'"(x) = lim
"→0

"−n'(x∕") = �(x);

where �(x) is the Dirac delta function and the limit must be understood in the space of
Schwartz distributions, then ' is amolli�er. For example, we can de�ne � ∈ C∞(ℝn) by

�(x) ∶=

⎧

⎨

⎩

C exp (
1

|x|2−1
) if |x| < 1

0 if |x| ≥ 1

the constant C > 0 selected so that ∫
ℝn

�(x) dx = 1. It’s easy to see that � is a molli�er. We

call � the standard molli�er.

For each " > 0 we set

�"(x) ∶=
1

"n
�
(x

"

)

Nowwemake smooth approximations of a locally integrable function using themolli�er
and convolution.

Theorem 12.21 (Smooth approximation). Let U ⊂ ℝn be an open subset, let " > 0, and
let f ∶ U → ℝ be locally integrable. Set

U" = {x ∈ U ∶ dist(x, )U) > "} .

and

f"(x) ∶= �" ∗ f(x) = ∫
U

�"(x − y)f(y) dy = ∫
B(0,")

�"(y)f(x − y) dy in U".

Then we have

(1) f" ∈ C∞(U");
(2) f" → f a.e. as " → 0;
(3) If f ∈ C(U), then f" → f uniformly on compact subsets ofU;
(4) If 1 ≤ p ≤ ∞, and f ∈ L

p

loc(U), then f
" → f in Lploc(U).

Proof. One can refer to [Evab]. �

Corollary 12.22. There are some density theorems.

(1) C∞
c (ℝ

n) (and hence also S) is dense in Lp(ℝn) for 1 ≤ p ≤ ∞ and in C0(ℝn).
(2) LetΩ ⊂ ℝn be an open subset. Then C∞

c (Ω) is dense in Lp(Ω) for any 1 ≤ p < ∞.

Corollary 12.23. LetΩ ⊂ ℝd be an open set and let u ∈ L1
loc
(Ω) be such that

∫ uf = 0 ∀f ∈ C∞
c (Ω).

Then u = 0 a.e. onΩ.
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Proof. One can show that ∫ ug = 0 for any g ∈ L∞(Ω) through considering g". Then for
any compact subset K of Ω, taking g to be sign(u) on K and 0 otherwise, we get u = 0

a.e. on K. The conclusion follows from the arbitrariness of K. �

For more basic properties of Lp spaces, one can refer to [For] and [Jon].
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13. Appendix A— Semicontinuity

Theorem 13.1. A T1-space X is perfectly normal i� for every lower (resp. upper)
semicontinuous function f de�ned on X, there exists a sequence (fi) of continuous real-
valued function on X such that fi(x) ≤ fi+1(x) (resp. fi(x) ≥ fi+1(x)) for i = 1, 2,⋯ and
x ∈ X, and that f(x) = limfi(x) for every x ∈ X.

Proof. One can refer to [Eng]. �
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