RICCI FLOW AND THE SPHERE THEOREM
ZHIYAO XIONG

ABSTRACT. In this paper, we give a succinct and comprehensible introduction to the
basic theory of Ricci flow, including the short time existence and uniqueness, Hamilton’s
convergence criterion, and the differentiable sphere theorem.
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1. INTRODUCTION

In 1904, Poincaré proposed his famous conjecture: every simply connected, closed 3-
manifold is homeomorphic to the 3-sphere. From the point of view of results, Hamilton’s
work in 1982 solved some special cases of Poincaré conjecture, and Perelman’s work in
2002 developed Hamilton’s method and completed the proof.

The basic idea of Hamilton’s work [5] is to meliorate some initial metric on the
manifold by an evolution equation, which is called the Ricci flow. Hamilton showed
that if the initial metric enjoys positive Ricci curvature, then after a rescaling, the Ricci
flow will converge to a metric with constant curvature. It is well-known that a simply
connected Riemannian manifold with positive constant curvature is diffeomorphic to
the sphere, and hence Hamilton provided a effective procedure for proving Poincaré
conjecture. However, Hamilton’s hypothesis is too strong for Poincaré conjecture, since
for general initial metrics, the Ricci flow must lead to more complicated singularities.

Perelman [7] [8] [9] then made a significant contribution to understanding the
singularities. He showed that if one takes a certain perspective, the singularities
appearing in fintie time can only look like shrinking spheres or cylinders. Moreover,
Perelman showed that we can cut the manifold along the singularities, devide the
manifold into several pieces, and then continue the Ricci flow on each piece. For a
closed 3-manifold, Perelman indicated that the above process deforms the manifold into
round pieces with strands running between them; moreover, we can rebuild the original
manifold by connecting the spheres together with three-dimensional cylinders and see
that the original manifold is homeomorphic to the sphere.

However, the original work of Hamilton and Perelman is devoted to solving very
general situations and uses quite complicated techniques. For people who know the
basic knowledge of Riemannian geometry but are not familiar with these specific
techniques, it is difficult for them to get a clear picture of their brilliant work. In fact,
some complicated techniques can be simplified, and if one only focuses on the main
results, the theory can be organized in a more comprehensible way.

For instance, DeTurck [4] introduced a novel proof of the local existence of the
Ricci flow. Instead of using the Nash-Moser implicit function theorem as in Hamilton
[5], which is powerful but elaborate, DeTurck proposed an elementary proof that only
utilizes the basic transformations. His idea is to show that under some fundamental
transformations, the evolution equation is equivalent to some strictly parabolic equation
system, which is a classical and well-known object. However, even the simplified proof
of DeTurck [4] can be further simplified, and we will show this later.

In this paper, we aim to provide a succinct and comprehensible account of the
existence and coverngence theory for the Ricci flow. This theory is an essential part of
Hamilton and Perelman’s work, which can be regarded as the first step to understand
their work. Moreover, this theory itself is self-contained and substantial. We will
introduce some major consequences of this theory, such as the differentiable sphere
theorem: if a closed Riemannian manifold is 1/4-pinched, then it is diffeomorphic to
a spherical space form.

To reorganize this theory in a succinct and comprehensible way, we will extract the
core skeleton of this theory and focus on the motivations and ideas of every step in the
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process of establishing this theory. The reader is only assumed to be familiar with basic
Riemannian geometry, and many claims of Riemannian geometry will be left to readers.
This is like saying that the theory is a beef cattle, the reader is a cook who can handle the
meat on the chopping board, and the author just does the job of dividing the beef cattle
into pieces that every cook can handle.
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2. THE ORIGIN OF RICCI FLOW AND THE FRAMEWORK OF THIS PAPER

In Hamilton [5], he introduced Ricci flow to prove the following result.

Theorem 2.1. Let X be a closed 3-manifold which admits a Riemannian metric with
strictly positive Ricci curvature. Then X also admits a metric of constant positive curvature.

We roughly discourse Hamilton’s reason for proposing Ricci flow as follows.
To find the desired metric, the basic idea is to derive a flow of metrics g(t) that
converges to the desired metric g via some parabolic equation

0 . e : .

T g;j = P(g);; where P is some elliptic linear differential operator.

Assume our idea can be achieved if we choose P appropriately. Then one can hope that

P(g) = 0. Considering our goal (theorem 2.1), P should relate to the Ricci curvature.
Since Ric(g) is nearly elliptic with respect to g, we may try the simplest case P = c-Ric;

although this model doesn’t satisfy P(g) = 0, but its normalized edition will, and two

editions are equivalent.

Definition 2.2. Let (M", g) be a closed Riemannian manifold. Hamilton’s Ricci flow is
the evolution equation

d

(2.1) 3181 = —2R;;,

and the normalized Hamilton’s Ricci flow is the evolution equation
) r Jy Rdvol

(22) agi]‘ =2 (Egij - Rij) where r = W

Remark 2.3. The factor r serves to normalize the equation so that the volume is
constant. To see this, note that by Jacobi’s formula we know

0 [ 1 ..0

_ )= —ol)—g.. =y —

at ]'Og det(glj) 2g atglj r R’
and hence

d d
3 Ldvolg = [4 (E log+/ det(gij)) dvol, = /M(r — R)dvol, = 0.

Proposition 2.4. These two evolution equations (2.1) and (2.2) are equivalent.

Proof. Lett, g;;, R;
R,

»Rr denote the variables for the unnormalized equation, and 7, g; s
s R, 7 the corresponding variables for the normalized equation.

To make the conversion from (2.1) to (2.2), we choose the normalization factor 1(t) so
thatif g;; = 1g;; then f dvolz = 1, and choose a new time scale = [9(t)dt. Clearly,

0 1 0
dvol, =¢™? and —=———.
[4 volg =9 ot  P(t)at

Applying the evolution equation we know

0 1..0 3
3 log\/det(gij) = Eg ]Egif = —R and hence 3 logj]\;dvolg = —r.
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Therefore, % logy = Er, and it easily follows that

0 _ o) d 2 ~
a_~gij = Egij + (E 10g¢) 8ij = 78ij ~ 2R;;.

Clearly, this conversion gives the equivalence. O

Remark 2.5. The normalized Ricci flow is derived by rescaling the unnormalized Ricci
flow and rescaling the time.

There are two core steps in Hamilton’s framework:

(1) First, we prove the short time existence and uniqueness for the initial-value problem
about (2.1).

(2) Second, applying the maximum principle, we get apriori estimates and then some
agreeable convergence of the normalized Ricci flow follows.

Remark 2.6. Moreover, if we know the maximum time for Ricci flow, instead of showing
the convergence of the normalized Ricci flow, we can also directly show that after
rescaling the unnormalized Ricci flow we will get a convergent flow of metrics.

In this project, we will simplify the work of Hamilton [5]. The framework of this
project is as follows:

(1) First, we will give a succinct proof of the short time existence and uniqueness, which
simplifies the work of Hamilton [5] and DeTurck [4]. (Section 3.)

(2) Next, we will re-establish Hamilton’s convergence criterion for the Ricci flow in a
more comprehensible way as we said in remark 2.6. (Sections 4, 5, 6.)

(3) Finally, as an important application, we will prove the differentiable sphere theorem.
(Section 7.)
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3. SHORT TIME EXISTENCE AND UNIQUENESS OF HAMILTON’S RICCI FLOW

3.A. Short time existence and uniqueness of parabolic equations. To show the
short time existence and uniqueness, we will apply the parabolic theory.

Definition 3.1. Let F be a vector bundle over a manifold M, and let L : C®(M,F) —
C*(M,F) be a differential operator. Then the linearization of L around any f €
C*(M,F) is defined by

PL@ =S| L(f+19)

Theorem 3.2. Let F be a vector bundle over a manifold M, letL : C®(M,F) - C®(M,F)
be a differential operator of order 2, and let A be an open set in F. If the restriction (of an
open set in a Fréchet space to itself)

L : C®(M,A) C C®(M,F) —» C®°(M,F)

is parabolic, i.e. the linearization of L is parabolic around any f € C®(M, A), then the
evolution equation

of
S =L

has a unique smooth solution for any initial value problem f(0) = f, € C*(M, A) for at
least a short time interval 0 < t < ¢ (where ¢ may depend on f).

Proof. Standard. 0

3.B. Weak parabolicity. Hamilton’s Ricci flow (2.1) is weakly parabolic.

Let £2T*M be the bundle of positive definite symmetric (0, 2)-tensors, which is an
open subset of the bundle Z*T*M. We need to show that the linearization of —2Ric :
[(Z2T*M) - [(Z*T*M) around any g € T(Z3T*M) is weakly elliptic.

Proposition 3.3. Assume that % gij = hyj, where g(t) is a smooth family of Riemannian
metrics and h(t) is a smooth family of symmetric (0, 2)-tensors. Then

o .. L
(3.1) 3 U= —glkglhy
Ok = Lokl (Vh, 4V k- Vi
(3.2) Erij_zg (v jt Vil — Vg ij)

d 1

d 1
(34) 3Rk = 58" (VyVihgp + Vo Vihj, — VoV hy — VVihy,)
(3.5) %R = —A(trgh) + VPVih,, — (h,Ric)

Corollary 3.4. The linearization D(—2Ric), : [(Z*T*M) — I'(Z*T*M) satisfies

(3.6) D(—2R,;),(h) = g13,8,h;; + gP13,3;h,, — gP13,8h;, — gP16,3,h,; + LOT='(h),
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and hence given § € T,M we have

G§ (D(_ZRiC)g) (Tij) = gpququij + gpqgingpq - gpqungiq - gpqgiqupj'
Since the principal symbol is independent from the choice of local coordinates, WLOG
we assume that g;;(p) = §;;, §; = 1and §; = 0 for any i # 1. Then

ZZ:z Ty i=j=1,

. i=1,j#1,
[o¢ (D(=2Ric),) (D], = 0 i#£1,j=1
T, i£1,j#1.

Thus one can see that D(—2Ric), is weakly (but not strictly) elliptic, and hence (2.1) is
weakly (but not strictly) parabolic.

One can also indicate that (2.1) is not strictly parabolic by the fact that the solutions of
the steady state equation Ric(g) = 0 are invariant under the full diffeomorphism group,
which is infinite dimensional.

Remark 3.5. The diffeomorphism invariance of the Riemannian curvature tensor will
imply the Bianchi identites. For example, linearizing the equation R (¢7g) = ¢! (R(g))
we get DR,(Lyg) = XR; then by (3.5) we derive the contracted second Bianchi identity.

3.C. DeTurck’s trick. To show the short time existence and uniqueness of Hamilton’s
Ricci flow, DeTurck introduced a clever way: we turn to solve the evolution equation for
g, = ¢;g;, where {¢,} is a family of diffeomorphisms.

This trick about time, which is related to the reason of weak parabolicity, may
influence parabolicity of the evolution equation.

Lemma 3.6. Let {¢,} be a smooth family of diffeomorphisms, and let {6,} be a smooth family
of (0, 2)-tensors. If n, = ¢;6,, then

o} . 06 a6 L)

ant = ¢, (L%et + a_tt> = Ltht + ¢; a_tt where X, = (¢t 1)* a—tt
Therefore, if g, solves Hamilton’s Ricci flow, then g, : = ¢; g, satisfies

a o = * a - . - _ a¢

38t = Lx.8 + ¢ % = Ly g, —2Ric(g,) where X, = (¢, 1)* a_tt

We can choose {¢,} appropriately such that X, = Y(g).

Lemma 3.7. Let w : ['(Z°T*M) — I'(T*M) be a linear differential operator, and let T :
[(Z2T*M) — I(T*M) be a differential operator. Given any g € T(Z2T*M), ifw ~ (Df)g,1
then VlCOJ + V]CUl ~D (Lf(g)bg)g'

Proposition 3.8. Ifwe set
Y : T(Z2T*M) —» I(TM), g; — gk, — 1)
where f;q is the Christoffel symbol of some fixed metric g, then
D(Lygg— 2Ric)g (h) = Ahy; + LOT='(h).

YFor two linear differential operators Ly, L, : C®°(M,E) — C®(M, F), we say L, ~ L, if deg(L;) = deg(L,)
and deg(L; — L,) < deg(L,).



Zhiyao Xiong 7

Proof. Note that we can rewrite D(—2Ric), as
<0
where
1
C‘)k = Egpq (Vphqk + thpk - thpq) = D(gkrYr)g(h)
Then the conclusion follows from lemma 3.7. O

Corollary 3.9. If g, solves Hamilton’s Ricci flow in a short time, if f‘\;q is the Christoffel
symbol of some fixed metric g, and if ¢, satisfies

- a¢ 5 ™" m = *
(3.7) [(q&t 1)* att] = gPd (qu - qu> where g, = ¢ig,
then the evolution equation of g, is
d— 5 T™m m
(3.8) 3780 =V, Y; + V Y, — R” where Y™ = gP4 (qu - qu),

which is strictly parabolic. We call (3.8) the DeTurck’s Ricci flow.

Remark 3.10. Clearly by the proof of proposition 3.8 we know that DeTurck’s Ricci flow
is strictly parabolic.

Remark 3.11. Setting ), = ¢; ', then 9, will satisfy a harmonic map flow, which is
parabolic. Moreover, one can apply this fact to showing the uniqueness of Hamilton’s
Ricci flow. We will introduce this in subsection 3.D.

The process from DeTurck’s Ricci flow to Hamilton’s Ricci flow is much easier. One
should note that this process implies the short time existence of Hamilton’s Ricci flow.

Theorem 3.12. If g, solves DeTurck’s Ricci flow in a short time, then one can define a

smooth family of diffeomorphisms i, by

%
ot

Moreover, g, := 1; g, solves Hamilton’s Ricci flow in a short time.

(3.9) =-Y, and ,=1id, where Y™ =gl (f?fq - f%) .
Proof. The existence of 1), follows from the standard ODE theory. Then lemma 3.6 yields

0
S =i 2+ ) = (amic () = ~amice).

Hence g, solves Hamilton’s Ricci flow in a short time. U
Corollary 3.13. Given any initial data, we can slove Hamilton’s Ricci flow in a short time.
Proof. 1t follows from theorems 3.2 and 3.12. O

3.D. The harmonic map flow. Suppose that g, solves Hamilton’s Ricci flow in a short
time. Now we come back to equation (3.7) and show the existence of such {¢,}.

Lemma 3.14. If{¢,} is a smooth family of diffeomorphisms, and if p, = ¢;*, then

n 9% 9%
(). ot  at’
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Clearly, equation (3.7) is equivalent to

0 _ — ~ _ *
(3.10) % = —ghd (F?Jq - F;"q) where g, = (¥;') &

In the next we will show that equation (3.10) is a harmonic map flow, which is parabolic,
and hence the existence follows.

Lemma 3.15. If f : (M,g) — (N, h) is a smooth map, then®

[ 0*f“ off o of«
(31D (Ag,hf)y=g”( S SO (e op - r S )

Oxidx) = dxi dxJ b axk
If f : (M,g) — (N, h) is, in addition, a diffeomorphism, then
(3.12) (Agnf) = &2 |(T) of = T)zof | where g=(")yg

Corollary 3.16. Equation (3.10) is equivalent to

3
(3.13) % A

Moreover, equation (3.13) is parabolic.
Remark 3.17. We call (3.13) together with 3, = id a harmonic map flow.
Theorem 3.18. A solution of the Ricci flow is uniquely determined by its initial data.

Proof. Fix a background metric g. Suppose that g;(¢t) and g,(¢) solve Hamilton’s Ricci
flow with g,(0) = g,(0).

By corollary 3.16 and theorem 3.2, for i = 1,2, let 1,(t) be the solution of harmonic
map flow with respect to g;(t) and g. Then both g,(t) = (z,bi‘l)* g;(t) solve DeTurck’s Ricci
flow with g,(0) = g,(0).

Since DeTurck’s Ricci flow is parabolic, by theorem 3.2 we know g, (t) = g,(¢) for as
long as both exist, and then both ,(t) are solutions of the ODE

0yi(1)
ot
Therefore, 1, (t) = ¥,(¢) for as long as they are both defined, which implies

g:1(6) = P78, (1) = P;g,(t) = &(0).

We are done. U

=-Y, where Y™ =gkl (fg’q - f;’}q) .

2Recall some basic concepts: for a smooth map f : (M,g) — (N, h), the second fundamental form B €
M, T*"M @ T*M ® f*TN) is given by

B(X.Y) := Vx (£.Y) ~ f. (VYY) € (M. f*TN),
and the Laplacian is given by A, , f = trgB € (M, f*TN).
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4. THE MAXIMAL TIME AND DERIVATIVE ESTIMATES

This section is a preliminary of Hamilton’s maximum principle and Hamilton’s
convergence theory.

4.A. The finite-time explosion. First we show that the scalar maximum principle
Referencesthm scalar maximum principle implies that the finite-time explosion of Ricci
flow with initial strictly positive scalar curvature.

Theorem 4.1. Suppose g(t) solves Ricci flow on a closed manifold M", defined fort €
[0, T). If the metric g(0) has strictly positive scalar curvature, then g(t) becomes singular in
finite time, i.e. T < 0.

Proof. By formula (3.5) we know

SR—AR+ 2|Ric|? > AR + 2pe,
ot n

Assume R(0) is bounded below by some p > 0. The solution to the associated ODE

dp 2 ,
ar ~n®
with ¢(0) = p is
__pn
¢) = — o
Then theorem 8.1 yields that R(x,t) becomes singular in finite time. So the metric
becomes singular in finite time. O

4.B. Evolution equations for derivatives of curvature.

Definition 4.2 (x-notation). Given two tensors A, B on a Riemannian manifold M", we
denote by A * B any quantity obtained from A @ B by one or more of these operations:

(1) summation over pairs of matching upper and lower indices,

(2) contraction on upper indices with respect to the metric,

(3) contraction on lower indices with respect to the metric inverse,

(4) multiplication by constants depending only on n and the ranks of A and B.

Lemma 4.3. Suppose that g(t) solves Hamilton’s Ricci flow on M. Let A(t) and F(t) be
two smooth families of tensor fields of the same type. If it holds that

(4.1) %A =AgnA+F
then

%VA =A(VA)+ VF+Rm % VA + VRic x A
and

%|A|2 = A|A]? = 2|VA|* + F % A + Ric x A™.
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Theorem 4.4. The evolution equation for the k-th iterated covariant derivative of the
Riemannian curvature tensor under the Ricci flow is

k
0 . .
(4.2) 5, V'Rm = AVERm + 3 V/Rm * V</Rm
t =
and the square of the norm of k-th iterated covariant derivative of the Riemannian
curvature tensor satisfies the heat-type equation
k

0 . .
(4.3) §|V"Rm|2 = A|VFRm|? = 2|V 'Rm|? + Z V/Rm * V¥/Rm % VFRm.

Jj=0

Proof. One can compute that

(4.4) %Rm = ARm + Rm™.

Thus (4.2) holds for k = 0. If (4.2) holds for k = m, then applying lemma 4.3 to

m
A=V"Rm and F=) V/Rm=x V" /Rm

j=0
we know
%VV’”Rm = AVV"Rm + VF 4+ Rm % VV”Rm + VRic * V"Rm
m+1
= AV™"Rm + Z V/Rm * V™*1=/Rm.
Jj=0

Hence we get (4.2) by induction. Now for each k we can truly apply lemma 4.3 to

k
A=VKRm and F = Z V/Rm % V¥/Rm,
Jj=0

which derives that
%|V"Rm|2 = A|VFRm|? —2|VV¥Rm|? + F * V¥ Rm + Ric * (V¥Rm)*?

k
= A|V*Rm|? —2|V*Rm|? + )] V/Rm * V¥/Rm * V¥Rm.
j=0

We are done. OJ
4.C. Derivative estimates for Riemannian curvature tensor.

Theorem 4.5 (Bernstein-Bando-Shi). If g(t) solves Ricci flow on a closed manifold M",

then for each « > 0 and m € N, there exists a constant C,, = C,,(m,n, max{a, 1}) such
that if

a

then

C,.B a
|Vmng(t)| < tm7 Vt € <0, E] .
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Proof. We prove by induction. For m = 0 the result is just the hypothesis. Assume the
result is true for all m < k — 1. Note that

k k
Z V/Rm # V¥/Rm * VFRm < chj|Vme||Vk‘ij||VkRm|
Jj=0 j=0

n

C
< CIBIVFRm| + tk%52|kam|
63

< C,BIVFRm|* + T

Therefore by formula (4.3) we know’

0 _
(43) 2 |VRml < AIVFRm[* + 8|V Rml? + £
Namely, setting u,,(t) = t™|V™Rm|? for each m, we have
ou — k

The associated ODE of (4.6) can not be solved near 0 since we have the bad term ?uk, and

hence we can not derive an estimate of u, directly. We turn to evaluate the new quantity”

k-1
u=u+ Z gkmum'
m=0
In hope that the summation will bring a nice associated ODE, for m < k we compute

ou 2 = .
Zmo w2 L +t™> VIRm * V*"JRm % V"Rm
j=0

< Au, + ?um - %umﬂ +C,,B°.
Clearly we can choose &, = &, (m, &,_1) (0 < m < k — 2) appropriately such that

ou — kK 2 ~
- <Au+ (Ckﬁ + T ;5k,k-1> u + C(x_1, k, n)B°.

ot
Now choose
Ep > Ck“TH‘ = C,B+ % — %§k,k_1 <0 Vte <0, %]
Then clearly’
du

n <Au+Cp® Vte [0, %], where C, = C,(k, n, max{a, 1}).

3We discard the non-positive term —2|V¥*1Rm|? in (4.3), since this term of highest degree does not fit
theorem 8.1 whenever we apply theorem 8.1 to | VKRm|? or any natural quantity related to it.

*In order to evaluate uy, it's equivalent to estimating u since we alredy know a bound on each u; (j < k).
However, the new quantity may satisfy a new parabolic inequality which enjoys a nice associated ODE.
>If one replaces u,, /t by t™~1|V™R|? for m > 1, and identifies (?um) ‘m—O with 0, then one knows clearly
the inequality at t = 0.
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Since u(0) = ¢ k0|Rm|§(0) < &,0B3%, theorem 8.1 yields that

sup u(x, t) < &,08% + C,Bt.
XEM

Since &,, and C,, only depend on k, n, max{a, 1}, we know

supu(x,t) <G B> vte [0, %] , where C, = C,(k,n, max{a, 1}).

xeM
Therefore,
C’k
|VKRm| <, [ % < =& vt € <o,g].
tm tm/2 B
Setting Cy(k, n, max{a, 1}) = é\;/ ’ we get the conclusion. O

Clearly, BBS estimates are completely useless at ¢ = 0, since bounds on an arbitrary
curvature tensor will not tell us anything about its derivatives. It is only after a period of
Ricci flowing that the derivatives start to be brought under control.

For the sake of convenience, we write down the following trivial corollary.

Corollary 4.6. Let g(t), t € [0, 7], be a solution to the Ricci flow on a closed manifold M"
satisfying

4.7) sAu4p |IRm,,| <77', Vte][o,r].

Given any integer m > 1, there exists a positive constant C = C(m, n) such that

sup [V"Rmy,,|* < Ct™™2%, Vit € [r/2,7].
M

Remark 4.7. Condition (4.7) is easy to meet by choosing the initial time appropriately.
4.D. Cuvature explodes at finite-time singularities.

Theorem 4.8. If g, is a metric on a closed manifold M, the Ricci flow with g(0) = g, has a
unique solution g(t) on a maximal time interval t € [0,T) where T < o0. IfT < oo then

(4.8) lim (sup |[Rm(x, t)|) = 00.
t->T M

Remark 4.9. It suffices to show that if [Rm|, is bounded above near T, then g(¢) will
converge smoothly to a smooth metric g(T), and we can use the short-time existence
result (corollary 3.13), with initial metric g(T'), to extend the solution past T

So the key point is to show the convergence of g(¢). Our idea is to apply theorem 8.4
based on corollary 4.6.

Proof. Suppose for contradiction that (4.8) is false. Then corollary 4.6 yields that
sup sup |[V"Rmgyy| <o Vm € N.

t€[0,T) M

Then by the Ricci flow equation (2.1) and theorem 8.4, we know the metrics g(t) converge
in C* to some limit metric g on M. Then corollary 3.13 implies that we can extend the
solution beyond T'; a contradiction. O
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4.E. Derivative estimates for tensors. Inanalogue with BBS estimates, one can easily
derive the following results based on the scalar maximum principle 8.1.

Theorem 4.10. Let M be a closed manifold of dimension n, let g(t), 0 < t < t, be a solution
to the Ricci flow on M satisfying

(4.9) sup [Rmgy,)| <77t Vi €0,7],
M
and let H be a smooth tensor field satisfying

inAH+R*H
ot

and

sup |[H| <A Vte|[0,71].
M

Then we can find a positive constant C = C(n) such that

sup |VH|?> < CA*t™! Vvt e|7r/2,7].
M

Remark 4.11. Condition (4.9) is easy to meet by choosing the initial time appropriately.

Proof. Note that

9 |Rmp?

n A|Rm|? —2|VRm|? + Rm * Rm * Rm

< A|JRm|*—=2|VRm|? + C;773,
where C; = C,(n), and that
%Wlez = A|VRm|? —2|V?Rm|? + Rm * VRm % VRm
< A|VRm|?> + C,77! - |VRm|?,

where C, = C,(n). Setting v(t) = t|VRm|§([), then

%v(t) < Av(t) + (14 C,r7t) [VRm|? < Av(t) + (1 + C,) |[VRm|?

Setting
C,(n)+1

u(t) = v(t) + C;|Rm|? where Cs(n) = PR

g(t)’
then
%u(t) < Au(t) + C,C5t73,
and hence by scalar maximum principle 8.1 we know

u(p,t) < C,C3t73t + supu(p,0) < (C;C; + Cy)r72
PEM

Therefore, setting C,(n) = C,(n)C;(n) + C5(n), we have
|VRm|§(t) <Ccst7%, telo,r].
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On the other hand, note that
%|H|2 = A|H|*>-2|VH|?+Rm*H « H
< A|H|> =2|VH|?> + Cst7A?,
where C5 = C5(n), and that

%lVle — A|VH|?>—2|V?H|> + Rm % VH % VH + VRm * H % VH

< A|VH|? + Cst™'|VH|? + 2C,C,*t=1t712A|VH|

< A|VH|]*+ (Cer7'+771) |VH|? + C2C 7 1A,

where C; = Cy(n), and C; = C,(n). Setting 0(t) = t|VH|§m, then

%U(t) < AD() + (14 Cer7t + 771t) [VH|? + C2C,7 A2
< AD(t) + (2+ Cy) [VH|* 4+ C2C,t7 A%
Setting

2+ Cy¢(n)

u(t) = 0(t) + Cg|H|? . where Cg(n)= 5

g
then

%ﬁ(t) < AU(t) + Cot'A?  where Cy(n) = C3(n)C,4(n) + C5(n)Cy(n),
and hence by scalar maximum principle 8.1 we know

tu(p,t) < Cot™ 1A%t + sup u(p,0) < (Cg + Cy)A%.
PEM

Therefore, setting C,,(n) = Cg3(n) + Cy(n), we have

|VH|§(0 < CAt™, telo,r1].

Then the assertion follows. OJ
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5. HAMILTON’S MAXIMUM PRINCIPLE

5.A. Setting the scene for the maximal principle — the Uhlenbeck trick. By a
standard computation, under the Ricci flow one has

0
(5.1) a1 Rkt = (AR)jjia + 2 (Bijir = Biju + Bicjt — Buji)
. p p p p
B (Ri Rpjia + R Ripa + RiRyjpy + R, szkp)
where
(52) Bijia = —Rpij Rquc®

However, we can not regard Rm(t) as a section of some fixed bundle with some fixed
metric for each ¢, which is a basic requirement for applying the maximum principle.
To avoid this, we turn to regarding Rm as a section of ®*E*, where

E=n"(TM), m:MXx][0,T)— M is the projection.
and E is equipped with the metric h induced by g(¢), 0 < ¢t < T; namely,
Xpo € Epy = X €T,M and  h(Xp0, Vi) = 8 X0 Yip0) -

Moreover, since each X € I'(E) induces X(t) € T(TM) by X(¢)(p) = X, ), We can equip
E with a natural connection®

D : T(TM)XT(E) — T(E)
(X,Y) = ViY where (VxY),,= Vf((;)Y(t)
0 9 .
—, X —X — Ric(X, e, )e,.
( at ) = at kgl (X, er)e,
where (e) is an orthonormal basis for some T, M.
Therefore, for a Ricci flow g(t), we can regard the family of Riemannian cuvature as a

section Rm € T'(Q*E*), where ®*E* is equipped with the metric and connection induced
by h and D.

Proposition 5.1. The connection D is compatible with the metric h.
Proof. By definition, clearly it suffices to show that
(D3,h) (X, Y)=0, VX,Y eT(E).
Note that
(Dsh) (X,Y) = % (h(X,Y)) —h(DsX,Y)—h(X,D;Y)

0
= %(X,Y}+g<iX,Y> +g<X,iY)

ot ot
_ QX_Zn:Ric(Xe)e Y|-— iY—Zn:Ric(Ye)e
g at “ s Yk )k g ’at Pt s Ck )%k
0
_ <%+2Ric)(X,Y)=O.

®Here M = M x [0, T) and we use the canonical isomorphism TM = TM & spang{d;}.
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We are done. O
Proposition 5.2 (Uhlenbeck’s trick). For Rm € I'(Q*E*) we have
(5.3) D, Rm = ARm + Q(Rm)
where ARm = (D*Rm)(e;, ¢;),
QRm)(X,Y,Z,W) = Rm(X,Y,e,e;)Rm(Z,W,e;,e;)
+2Rm(X,e;, Z,e, )Rm(Y,e;, W, ej)
—2Rm(X,e;, W, ej)Rm(Y, e, ”Z, ej)
and (ey) is an orthonormal basis for some T ,M.
Proof. One can refer to [2, proposition 2.14]. O

5.B. ODE-invariant set. In this subsection we will give a necessary and sufficient
condition for a set to be invariant under an ODE, which is a key part of the maximum
principle.

Theorem 5.3. Let X be a finite-dimensional inner product space, let ® : X — X be a
smooth map, and let F be a closed subset of X. Then the following statements are equivalent:

(1) The set F is invariant under the ODE’

d
(5.4) Ex(t) = O(x(1)).
(2) It holds that®
(5.5) (®(y),y—2z)20 VzeX, VyeProj.(2).

Remark 5.4. It easy tosee (1) = (2).

To see (2) = (1), the key point is to show that if there exists a solution x(t) that
destroys the ODE-invariance of F, then there exist two bounded sequence (x; ),y and
(Vi)ken such that

|D(xy) — Pl > klx, — yil,

which destroys the Lipschitz continuity of ®.

The idea is as follows. It is the Lipschitz continuity of ® that ensures the local-in-time
existence of x(t), so instead of analyzing the invariant property of solution x(¢) via ODE
(5.4), which is hard, we turn to showing that a solution without the invariant property
doesn’t exist, or equivalently, showing that such a solution will destroy the key point of
local-in-time existence, the Lipschitz continuity of ®.

Proof. (1) = (2): Fixy and z with y € Proj,.(z). Let x(¢), 0 <t < T, solves ODE (5.4)
with x(0) = y. By hypothesis, x(t) € F, for all 0 < t < T. Therefore,

x(0) =y eProj.(z) = Ix(t)—z|>|x(0)—2z], YO<t<T

= % t=o|x(t) —z’20 = (x'(0),x(0) —z) >0

"That is, whenever x(t), 0 < t < T, solves ODE (5.4) with x(0) € F, we have x(t) € F forall0 < t < T.
8ProjF(z) ={y €F : d(z,F) = |y — z|}. Since F is closed, this set is never empty.



Zhiyao Xiong 17

(2) = (1): Suppose that x(t), 0 < t < T, solves ODE (5.4) with x(0) = y and
x(t) & F for some 7 € (0,T).
Claim 5.5. If x; = x(t) & F and y, € Proj.(x,), and if
e M |x(t) = yi| = e | x(ty) —yil, <t <,
then
|@(x;) — Pl = k|x, — il

Proof of Claim 5.5. By hypothesis we know

e x(t) = yiel* 2 e |x(ty) = yil* e St<t
d

dt =ty
= (D(x;) — @), Xk — Vi) 2 kX — > = [@(x) — ()| = klxi — el

— e K x(t) — ye|> 2 0 = (x'(£), x(t) — i) = k|xp — yi|?

We are done. U

Now we define ¢, by
te = supit € [0,7] : d(x(t),F) < ek=¥}.
Set x, = x(f;) and choose y, € Proj.(x;). Then for k sufficiently large, we have t, €
(0,7), d(x(t),F) = ek ¥ > 0, and
ek(tk—t)lx(t) _ykl Z ek(tk—t)d(x(t), F) Z ektk—ktekt—kZ — |x(tk) _ ykl, tk S t S T
By claim 5.5 we know
|D(x;) — (i)l = klxy, — yiel-

Moreover, by the choice of (x;) and (y,), we know they are bounded.” This contradicts
the Lipschitz continuity of ®. OJ

5.C. Hamilton’s maximum principle. Hamilton’s maximum principle is in analogue
with the PDE-ODE principle. We have analyzed the ODE-invariance, and now we show
the PDE-invariance.

First we clarify the associated ODE.

Definition 5.6. LetV be a finite-dimensional vector space equipped with an inner product.
We denote by Cyz(V') the space of algebraic curvature tensors on V, ie. the space of
multilinear formsR : V XV XV XV — R such that

R(X,Y,Z,W)=—-R(Y,X,Z,W)=R(Z,W,X,Y) VX,Y,Z,WeV
and

R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W)=0 VX,Y,Z,WEV.

%Since x is continuous, x([0, 7]) is compact and hence bounded. By the definition of ¢, and y, we know
(¥x) is bounded.
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Proposition 5.7. If A € Cyx(V), then Q(A) € Cx(V), where
QAYX,Y,Z, W) =AX,Y,e, ej)A(Z, W,e;, ej)
+2A(X, e, Z,e;)A(Y,e;, W, e;)
—2A(X,e;,W,e)A(Y, e, Z,¢;)
and (ey) is an orthonormal basis for some T ,M.

Proof. Trivial. One can refer to [2, proposition 5.7]. O

Definition 5.8 (Hamilton’s ODE). We call the ODE

(56) LA® =) o )
the Hamilton’s ODE.

Then we derive an appropriate ODE-invariant subset F C C5z(E) C ®*E*, and prove
Hamilton’s maximum principle via F, .

Lemma 5.9. Suppose that F C Cz(R") is O(n)-invariant and invariant under the

Hamilton ODE. For each (p, t), we find a linear isometry from R" to E,, ;, which induces

a linear isometry form Cy(R") to Cx(E(, ). Let F, ) be the image of F under this linear
isometry. Then

(1) F, is well-defined; i.e. F,, is independent of the choice of the linear isometry from
R” to E(p,t);
(2) F(p is invariant under the Hamilton ODE.

Proof. (1): Since R" is equipped with the canonical inner product, for any linear
isometries ¢,, ¢, from C5(R") to Cz(E(, ), the linear isometry

2_1°¢1 . Cp(R™) — Cp(R™)

is an action induced by some g € O(n). Then by the O(n)-invariance, we know F, ;) is
well-defined.

(2): Let ¢ be a linear isometry from R" to E, ,), let (¢;) be the canonical orthonormal
basis of R", and let ; = ¢(e;). Note that

% (A(S)(é\l’ é\j’ é\k’ é\l)) = Q (A(S)(é\w é\j’ é\k’ é\l)) where A(S) € C)B(E(p,t))
is equivalent to
% ((@*A)(s)eisej e, ) = Q ((¢*A)(s)(es ej,e,€)))  Where  ¢*A(s) € Cp(R™),
which implies that

<LAG) = QUAR) 0n CalEgy,) = S(#AXS) = QUPAXS)) on Cy(R")

Therefore, if A(s) solves ODE (5.4) on Cy(E, ), then (¢*A)(s) solves ODE (5.4) on
Cp(R™), and hence (¢*A)(s) € F for each s, which implies A(s) € ¢(F) for each s, where
we regard the linear isometry from C5(R") to C5(E, ) still by ¢. We are done. 0

Theorem 5.10 (Hamilton). Assume that F C Cz(R") is closed, convex, O(n)-invariant,
and invariant under the Hamilton ODE. Suppose that g(t), t € [0, T) solves the Ricci flow
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on some closed manifold M". Then,

(57) R(X,O) S F(x,O) VxeM = R(x,t) (S F(x,t) VxeM Vte [O,T)

Remark 5.11. In analogue with theorem 5.3, the idea is to show that any Rm that
violates (5.7) will destroy the Lipschitz continuity of Q.

Proof. We define
u(t) = Supd (R(p,[)a F(p’t)) ) O S t < T.
PEM

Then u(0) = 0. Suppose for contradiction that u(z) > 0 for some 7 € (0, T).
Claim 5.12. Ika = R(Pk’[k) ¢ F(Pk’tk) and Sk (S PrOjF(pk,tk)(R(pk’tk))’ and lf
(5.8) (=Q(RW), Sk — Ri) > kS — R |2,
then

|Q(Sk) — Q(R)| = kIS — Ryl

Proof of claim 5.12. By lemma 5.9, we know F, ., is invariant under Hamilton’s ODE.
Then by theorem 5.3, we know

(Q(Sk), Sk — Ry) = 0.
By hypothesis, we have
(Q(S) = QR S — Ri) = kIS — Ri|?,
and then the conclusion follows by Cauchy inequality. 0
Now we define ¢, by *°
te = inf{t € [0,T) : u(t) > ek~*}

for k sufficiently large. It is easy to see t, € (0,7) and u(t,) = ek«~*" > 0. Since M is
compact, we can choose p, € M such that

u(tk) =d (R(Pk,tk)’F(Pka)) :
Therefore,
(5.9) Dd (R, Fpp) < Du(r) < ektkiet= = y(1), 0<t<t, peM.

Set Ry = R(,, 1) and choose Sy € Proj F(pkm(R(pk,[k)). Then by the subsequent proposition
5.13, we know

(D3 R)(py 1) Sk = Ri) < —KIS = Ri|2,
<(D12),UR)(pk,tk)s Sk - Rk> Z 0.
By Uhlenbeck’s trick 5.2, we then get (5.8), and hence by claim 5.12 we know
|Q(SK) — QR = K|Sk — Ry |-

Moreover, by the choice of (R,) and (S;), we know they are bounded. This contradicts
the Lipschitz continuity of ®. O

10We need to re-define t, since the red inequality in (5.9) reverses the direction of inequality.
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Proposition 5.13. Assume that F C Cy(R") is closed, convex, and O(n)-invariant.
Moreover, let M be a compact manifold of dimension n, and let g(t), 0 < t < T, sloves
the Ricci flow on M. Suppse that (p,, t,) is a point in M X (0, T') with the property that

e70d (Rip, Fip) < d (Ripyis Fpyip)» 0< 1<t pEM.
Then for any S € Proj P )(R(pO 1)) we have
posto ’

(1) <(D5tR)(P0J0)’ S - R(Po,to)> < —,ulS - R(po,to)lz;
(2) <(D5,UR)(p0,t0)a S - R(Po:to)> > Ofor allv e TPOM'

Remark 5.14. Since we re-define ¢, and reverse the deriction of inequality, these two
similar conclusions need convexity essentially.

Proof. (1): Foralls € [0,t,),1et P(s) : Cz(E(p, 1)) = Cp(E(p,,—s) be the parallel transport
with respect to D, and set H(s) = P(s)‘lR(pO’tO_s) € Cp(E(p, 1)) Then
H(0) = R,y and  H'(0) = —(DgR)py -

Moreover, since F is O(n)-invariant, by proposition 5.1, we have P(s)F(,, ;) = F(p, -5
for all s € [0, t,), and hence"'

eSd(H(s), F(py 1) = € dRpy 10-51 Fpoio—s) < 4 Ryt Fipory) = 1S —H(O)|, 0 <5 <t
By lemma 8.5, we have
0 < d(H(s), Fp,i))IS —H(O)| + (H(s) = S,S — H(0)), 0<s<t,.
Therefore,
0<e™|S—H()]*+(H(s)—S,S—H(0)), 0<s<t,.

Then the assertion follows by taking right derivative at 0.
(2): Forall s € R, set y(s) = exppo(sv), let P(s) @ Cp(Ep,s) = Cp(Eqs)y,)) be the
parallel transport along y, and set H(s) = P(5)"'R(s)1,) € Cg(E(p,1,))- Then

H(0) =R, ) and H"(0) = (Dg,UR)

DPoslto*
Moreover, since F is O(n)-invariant, by proposition 5.1, we have P(s)F(,, .y = Fys),) for
all s € R, and hence

A(H(8), Fpy.) = & (Rips1t0 Fr1a00) < & (Rt Fippa) = IS —HO)l, s € R.
By lemma 8.5, we have
0 < d(H(s), Fp,i))IS —H()| + (H(s) = S,S — H(0)), se€R.
Therefore,
0<|S—HO)*+(H(s)—S,S—H(0)), seR
with equality for s = 0. Since 0 is a global minimum, we know

H'(0),S ~ HO) = S| (1S = HOP + (H() = 5,5 ~ HO) 2 0.

Then the assertion follows. O

Ugince we reverse the deriction of inequality, we can not derive e*¥|S — H(s)| < |S — H(0)|.
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6. HAMILTON’S CONVERGENCE CRITERION

In this subsection, we describe a general method for proving convergence results for
the Ricci flow.

As we said in the introduction, we now add the initial pinching condition, and use the
scalar maximum principle 8.1 to get a pricise pinching result.

6.A. Pinching set, the hypothesis in the remainder of this section. Firstwe clarify
the initial pinching condition.
Definition 6.1. Suppose that R € Cz(R") and § € (0,1). We say that R is strictly [resp.

weakly] 6-pinched if 0 < 6K(m,) < K(m,) [resp. 0 < 6K(m,) < K(m,)] for all two-
dimensional planes 7,, , C R".

Definition 6.2. A set F C C5z(R") is called a pinching set if

(1) F is closed, convex, O(n)-invariant, and invariant under the Hamilton ODE;

(2) foreach § € (0,1), theset{R € F : R is not weakly §-pinched} is bounded in the sense
of sectional curvatures.

Example 6.3. To be continued.

In the remainder of this section, let M be a closed manifold of dimension n > 3, let g,
be a metric on M with positive scalar curvature, let g(t),0 < t < T be the unique maximal
solution to the Ricci flow with initial metric g,, and let F C Cz(R") be a pinching set such
that R, o) € F(, ) for all p € M. For abbreviation, we define

Kma.x(t) = sup Kmax(p’ t) and Kmin(t) = lllf Kmin(pi t)-
pPEM PEM

6.B. Pinching of sectional curvatures.

Proposition 6.4 (Pointwise pinching). Given any § € (0,1), we can find a positive
constant C = C(9) such that

(6.1) K.in(p,t) > 6K, ..(p,t)—C, VpeM, Vtelo,T).
Moreover, we have

lim sup K, (t) = 0.
t->T
Proof. By Hamilton’s maximum principle 5.10, we have R, ) € F(,, for all p € M and
allt € [0,T). Since F is a pinching set, the first assertion follows.
Suppose limsup, . Ky () < 00. Then sup, 1) Kmax(t) < 00. Since Ky (t) > (e
by (6.1) we know inf,cjor) Kmax(t) > —oo0, and hence sup,,, [Rmg)| < c0;" a
contradiction. Thus we get the second assertion. OJ

Theorem 6.5 (Global pinching). We have
Kmin(t )
Kmax(t)

12Using the scalar maximum principle, one can easily show that the minimum of the scalar curvature is

(t) > inf ), scal(t) > 0.
n(n—1)

-1 as t—-T.

increasing in time, and hence K,
13gee [10, problem 3.9].
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The above theorem can be easily reduced to the following lemma, which can be proved
via the scalar maximum principle and the result of global geometry. (From the result of

pointwise pinching, it is natural to attempt to show the global pinching via the tools of
global geometry.)"*

Lemma 6.6. Let t, be a sequence of times such that

1
limt, =T and K., (t) > 5 sup Ko (t)  Vk.

k—co tefo,t]

Then

K . (t
lim inf M > 1.
k— oo Kmax(tk)

Proof. Fix some € > 0. Note that

proposition 6.4 = sup |Ric§(t)| < eKp(t)+Ci(e) t€][0,T) (corollary8.9)
M
= Sl]\]/}p |RiC§(t)| < 2€Kmax(tk) + Cl(s) re [O’ tk]
= sup |DRicy,)1* < Co(MK pnax (62K ax(ti) + C1(€))*  (theorem 4.10) (lemma 8.7)
M
Ed Sl]\';p |dscalg(tk)|2 < C3(n)Kmax(tk)(2‘€Kmax(tk) + Cl(g))z (*)

where C,(¢), C,(n), C;(n) are positive constants. For each k, choose p, € M with
Ko ox(Pi» ti) = Kok (£¢) » and set

Q =B, (p) where 1, =27Ky, (t;)7"/2
Then

x) = ing scaly,)(x) > scalyq,)(pi) — 21C3(n)"/*(2eK o (ti) + C1(€))
xel),

2
= inf Kmax(x, tk) 2> Kmin(pk’ tk) - & C3(n)1/2(2€Kmax(tk) + Cl(s))
XEQy n(n - 1)

By proposition 6.4 again, there exists a positive constant C,(¢) > 0 with
Kmin(p’ tk) > (1 - E)I<max(p’ tk) - C4(E) Vp eM.

It follows from the above facts that

ing Kmin(x’ tk) > (1 - E)21<max(tk) - (2 - E)C4(E)
xell,

2 )1 - ) 2K (t) + C1(6)).
nn—1)

Note that

lim K, () > = sup K..(f) = oo,

k— oo tef0,T)
and hence

inf, .o Kpin(X,t;)
lim inf — <% s a—er— -2 - ek
k—co Kmax(tk) n(n—1)

1411 other words, lemma 6.6 is proposed by trying to use the maximum principle and global geometry.
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By the arbitrariness of € we know

. . inferk Kmin(xa tk)
lim inf
k—co Kmax(tk)
We claim that Q, = M for k sufficiently large; otherwise, for k sufficiently large choosing
X € M with dg, \(pg, Xi) = i, then by the diameter theorem 8.6 we have

? ™ 1
inf K ;,(x,t;,) < ———— <= = =Kt for k sufficiently large,
xe, m1n( k) = diam(Qk)2 = l’i 4 ma ( k) y g
a contradiction. Hence we get the conclusion. O

Proof of theorem 6.5. Suppose for contraction that there exists a sequence (7;) such that

Kin(T
limz7, =T and liminf Emin(i) <1
k—oo k—oo KmaX(Tk)

For each k, there exists t, € [0, 7] such that K, (t;,) = supte[o,fk]KmaX(t). Then by
lim,_ ; K, (t) = o0, we know lim, _, , K., (¢;) = oo and lim;_, , t, = T. Then by lemma
6.6, we obtain
K, (¢
liminf M > 1.
k—co Kmax(tk)

Using the scalar maximum principle, it is easy to show that the minimum of the scalar
curvature is increasing in time. Then

inf scaly, \(x) > inf scaly, \(x) = inf K, (x,7) > inf K, (X, £)
xXEM xXEM xXeEM XEM

1 1 .
= K ax(Tr) = Kpin(t) > EKmaX(tk) = = sup K, (t) fork sufficiently large
tE[O,‘[k]
K. (T
= liminf Koin(7i) >1 (lemma 6.6).
k—co Kmax(Tk)
This yields a contraction. [l

Corollary 6.7. We have

n
(T —t)supscalyy » = as t—T,
M 2

and

. n
(T —-1) 1An4f scaly) — 5 as t—>T.

Proof. Assume ¢ > 0. Then
theorem 6.5 = |Ric’|?> < %scal2 on MX[T—-n,T) (corollary8.10)

2(1+¢)

0 .
—> —scal = Ascal + 2|Ric|? < Ascal + scal>’ on M x [T —n,T).

ot
By theorem 6.5 we know lim sup, ;. scaly;y = co. Then it follows from scalar maximum
principle 8.1 that

(T — t)supscaly) > te|T —n,T).
M

_n
2(1+¢)
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By the arbitrariness of €, we know

li f(T —t Ly >
im: 1Tn ( )sup scalgy >

NlS

and hence by theorem 6.5 we know

n
li f(T — t)inf scal,, > =
1rtrL1Tn ( )1n scalyy) 2 5
On the other hand,
2
%scal = Ascal + 2|Ric|* > AR + ERZ

= (T -1) inf scalgy < % t €[0,T) (scalar maximum principle 8.1)

= limsup(T —t) 1nf scaly <

t—-T 2
= limsup(T —t) sup scalyy < g (theorem 6.5).
t—>T
We are done. O

6.C. Bounds on w(t). Now, based on the global pinching result 6.5 and via applying the
scalar maximum principle, we get the following bounds.

Lemma 6.8. Fixa € (0, %). There exists a positive constant C with
n—
sup |Ricy)|? < C(T — 1)~ VvVt e[0,T),
M

and for each m € Z, there exists a positive constant C,, with

sup |V"Ricyy|? < C,o(T — 1)Vt € [0,T).
M
Moreover, there exists a positive constant C with

2
1 ~
Ricyqy — —=——=g()| < C(T —t)**=*> Vvt e[0,T),
SEP 1Cq(1) 2(T—t)g() < C( ) [0,T)

and for each m € Z.,, there exists a positive constant C,, with

sup |V"Ricy|? < (T — )2 ™2 ¥t € [0,T).
M

Remark 6.9. For g(¢) = mg(t} we have
1

w(t) = 9g-_ L Ric
B)=3& (n— 1)(T—t)< 80— 2(T 1)
6.D. Hamilton’s convergence criterion.

———2(0).

Theorem 6.10 (Hamilton). let M be a closed manifold of dimension n > 3, let g, be a
metric on M with positive scalar curvature, let g(t), 0 < t < T be the unique maximal
solution to the Ricci flow with initial metric g,, and let F C Cz(R") be a pinching set such

that Rip0) € Fipo) forall p € M. Then, ast — T, the metrics g(t) := ———g(t)

converges uniformly in every C* norm to a smooth metric g(T) with constant sectional
curvature 1.
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Proof. Setw(t) = %gﬁ. By lemma 6.8 and theorem 8.4 we know g(t) converges uniformly

in every C* norm to a smooth metric g(T). By theorem 6.5, we know g(T') has constant
sectional curvature. By corollary 6.7, the scalar curvature of g(T) is euqal to n(n — 1).
This completes the proof. 0J
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7. ODE-INVARIANT CONES, PINCHING CRITERIONS AND THE SPHERE THEOREM

7.A. Introduction and conventions. In this section, we aim to establish the 1/4-
pinched differentiable sphere theorem.

Theorem 7.1 (S. Brendle, R. Schoen). Let M be a closed manifold of dimension n > 4,
and let g, be a Riemannian metric on M. Assume that (M, g,) is strictly 1/4-pinched in the
pointwise sense. Let g(t), t € [0,T), be the unique maximal solution to the Ricci flow with

initial metric g,. Then, ast — T, the metrics m g(t) converges in C* to a metric with
n—1)(T—
constant curvature 1.

Our tool is Hamilton’s convergence theorem 6.10. So our aim is to find the appropriate
pinching set. The framework is as follows:

(1) We first give several ODE-invariant cones.
(2) We then give a method to derive pinching sets based on the given cones.
(3) Finally we show g, lies in a pinching set.

Conventions through this section:

(1) “ODE-invariance” means the invariance under Hamilton ODE unless we make a
clarification.
(2) Given R € Cx(B) and some frame (e;) of V, we write

ISO(R);jii = Rikik + Ruit + Rjkjic + Rjjji — 2Ryju

Jjljl
and
ISO/-’-:/"(R)ijkl = Rikik + /‘lzRilil + lqujkjk + /‘LZIL{ZR

j1 — 2AUR; ji-

(3) Let X be an inner product space, and let F be a closed and convex subset of X. For
each y € F we define

NF={z€eX :(x—y,z)>20 Vx€F}
and
T,F={x€X:(x,zy>0 Vz€&NF}.

Remark 7.2. (1) If y lies in the interior of F then N ,F = {0} and T, F = X.
(2) The property that

(®(y),y—2z)20 VzeX VyeProj.(z)
is equivalent to that ®(y) € T, F for all points y € dF (ory € F).

7.B. The cone C. In thissubsection we aim to give a special ODE-invariant cone C based
on lemma 8.11.

Theorem 7.3. The cone
C ={R € Cxz(R") : R has non-negative isotropic curvature}
is closed, convex, O(n)-invariant, and ODE-invariant."

15An algebraic curvature tensor R € Cg(V) is said to have non-negative isotropic curvature if

Iso(R)1234 > 0 for all orthonormal four-frames {e;, e, e3,e,} C V.
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‘We will use the vital lemma 8.11, for which one can refer to subsection 8.F.

Proof. By definition it is clear that C is closed, convex and O(n)-invariant. In the next we
show the ODE-invariance.

The idea is to consider the perturbations and then apply lemma 8.11. Let R(¢), t €
[0, T), be a solution to Hamilton ODE with R(0) € C.

(1) The perturbations is given as follows.
Fix e > 0, and let R.(¢), t € [0, T,), be the maximal solution to

(7.1) %Rg(t)zQ(RE(t))+£I and R.(0) = R(0) + eI

where I;;; = 6,6, — 6,0 is the curvature tensor of the standard sphere.
(2) Claim: R_(t) has positive isotropic curvature tensor for t € [0, T,).
Suppose for contradiction that the claim is false. Setting

7 =inf{t € [0,T,) : R.(t) does not have positive isotropic curvature},
then t € (0, T,). Moreover, there exists an orthonormal four-frame {e,, e,, e5, e,} with
Is0(R.(T))1234 = O,
and hence by lemma 8.11 we know
150 (Q(R(7))), 54 2 0.
Howover, note that
Iso(R.(t))1234 > 0 Vt €(0,7),
and then by the ODE (7.1) we know
Is0 (Q(R (7)) + €I),,,, = Is0 (Q(R.(T))),,;, + 4€ < 0.

Contradiction.

(3) We obtain R(t) € C finally.
The conclusion follows from the standard ODE theory. (One should note that T <
liminf,_, T, and R(t) = lim,_, R.(¢).)

We are done. O

7.C. The cone €. Since € is far away from having non-negative sectional curvature, we
need to modify it.

Definition 7.4. (1) Let V be a vector space of dimension n > 4 equipped with an inner
product. Given any R € Cz(V), we define R € C»z(V x R?) by

1/3\(6\1’ 6\2’ l/)\?n l-/)\4) = R(Ul’ U;, U3, U4)
for all vectors 0; = (/l\)j,yj) €V xR~
(2) The modified cone C is then given by

€' = {R € C3(R") : R has non-negative isotropic curvature} .

Theorem 7.5. The cone Cis closed, convex, O(n)-invariant, and ODE-invariant. Moreover,

(1) IfR € C, then R has non-negative sectional curvature.
(2) If R has non-negative curvature operator, then R has non-negative isotropic curvature.
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Proof Let R(t), t € [0,T), be a solution to Hamilton ODE with R(0) € @. Then the
induced curvature tensors R(¢) € Cz(R" x R?) satify %ﬁ(t) = Q(R(t)), the Hamilton

ODE on C5z(R" x R?). Then we know €is ODE-invariant by theorem 7.3.
(1): Let R € @, and let {e,,e,} be an orthonormal two-frame in R". We define an
orthonormal four-frame {¢,, ¢,, &;,2,} in R" X R? by

e; =(e,0,0), e =(0,0,1), e;=(e,,0,0), e;=1(0,1,0).
Since R has non-negative isotropic curvature, we have
Ry = ISO(@m 2 0.

(2): Let R be a non-negative algebraic curvature operator on V. Given an orthonormal
four-frame {;,¢,,2;,¢,} in V x R?, write e; = (v;,y;), and define

p=0,AV;—U, AU, and Y =v; AU, + VU, AU;.
It follows that
Iso(R)am = R($, ¢) + R($, ) 2 0.
Thus we conclude that R € €. 0
More precisely, we have the following result.

Proposition 7.6. Let R € Cxz(V). TFAE:

(1) R has non-negative isotropic curvature.
2) ISO,W(R_)1234 > 0, VA, u € [0, 1] and for all orthonormal four-frames {e,, e,, e5,e,} C V.

(3) R(¢,1,¢,m) > 0forallé,n € VE.

Proof. (1) = (2): Suppose Rhas non-negative isotropic curvature. Given 4, u € [0, 1]
and an orthonormal four-frame {e,, e,, e5, e,}, define

e, = (e1,(0,0)), e, = (ue,, (0,0)),
6= (e (0T=R). &= (s (VI=T20)).
and then {¢}, e, €, ¢,} forms an orthonormal frame. By direct computation we get
Iso(@m >0 = 150, ,(R)1p34 = 0.

(2) = (3): Suppose (2) holds. Given ¢, € V', set o = span_{{, n}. By proposition
8.12 we find an orthonormal four-frame {e,, e,, e5,e,} C V and 4, u € [0, 1] such that

z=:e +iue, €0 and w =:e;+ile, €.
Then o = span_{z, w} and hence
R(Q’,n,?, 1) = cR(z,w,z,w) forsomec > 0.
By the first Bianchi identity we know
R(z,w,z,w) = Is0; ,(R);34.

Then R({,n,{,n) =c- ISOA,u(R)uM > 0.
(3) = (1): Suppose (3) holds. Given an orthonormal four-frame {¢,, &,, €3, ,} in
V X R?, write &; = (v;,y;), and define { = v, + iv, and { = v; + iv,. It follows from the
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first Bianchi identity that

0 <R(¢,7, Ea 1) = Is0(R)12345
and hence Iso(ﬁ)m = ISO(R);534 = 0. O

Based on this proposition we can also give a new proof of theorem 7.5.

Another proof of theorem 7.5 (1)(2). Property (1) follows from proposition 7.6 directly.
Given an orthonormal four-frame {e,, e,, e;,e,} C V and 4, u € [0, 1], define
p=e ANes—Aue, Ae, and P = Ade; Ae, + ue, Aes,
and then
R(¢,9) + R, 9) 20 = 180, ,(R)1234 2 0.
Hence we get property (2) by proposition 7.6. OJ

The following result is an important application of proposition 7.6, which explains
why we focus on the cone € when we consider the differentiable sphere theorem.

Theorem 7.7. Let (M, g) be a Riemannian manifold of dimension n > 4. Then:

(1) If (M, g) is weakly 1/4-pinched in the pointwise sense, then the curvature tensor of
(M, g) lies in the cone C for all points p € M.

(2) If (M, g) is strictly 1 /4-pinched in the pointwise sense, then the curvature tensor of (M, g)
lies in the interior of the cone € for all points p € M.

Proof. (1): Given any orthonormal four-frame {e;, e,, e;, e,} C T,,M, corollary 8.8 yields

2
R1234 < E(Kmax(p) - Kmin(p)) < 2Kmin(p)-
Then for all 4, u € [0, 1] we have
ISOA,u(R)1234 > (1+ 2%+ @2 + 2 — 44K i (p) 2 0.

Therefore we get the first assertion by proposition 7.6.
(2): The second assertion follows similarly. O

7.D. The cone C(s). We first introduce a technique discovered by C. Bohm and B.
Wilking [1], which inspires the idea of finding a pinching set.

Definition 7.8. (1) If A, B are two symmetric bilinear form on R", then their Kulkarni-
Nomizu product A ® B € Cx(R") is given by
(A ® B);ju = AyBj — AyBjx — A;By + Aj By
(2) Fora,b > 0, wedefine a linear map ¢, : Cz(R") —» Cx(R") by

£.5(R) = R + bRic” ®id + %seal Lid o id.

Proposition 7.9. For each s > 0, we define a cone C(s) Cp(R™) by

C(s) = {la(s)’b(s)(R) :ReC and Ric> @seal . id}
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where
_ 2
=2, L) gos<1p
(2a(s), 2b(s), 5(s)) = { \ 1 + (n —2)s? 1+ (n—2)s?
(28’ L= %m) 5>1/2.

Then C(0) = €, and the cones C(s), s > 0, have the following properties:
(1) Foreach R € 3C(s) \ {0}, Q(R) lies in the interior of TxC(s)."°
(2) I lies in the interior of@(s).

(3) IfR € é(s)for some s > 1/2, then R is weakly 21

-pinched.

25+n—1

Proof. One can refer to [2]. O

Corollary 7.10. Let F be a closed, convex, O(n)-invariant and ODE-invariant set. Set
7F={s>o :3h>0 st YREF R+h1e6(s)}.

(1) We have s € I, for each s > 0.
(2) If I # @ and sup I = o, then F is a pinching set.

7.E. Some criterions of finding pinching sets.

Proposition 7.11. Let K be a compact subset of Cz(R"), and let F be the smallest set
containing K which is closed, convex, O(n)-invariant and ODE-invariant. If 7. # (, then
F is a pinching set.

By corollary 7.10, it suffices to show sup 7 = o0. Then the proposition can be easily
reduced to the following lemma.

Lemma 7.12. Fix a compact interval [a, 5] C (0,0). Then there exists a real number
¢ = g(a, B, n) > 0 with the following property.
For any closed and ODE-invariant subset F C Cyz(R") satifying

R+hleC(s) VREF forsome s € [a, ] and some h > 0,

the corresponding set
ﬁ:{ReF : R+2hIe@(s+€)}

is also ODE-invariant, and satifies
(7.2) {ReF :scalR) <h}cF.
Proof. 1t is easy to find ¢ such that (7.2) holds. To ensure that F is ODE-invariant, the
idea is to apply lemma 8.13.
(1) Find N = N(a, 8, n) such that for any R € C(s) with scal(R) > N and s € [a, 8 + 1],

we have Q(R — 2I) lies in the interior of the tangent cone TRé\(S).”

16This implies that C(s) is ODE-invariant.

Tfweset A = {R € C(s) : scal(R) = 1}, then d(A,3C(s)) > 0 by compactness (using the pinching
property of C(s) to show the compactness of A). By continuity, % - % e C(s) \ {0} for sufficiently large N,
and then the existence of N follows from proposition 7.9 (1).
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(2) Since é(s) vary continuously in s, we can find € = ¢(«, 8, n) € (0, 1] such that

{R € Cx(R") : R+1 € C(s), scal(R) < N}
(7.3) .
c {R € Cx(R™) : R+2I € C(s + s)}

forall s € [a, 5]

We claim that ¢ is as desired. By scaling it suffices to consider h = 1. Clearly (7.3) ensures
(7.2). It remains to show the ODE-invariance.

Let R(t), t € [0, T), solves Hamilton’s ODE with R(0) € F. It suffices to show R(¢) +
2I € C(s + €). Suppose not; we then define

ty = inf{t €[0,T) : R(t) +2I & C(s + s)}.

Clearly R(t,) + 2I € C(s +e).

(1) Suppose scal(R(t,)) > N. By the definition of N, Q(R(¢,)) lies in the interior of
Trey) ;C(s +€). Thenlemma 8.13 clearly yields a contradiction.

(2) Suppose scal(R(t,)) < N. Then by continuity find ¢, € (t,, T) with scal(R(¢t)) < N for
all t € [t,,t,]. By formula (7.2) we conclude R(¢t) + 2I € C(s+¢)forallt € (£, 1],
which contradicts the definition of ¢,,.

We are done. O
Now we can easily prove proposition 7.11.

Proof of proposition 7.11. Choose s; € Jp withlim;_, ,, 5; = sup Jp. For each j there exists
a real number h; > 0 such that

R+hI€C(s) VREF.
By proposition 7.9 (2) we can increase h;. So WLOG we assume that
h; > sup{scal(R) : R € K}.

Clearly, sup Jr = oo0; otherwise lemma 7.12 gives a contradiction. Then the conclusion
follows from corollary 7.10. O

Furthermore, we have the following result.

Theorem 7.13. Suppose that K is a compact set which is contained in the interior of e
Then there exists a pinching set F such that K C F.

Proof. Let F be the smallest pinching set containing K which is closed, convex, O(n)-
invariant and ODE-invariant. Since C(t) vary continuously and C(0) = C, there exists
s, > 0 such that K c C(s,). By proposition 7.9 (1), we know C(s,) is closed, convex,
O(n)-invariant and ODE-invariant, and hence F C é\(so). By corollary 7.10 (1) we know
s, € Jz."® Then by proposition 7.11 we know F is a pinching set. O

7.F. The sphere theorem. Now the differentiable sphere theorem follows from the
preceding results.

Bfs € Jgand F c G, then s € .
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Theorem 7.14. Let M be a closed manifold of dimension n > 4, and let g, be a Riemannian
metric on M. Assume that (M, g,) is strictly 1/4-pinched in the pointwise sense. Let g(t),
t € [0, T), be the unique maximal solution to the Ricci flow with initial metric g,. Then, as

t — T, the metrics mg(t) converges in C* to a metric with constant curvature 1.
n—1)(T—

Proof. 1t follows from theorem 7.7, theorem 7.13, and theorem 6.10. ]
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8. APPENDIX

8.A. Maximum principles.

Theorem 8.1 (The scalar maximum principle). Let g(t) be a smooth family of metrics on
a closed manifold M. Suppose thatu : M X [0,T) — R satisfies

ou
E < Ag(t)u + <X(t), Vu)
u(x,0) < C VxeM,

a0 T F(u)

for some constant C, where X(t) is a smooth family of vector fields and F : R — R islocally
Lipschitz. Suppose that ¢ : R — R is the solution to the associated ODE

d¢ B
s F(¢) and ¢(0)=C.

Then
u(x, 1) < ¢(t)
forallx € M and t € [0,T) such that ¢(t) exists.

Proof. Setting v = u — ¢, then

dv
ot
Fixing 7 € (0, T), there exist C; = C,(r) and C = C(r) such that

< Av +(X,Vv)+ (F(u) — F(¢)).

Sup |u(x9t)| S Cl’ Sup |¢(t)| S Cl’
Mx[0,7] [0,7]

|F(x) —F()| <Clx—y| Vx,y €[-C,,Cil.
Then
(8.1) g—I;SAv+(X,Vv)+C|v| Vt € [0,7] and v(0) <O.
For any € > 0, we set
w, =e “v—¢e(l+1).
Clearly it suffices to prove that
w, <0 on MXx]J[0,t] Ve>O0.

Suppose for contradiction that {w, = 0} # #." Note that {w, = 0} is a closed subset
of M X [0,7], and hence is a compact set (since M is compact). Since the continuous
projection 77, : M X [0,7] — [0, 7] maps the compact set {w, = 0} to a compact set, we
can find (x,, t,) such that*

w,(xp,t,) =0, w,(x,t)=0Vt<ty,, and w.x,t,) <O0.

Clearly t, > 0; therefore,

ow
a—tg(xo, [) 20, Vw.(xyt) =0, and Aw.(xy,£)<0.

PNote that we(x,0) < —¢.
204, is the first time that w; hits 0.



34 Ricci flow and the sphere theorem

Then one can easily derive a contradiction at point (x,, t,) by (8.1). We are done. O

Theorem 8.2 (Tensor maximum principle). We assume that

(1) = . E - M is a vector bundle with a fixed bundle metric h;

2) g(t) is a smooth family of connections on E compatible with h;

(3) g(t) is a smooth family of metrics on M;

(4) X is a subset of E that is closed and convex in each fiber, and X is invariant under
parallel translation;

(5) F : EX|[0,T) — E is a continuous map that is fiber preserving, and F is Lipschitz in
each fiber.

Let a(t) be a time-dependent section of E that satisfies™

(8.2) %oc =Aa+F(a), a(0)eT(M,X).

If every solution to the ODE

(8.3) % = F(a), a(0) € X,

remains in X, where X, = E, N X, then the solution a(t) to the PDE remains in T(M, X).
Proof. See |3, theorem 4.8]. O

8.B. Convergence of metrics.

Theorem 8.3. Let g(t) be a smooth family of metrics on a closed manifold M, defined for
t € [0,T). If there exists a constant C < oo such that

T
(8.4) / 2
0

dt<C VxeM,
g(®)

then the metrics g(t) converges uniformly ast — T to a continuous metric g(T) such that

(8.5) e “g(x,0) < g(x,T) < e“g(x,0).

ag(-xa t)

Note that this means g(T) is uniformly equivalent to g(0).
Proof. Clearly (8.4) implies

(8.6) e Cg(x,0) < g(x,t) < eCg(x,0) Vte[0,T).
We set
"3
g(x,T) = g(x,0) + f 5,80, .
0

With respect to the norm induced by the fixed metric g(0), using (8.6) one can easily
show that g(t) converges to g(T) uniformly on M, and hence g(T') is continuous. Then
by taking the limit of (8.6) we get (8.5). O

Theorem 8.4. Let g(t),0 <t < T, be a smooth family of metrics on a closed manifold M,
and let V(t) be the Levi-Civita connection of g(t). Set

0
w(0) = 580 and w, (1) = sup V"0l

2lwe define ﬁx(w ®s)=(Vxu)®s+w® €Xs, and &,b = trg§€¢.
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If
T
(8.7) f u,(t)ydt<oo Vm=0,1,2,--,
0

then g(t) converges uniformly in every C* norm to a smooth metric g(T) ast — T.

Proof. One can refer to |2, proposition A.5] 0J

8.C. Closed and convex subsets of a finite-dimensional inner product space.

Lemma 8.5. Let X be a finite-dimensional inner product space, and let F be a closed,
convex subset of X. Suppose z € X and y € Proj.(z). Then

0<d(Z,F)ly—z|+{(z-y,y—2z) VzZelX.

Proof. One can refer to [2, lemma 5.3]. O

8.D. Global geomtry.

Theorem 8.6 (Diameter theorem). Suppose that (M", g) is a Riemannian n-manifold. If
Ric>(n—-1)Kg on B(p,r)
for some constant K > 0, then

diam(B(p,r)) < \/%

8.E. Curvature estimates.

Lemma8.7. Let (M, g) be a Riemannian manifold. Then the knowledge of all the sectional
curvatures determines the curvature tensor. Speaking specifically, setting

x(X,Y)=R(X,Y,Y,X),
then we have
RX,Y,Z,W) = xX+W,Y+2Z)—x(X,Y +2Z)—x(W,Y + Z)
—x(Y+W,X+2)+x(Y,.X+2Z2)+x(W,X +Z)
k(X +W,Y)+x(X,Y)+x(W,Y)
—x(X+W,2)+x(X,Z2)+x(W,Z)
+x(Y + W, X) —x(Y,X) —x(W,X)
+x(Y +W,2)—x(Y,Z)—x(W,Z)
Proof. See [6, theorem 6.5]. O
Corollary 8.8. Given R € Cxz(R"), then
2
R(el’ €, €3, 84) < g(Kmax - Kmin)
for all orthonormal four-frames {e;, e,, e5, e,} in R".

Proof. 1t directly follows from lemma 8.7. O
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Corollary 8.9. Ifgiven any § € (0, 1), we can find a positive constant C = C(d) such that
Kuin(p; 1) 2 6Kpnae(p, 1) =C, Vp €M, Vr€[0,T),
then for each € > 0 we can find a positive constant C, = C,(¢) such that

sup |Ricy)| < eKppe(t) +C, ¢t €[0,T)
M

Proof. Fix & € (0,1). Since K,j) [ X AY|? < k(X,Y) < K..x | X A Y%, we know
SKnax (D DIX AY P = C(OIX AY? < %)X, Y) < Kpau (P, DIX A Y

forall p € M and ¢ € [0,T). Then the conclusion easily follows from lemma 8.7. OJ

Corollary 8.10. If we have

Kmin(t) _
1im =1
nr Kmax(t)
then for each ¢ > 0, there exists ) = n(e) > 0 such that

|Ric’|? < %scal2 on MX[T-nT)

Proof. Fix § € (0,1). Then there exists a = «(J) > 0 such that
Knin(t) > (1 = 8K (t) Vte[T—a,T)
which implies
(1= DK paxDIXAY? <%, X, Y) S Kpox OIXAY|>? VpeM Vte[T—a,T).

Then by lemma 8.7 one easily know that for each § € (0, 1), there exists 8 = 3(8) > 0
such that

Kipin(t) 2 (1 = 8)Kpnox (1) VL€ [T —B,T),

and that
IRicg(P)| < 6Kpax(t) YpEM Nt e [T —p,T).
Since
Scalg(t)(p) > n(n - l)Kmin(t)
the conclusion follows. (]

8.F. Isotropic curvature.

Lemma 8.11. Let R be an algebraic curvature tensor on V with non-negative isotropic
curvature, and let {e,, e,, e, e,} be an orthonormal four-frame in V. Then

IS0(R)1234 = 0 = I80(Q(R))1234 = 0.
8.G. Results from complex linear algebra.

Proposition 8.12. Assume that dimp V' > 4. Moreover, suppose that o is a complex two-
plane in VE. Then there exists an orthonormal four-frame {e,, e,,e;,e,} C V and real
numbers A, u € [0,1] such that e, + iue, € o and e; + ile, € 0.
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8.H. Tangent cone.

Lemma 8.13. Let X be an inner product space, let F be a closed, convex subset of X, and

let x(t), t € [0,T), be a smooth path in X with x(0) € F. Then

(1) If x(t) € F forallt € [0,T), then x'(0) € T, F.

(2) If X'(0) lies in the interior of the tangent cone T, F, then there exists ¢ € (0,T) such
that x(t) € F forallt € [0, ¢].
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9. APPENDIX — ANOTHER APPROACH OF HAMILTON’S MAXIMUM PRINCIPLE

9.A. Setting the scene for the maximal principle — the Uhlenbeck trick. By a
standard computation, under the Ricci flow one has

0
Rijii = (AR);jut + 2 (Bijis — Bijuc + Bixji — Bujie)

(9.1) ot
p p p p
- (Rl. Ry + RVR iy + RER, + RIR, jkp)
where
(9.2) Bijkl = _Rpiquqlkp'

Naively we might try to apply theorem 8.2 to R;;;. However, we can not treat A as A,
since there is no obvious metric compatible with each V(¢). Furthermore, the reaction
term are so hideous that the associated ODE is useless.
In the next we introduce the Uhlenbeck trick. The idea is as follows.
(1) If we can find a smooth family of bundle isometries
u(t) : (TM, go) — (TM, g(1)),
then each new connection g(t) on TM which is given by

is compatible with g,.
(2) We should find good (t) such that the evolution equation of (*Rm is good, which
ensures that the associated ODE is easy, and hence we can apply theorem 8.2.

Specifically, one should give «(t) by
(9.3) %l = Ricol, 1(0) = id,
where we regard the Ricci tensor as a (1, 1)-tensor.

Proposition 9.1. Formula (9.3) gives a smooth family of bundle isometries.

Proof. Note that

0 . 0 ; ,
(9.4) Fri Ricot <= EL; = Rit,.

It follows that
0 9 il,J i pi i)
3 (@) g(t),, = Ela[igij = Rllélégij + ‘aRlli,gij + Lalé(_ZRij) =0.

We are done. U

Proposition 9.2. Each new connection V(t) on TM which is given by
V,(X) = 71V,(10X)

is compatible with g,.
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Proof. Note that
0;(X,Y),,

5j <[(t)°Xs L(t)°Y>g(t)
<Vj(l0X), LOY>g([) + <L°X’ Vj(loY)>g(t)

= <[O€jX,£OY> +<toX,Lo§jY>

g®)
ﬁjx, Y> + <Xﬁjy>

8o 8o

g®)

We are done. OJ

Proposition 9.3. The evolution equation of t*"Rm is

5} ~
(95) aRabcd = (AR)abcd + 2 (Babcd - Babdc + Bacbd - Badbc)
where B4 is given by (9.2). Equivalently, suppose that {e, } is an orthonormal local frame;

then the evolution equation can be written as
o}

(9.6) aRabcd = ARgpeq + Ribcd + Ribcd
where
R(Zlb(.’d = RabechdEf al’ld Ribcd = 2Raechbedf - 2Ra€deb€Cf'

Proof. By formula (9.1) and formula (9.4) one easily computes
%Rabcd = lélilflfi [ARji; + 2 (Bijis — Bijic + Biji — Buji) |-
One can also easily show that [(*(ARmM)],peq = (AR)gpeq and Bpeg = (*B)(8,, 8, 8., 8,).
Then (9.5) follows. Clearly (¢*Rm),;.q = Rypeq Satisfies the first Bianchi identity
Reoped + Racap + Ragpe = 0.

Then (9.6) easily follows. O

Remark 9.4. Formula (9.6) simplifies the reaction term, and hence the associated ODE
is also simplified.

Up to now we have set the scene for the tensor maximum principle 8.2: We aim to
apply it to *Rm with respect to (®*T*M, g,). The associated ODE of PDE (9.6) is

d 2 i
(9-7) EQabcd = Yabed + Qabcd'
where
(98) ibcd = Qabechdef and Qibcd = 2Qaecbeedf - 2Qaedebecf‘

Definition 9.5. We call the ODE (9.7) the Hamilton ODE.

9.B. Hamilton’s maximum principle for the Ricci flow. In the next we give a basic
principle how we apply the tensor maximum principle to the Ricci flow. The key point
is to derive an appropriate set X that is invariant under the Hamilton ODE.

Definition 9.6. Let V be a finite-dimensional vector space equipped with an inner product.
We denote by Cyz(V') the space of algebraic curvature tensors on V, ie. the space of
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multilinear forms R . V XV XV XV — R such that
RX,Y,Z,W)=—-R(Y,X,Z,W)=R(Z,W,X,Y) VX,Y,Z,WeV
and
RX,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W)=0 VX,Y,Z,W € V.
Proposition 9.7. IfQ € Cy(V), then Q%>+ Q* € Cx(V), where Q* and Q* are given by (9.8).

Definition 9.8. We call a set F C Cyz(R") is invariant under the Hamilton ODE, if for
any Q(t) solving the Hamilton ODE (9.7) on Cz(R") with Q(0) € F we have Q(t) € F, Vt.

Lemma 9.9. Assume that F C Cgz(R") is closed, convex, O(n)-invariant and invariant
under the Hamilton ODE. For each x € M, we find a linear isometry22

D, : Cp(R") — Cx(TTM)
and we define
K, :=®.(F) C Cyx(TiM) C Q*T:iM.
Setting X = U, X,, then

(1) X is independent from the choice of ®,;

(2) X is a subset of ®*T*M that is closed and convex in each fiber;
(3) X is invariant under parallel translation;

(4) X, is invariant under the Hamilton ODE.

Proof. Since R" is equipped with the canonical inner product, the linear isometry
~ \—1
(q)x) c)CI)x : 6‘B([Rn) - CJB([RH)

is an action induced by some g € O(n). Then point (1) follows from the O(n)-invariance.
Point (2) is trivial. Since parallel translation keeps the inner product, then point (3)
follows from the O(n)-invariance. Point (4) holds since @, is a linear isometry. O

Lemma 9.10. Assume that F C Cz(R") is O(n)-invariant. Suppose that g(t), t € [0,T)
solves the Ricci flow on some closed manifold M". For each (x,t) € M X [0,T), we find a
linear isometry

Yirp  Cp(R") — Cp(TM, g(1))
and we define
F(x,t) = LP(x,[)(F) C (‘,’B(T;M, g(t)) C ®4(TxM, g(t))
Then F, , is independent from the choice of ¥, ..

Proof. Similar to lemma 9.9. O

Theorem 9.11 (Hamilton). Assume that F C Cz(R") is closed, convex, O(n)-invariant,
and invariant under the Hamilton ODE. Suppose that g(t), t € [0, T) solves the Ricci flow
on some closed manifold M". Then,

R(x,O) (S F(x,O) VxeM = R(x,t) (S F(x,t) VxeM Vte [0, T)

22Rn is equipped with the canonical inner product.
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Proof. By lemma 9.9 and the tensor maximum principle 8.2,
(t)Rm, € X, VxeM Vtel0,7T)

where ((¢) is given by (9.3). Since ((¢) is a bundle isometry, by lemmas 9.9 and 9.10, WLOG
we assume that the following diagram commutes

F C Cx(RM)

F(x,t) C c’B(TxM’ gx(t)) (0" > jcx C eB(TxM’ gO)

where each arrow is an isometry. Then we get the conclusion. O
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