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Abstract. In this paper, we give a succinct and comprehensible introduction to the
basic theory of Ricci �ow, including the short time existence and uniqueness, Hamilton’s
convergence criterion, and the di�erentiable sphere theorem.
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1. Introduction

In 1904, Poincaré proposed his famous conjecture: every simply connected, closed 3-
manifold is homeomorphic to the 3-sphere. From the point of view of results, Hamilton’s
work in 1982 solved some special cases of Poincaré conjecture, and Perelman’s work in
2002 developed Hamilton’s method and completed the proof.
The basic idea of Hamilton’s work [5] is to meliorate some initial metric on the

manifold by an evolution equation, which is called the Ricci �ow. Hamilton showed
that if the initial metric enjoys positive Ricci curvature, then after a rescaling, the Ricci
�ow will converge to a metric with constant curvature. It is well-known that a simply
connected Riemannian manifold with positive constant curvature is di�eomorphic to
the sphere, and hence Hamilton provided a e�ective procedure for proving Poincaré
conjecture. However, Hamilton’s hypothesis is too strong for Poincaré conjecture, since
for general initial metrics, the Ricci �ow must lead to more complicated singularities.
Perelman [7] [8] [9] then made a signi�cant contribution to understanding the

singularities. He showed that if one takes a certain perspective, the singularities
appearing in �ntie time can only look like shrinking spheres or cylinders. Moreover,
Perelman showed that we can cut the manifold along the singularities, devide the
manifold into several pieces, and then continue the Ricci �ow on each piece. For a
closed 3-manifold, Perelman indicated that the above process deforms the manifold into
round pieces with strands running between them; moreover, we can rebuild the original
manifold by connecting the spheres together with three-dimensional cylinders and see
that the original manifold is homeomorphic to the sphere.
However, the original work of Hamilton and Perelman is devoted to solving very

general situations and uses quite complicated techniques. For people who know the
basic knowledge of Riemannian geometry but are not familiar with these speci�c
techniques, it is di�cult for them to get a clear picture of their brilliant work. In fact,
some complicated techniques can be simpli�ed, and if one only focuses on the main
results, the theory can be organized in a more comprehensible way.
For instance, DeTurck [4] introduced a novel proof of the local existence of the

Ricci �ow. Instead of using the Nash-Moser implicit function theorem as in Hamilton
[5], which is powerful but elaborate, DeTurck proposed an elementary proof that only
utilizes the basic transformations. His idea is to show that under some fundamental
transformations, the evolution equation is equivalent to some strictly parabolic equation
system, which is a classical and well-known object. However, even the simpli�ed proof
of DeTurck [4] can be further simpli�ed, and we will show this later.
In this paper, we aim to provide a succinct and comprehensible account of the

existence and coverngence theory for the Ricci �ow. This theory is an essential part of
Hamilton and Perelman’s work, which can be regarded as the �rst step to understand
their work. Moreover, this theory itself is self-contained and substantial. We will
introduce some major consequences of this theory, such as the di�erentiable sphere
theorem: if a closed Riemannian manifold is 1∕4-pinched, then it is di�eomorphic to
a spherical space form.
To reorganize this theory in a succinct and comprehensible way, we will extract the

core skeleton of this theory and focus on the motivations and ideas of every step in the
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process of establishing this theory. The reader is only assumed to be familiar with basic
Riemannian geometry, and many claims of Riemannian geometry will be left to readers.
This is like saying that the theory is a beef cattle, the reader is a cook who can handle the
meat on the chopping board, and the author just does the job of dividing the beef cattle
into pieces that every cook can handle.
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2. The origin of Ricci flow and the framework of this paper

In Hamilton [5], he introduced Ricci �ow to prove the following result.

Theorem 2.1. Let X be a closed 3-manifold which admits a Riemannian metric with
strictly positive Ricci curvature. ThenX also admits a metric of constant positive curvature.

We roughly discourse Hamilton’s reason for proposing Ricci �ow as follows.
To �nd the desired metric, the basic idea is to derive a �ow of metrics g(t) that

converges to the desired metric g via some parabolic equation
)
)tgij = P(g)ij where P is some elliptic linear di�erential operator.

Assume our idea can be achieved if we choose P appropriately. Then one can hope that
P(g) = 0. Considering our goal (theorem 2.1), P should relate to the Ricci curvature.
SinceRic(g) isnearly ellipticwith respect to g, wemay try the simplest caseP = c⋅Ric;

although this model doesn’t satisfy P(g) = 0, but its normalized edition will, and two
editions are equivalent.

De�nition 2.2. Let (Mn, g) be a closed Riemannian manifold. Hamilton’s Ricci �ow is
the evolution equation

(2.1) )
)tgij = −2Rij,

and the normalized Hamilton’s Ricci �ow is the evolution equation

(2.2) )
)tgij = 2

( r
ngij − Rij

)
where r =

∫M R dvol
∫M dvol .

Remark 2.3. The factor r serves to normalize the equation so that the volume is
constant. To see this, note that by Jacobi’s formula we know

)
)t log

√
det(gij) =

1
2g

ij )
)tgij = r − R,

and hence
)
)t ∫M

dvolg = ∫
M

( ))t log
√
det(gij)) dvolg = ∫

M
(r − R) dvolg = 0.

Proposition 2.4. These two evolution equations (2.1) and (2.2) are equivalent.

Proof. Let t, gij, Rij, R, r denote the variables for the unnormalized equation, and t̃, g̃ij,
R̃ij, R̃, r̃ the corresponding variables for the normalized equation.
To make the conversion from (2.1) to (2.2), we choose the normalization factor  (t) so

that if g̃ij =  gij then ∫ dvolg̃ = 1, and choose a new time scale t̃ = ∫  (t) dt. Clearly,

∫
M
dvolg =  −n∕2 and )

)t̃
= 1
 (t)

)
)t .

Applying the evolution equation we know
)
)t log

√
det(gij) =

1
2g

ij )
)tgij = −R and hence )

)t log ∫M
dvolg = −r.
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Therefore, d
dt
log  = 2

n
r, and it easily follows that

)
)t̃
g̃ij =

)
)tgij + ( ddt log  ) gij =

2
n r̃g̃ij − 2R̃ij.

Clearly, this conversion gives the equivalence. �

Remark 2.5. The normalized Ricci �ow is derived by rescaling the unnormalized Ricci
�ow and rescaling the time.

There are two core steps in Hamilton’s framework:
(1) First, we prove the short time existence and uniqueness for the initial-value problem

about (2.1).
(2) Second, applying the maximum principle, we get apriori estimates and then some

agreeable convergence of the normalized Ricci �ow follows.

Remark 2.6. Moreover, if we know themaximum time for Ricci �ow, instead of showing
the convergence of the normalized Ricci �ow, we can also directly show that after
rescaling the unnormalized Ricci �ow we will get a convergent �ow of metrics.

In this project, we will simplify the work of Hamilton [5]. The framework of this
project is as follows:
(1) First, we will give a succinct proof of the short time existence and uniqueness, which

simpli�es the work of Hamilton [5] and DeTurck [4]. (Section 3.)
(2) Next, we will re-establish Hamilton’s convergence criterion for the Ricci �ow in a

more comprehensible way as we said in remark 2.6. (Sections 4, 5, 6.)
(3) Finally, as an important application, wewill prove the di�erentiable sphere theorem.

(Section 7.)



Zhiyao Xiong 5

3. Short time existence and uniqueness of Hamilton’s Ricci flow

3.A. Short time existence and uniqueness of parabolic equations. To show the
short time existence and uniqueness, we will apply the parabolic theory.

De�nition 3.1. Let F be a vector bundle over a manifold M, and let L ∶ C∞(M, F) →
C∞(M, F) be a di�erential operator. Then the linearization of L around any f ∈
C∞(M, F) is de�ned by

DLf(g) =
d
dt

|||||t=0L(f + tg).

Theorem 3.2. Let F be a vector bundle over amanifoldM, let L ∶ C∞(M, F) → C∞(M, F)
be a di�erential operator of order 2, and let A be an open set in F. If the restriction (of an
open set in a Fréchet space to itself)

L ∶ C∞(M,A) ⊂ C∞(M, F) → C∞(M, F)
is parabolic, i.e. the linearization of L is parabolic around any f ∈ C∞(M,A), then the
evolution equation

)f
)t = L(f)

has a unique smooth solution for any initial value problem f(0) = f0 ∈ C∞(M,A) for at
least a short time interval 0 ≤ t ≤ " (where " may depend on f0).

Proof. Standard. �

3.B. Weak parabolicity. Hamilton’s Ricci �ow (2.1) is weakly parabolic.
Let Σ2+T∗M be the bundle of positive de�nite symmetric (0, 2)-tensors, which is an

open subset of the bundle Σ2T∗M. We need to show that the linearization of −2Ric ∶
Γ(Σ2+T∗M) → Γ(Σ2T∗M) around any g ∈ Γ(Σ2+T∗M) is weakly elliptic.

Proposition 3.3. Assume that )
)t
gij = ℎij, where g(t) is a smooth family of Riemannian

metrics and ℎ(t) is a smooth family of symmetric (0, 2)-tensors. Then

(3.1) )
)tg

ij = −gikgjlℎkl

(3.2) )
)tΓ

k
ij =

1
2g

kl (∇iℎjl + ∇jℎil − ∇lℎij
)

(3.3) )
)tRijk

l = 1
2g

lp (
∇i∇kℎjp + ∇j∇pℎik − ∇i∇pℎjk − ∇j∇kℎip − Rijkqℎqp − Rijpqℎkq

)

(3.4) )
)tRjk =

1
2g

pq (∇q∇jℎkp + ∇q∇kℎjp − ∇q∇pℎjk − ∇j∇kℎqp
)

(3.5) )
)tR = −∆(trgℎ) + ∇p∇qℎpq − ⟨ℎ, Ric⟩

Corollary 3.4. The linearization D(−2Ric)g ∶ Γ(Σ2T∗M) → Γ(Σ2T∗M) satis�es

(3.6) D(−2Rij)g(ℎ) = gpq)p)qℎij + gpq)i)jℎpq − gpq)p)jℎiq − gpq)i)qℎpj + LOT≤1(ℎ),



6 Ricci �ow and the sphere theorem

and hence given � ∈ T∗pM we have

��
(
D(−2Ric)g

)
(Tij) = gpq�p�qTij + gpq�i�jTpq − gpq�p�jTiq − gpq�i�qTpj.

Since the principal symbol is independent from the choice of local coordinates,WLOG
we assume that gij(p) = �ij, �1 = 1 and �i = 0 for any i ≠ 1. Then

[
��

(
D(−2Ric)g

)
(T)

]
ij =

⎧
⎪
⎨
⎪
⎩

∑n
k=2 Tkk i = j = 1,

0 i = 1, j ≠ 1,
0 i ≠ 1, j = 1,
Tij i ≠ 1, j ≠ 1.

Thus one can see that D(−2Ric)g is weakly (but not strictly) elliptic, and hence (2.1) is
weakly (but not strictly) parabolic.
One can also indicate that (2.1) is not strictly parabolic by the fact that the solutions of

the steady state equation Ric(g) = 0 are invariant under the full di�eomorphism group,
which is in�nite dimensional.

Remark 3.5. The di�eomorphism invariance of the Riemannian curvature tensor will
imply the Bianchi identites. For example, linearizing the equation R

(
�∗t g

)
= �∗t (R(g))

we get DRg(LXg) = XR; then by (3.5) we derive the contracted second Bianchi identity.

3.C. DeTurck’s trick. To show the short time existence and uniqueness of Hamilton’s
Ricci �ow, DeTurck introduced a clever way: we turn to solve the evolution equation for
gt = �∗t gt, where {�t} is a family of di�eomorphisms.
This trick about time, which is related to the reason of weak parabolicity, may

in�uence parabolicity of the evolution equation.

Lemma3.6. Let {�t} be a smooth family of di�eomorphisms, and let {�t} be a smooth family
of (0, 2)-tensors. If �t = �∗t �t, then

)
)t�t = �∗t (ℒ )�t

)t
�t +

)�t
)t ) = ℒXt�t + �∗t

)�t
)t where Xt =

(
�−1t

)
∗
)�t
)t .

Therefore, if gt solves Hamilton’s Ricci �ow, then gt ∶= �∗t gt satis�es
)
)tgt = ℒXtgt + �∗t

)gt
)t = ℒXtgt − 2Ric(gt) where Xt =

(
�−1t

)
∗
)�t
)t .

We can choose {�t} appropriately such that Xt = Y(g).
Lemma 3.7. Let ! ∶ Γ(Σ2T∗M) → Γ(T∗M) be a linear di�erential operator, and let � ∶
Γ(Σ2+T∗M) → Γ(T∗M) be a di�erential operator. Given any g ∈ Γ(Σ2+T∗M), if ! ∼ (D�)g,1
then ∇i!j + ∇j!i ∼ D

(
ℒ�(g)♭g

)
g.

Proposition 3.8. If we set

Y ∶ Γ(Σ2+T∗M) → Γ(TM), gij ↦ gpq(Γrpq − Γ̂rpq)

where Γ̂rpq is the Christo�el symbol of some �xed metric ĝ, then

D
(
ℒY(g)g − 2Ric

)
g (ℎ) = ∆ℎij + LOT≤1(ℎ).

1For two linear di�erential operators L1, L2 ∶ C∞(M, E) → C∞(M, F), we say L1 ∼ L2 if deg(L1) = deg(L2)
and deg(L1 − L2) < deg(L1).
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Proof. Note that we can rewrite D(−2Ric)g as

D(−2Rij)g(ℎ) = ∆ℎij − ∇i!j − ∇j!i + LOT≤0(ℎ)
where

!k =
1
2g

pq (∇pℎqk + ∇qℎpk − ∇kℎpq
)
= D(gkrYr)g(ℎ).

Then the conclusion follows from lemma 3.7. �

Corollary 3.9. If gt solves Hamilton’s Ricci �ow in a short time, if Γ̂rpq is the Christo�el
symbol of some �xed metric ĝ, and if �t satis�es

(3.7) [
(
�−1t

)
∗
)�t
)t ]

m

= gpq
(
Γmpq − Γ̂mpq

)
where gt = �∗t gt

then the evolution equation of gt is

(3.8) )
)tgij = ∇iYj + ∇jYi − 2Rij where Ym = gpq

(
Γmpq − Γ̂mpq

)
,

which is strictly parabolic. We call (3.8) theDeTurck’s Ricci �ow.

Remark 3.10. Clearly by the proof of proposition 3.8 we know that DeTurck’s Ricci �ow
is strictly parabolic.

Remark 3.11. Setting  t = �−1t , then  t will satisfy a harmonic map �ow, which is
parabolic. Moreover, one can apply this fact to showing the uniqueness of Hamilton’s
Ricci �ow. We will introduce this in subsection 3.D.

The process from DeTurck’s Ricci �ow to Hamilton’s Ricci �ow is much easier. One
should note that this process implies the short time existence of Hamilton’s Ricci �ow.

Theorem 3.12. If gt solves DeTurck’s Ricci �ow in a short time, then one can de�ne a
smooth family of di�eomorphisms  t by

(3.9)
) t
)t = −Yt and  0 = id, where Ym = gpq

(
Γmpq − Γ̂mpq

)
.

Moreover, gt ∶=  ∗t gt solves Hamilton’s Ricci �ow in a short time.

Proof. The existence of  t follows from the standard ODE theory. Then lemma 3.6 yields

)
)tgt =  ∗t (ℒ−Ytgt +

)gt
)t ) =  ∗t

(
−2Ric

(
gt
))
= −2Ric (gt) .

Hence gt solves Hamilton’s Ricci �ow in a short time. �

Corollary 3.13. Given any initial data, we can slove Hamilton’s Ricci �ow in a short time.

Proof. It follows from theorems 3.2 and 3.12. �

3.D. The harmonicmap �ow. Suppose that gt solves Hamilton’s Ricci �ow in a short
time. Now we come back to equation (3.7) and show the existence of such {�t}.

Lemma 3.14. If {�t} is a smooth family of di�eomorphisms, and if  t = �−1t , then
(
�−1t

)
∗
)�t
)t = −) t)t .
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Clearly, equation (3.7) is equivalent to

(3.10)
) t
)t = −gpq

(
Γmpq − Γ̂mpq

)
where gt =

(
 −1t

)∗ gt
In the next we will show that equation (3.10) is a harmonicmap �ow, which is parabolic,
and hence the existence follows.

Lemma 3.15. If f ∶ (M, g) → (N, ℎ) is a smooth map, then2

(3.11)
(
∆g,ℎf

)
 = gij (
)2f�
)xi)xj +

)f�
)xi

)f

)xj (Γℎ)

�
�
◦f − (Γg)kij

)f�
)xk )

If f ∶ (M, g) → (N, ℎ) is, in addition, a di�eomorphism, then

(3.12)
(
∆g,ℎf

)
 = −g̃��
[(
Γg̃

)

�� ◦f − (Γℎ)



�� ◦f

]
where g̃ = (f−1)∗g.

Corollary 3.16. Equation (3.10) is equivalent to

(3.13)
) t
)t = ∆gt ,ĝ t.

Moreover, equation (3.13) is parabolic.

Remark 3.17. We call (3.13) together with  0 = id a harmonic map �ow.

Theorem 3.18. A solution of the Ricci �ow is uniquely determined by its initial data.

Proof. Fix a background metric ĝ. Suppose that g1(t) and g2(t) solve Hamilton’s Ricci
�ow with g1(0) = g2(0).
By corollary 3.16 and theorem 3.2, for i = 1, 2, let  i(t) be the solution of harmonic

map �owwith respect to gi(t) and ĝ. Then both gi(t) =
(
 −1i

)∗ gi(t) solve DeTurck’s Ricci
�ow with g1(0) = g2(0).
Since DeTurck’s Ricci �ow is parabolic, by theorem 3.2 we know g1(t) = g2(t) for as

long as both exist, and then both  i(t) are solutions of the ODE
) i(t)
)t = −Yt where Ym = gpq

(
Γmpq − Γ̂mpq

)
.

Therefore,  1(t) =  2(t) for as long as they are both de�ned, which implies

g1(t) =  ∗t g1(t) =  ∗t g2(t) = g2(t).
We are done. �

2Recall some basic concepts: for a smooth map f ∶ (M, g) → (N, ℎ), the second fundamental form B ∈
Γ(M, T∗M ⊗T∗M ⊗ f∗TN) is given by

B(X, Y) ∶= ∇̂X (f∗Y) − f∗
(
∇M
X Y

)
∈ Γ(M, f∗TN),

and the Laplacian is given by ∆g,ℎf = trgB ∈ Γ(M, f∗TN).
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4. The maximal time and derivative estimates

This section is a preliminary of Hamilton’s maximum principle and Hamilton’s
convergence theory.

4.A. The �nite-time explosion. First we show that the scalar maximum principle
Referencesthm scalar maximum principle implies that the �nite-time explosion of Ricci
�ow with initial strictly positive scalar curvature.

Theorem 4.1. Suppose g(t) solves Ricci �ow on a closed manifold Mn, de�ned for t ∈
[0, T). If the metric g(0) has strictly positive scalar curvature, then g(t) becomes singular in
�nite time, i.e. T < ∞.

Proof. By formula (3.5) we know
)
)tR = ∆R + 2|Ric|2 ≥ ∆R + 2

nR
2.

Assume R(0) is bounded below by some � > 0. The solution to the associated ODE
d�
dt =

2
n�

2

with �(0) = � is

�(t) = �n
n − 2t� .

Then theorem 8.1 yields that R(x, t) becomes singular in �nite time. So the metric
becomes singular in �nite time. �

4.B. Evolution equations for derivatives of curvature.

De�nition 4.2 (∗-notation). Given two tensors A, B on a Riemannian manifoldMn, we
denote by A ∗ B any quantity obtained from A⊗ B by one or more of these operations:

(1) summation over pairs of matching upper and lower indices,
(2) contraction on upper indices with respect to the metric,
(3) contraction on lower indices with respect to the metric inverse,
(4) multiplication by constants depending only on n and the ranks of A and B.

Lemma 4.3. Suppose that g(t) solves Hamilton’s Ricci �ow on M. Let A(t) and F(t) be
two smooth families of tensor �elds of the same type. If it holds that

(4.1) )
)tA = ∆g(t)A + F

then
)
)t∇A = ∆(∇A) + ∇F + Rm ∗ ∇A + ∇Ric ∗ A

and
)
)t |A|2 = ∆|A|2 − 2|∇A|2 + F ∗ A + Ric ∗ A∗2.
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Theorem 4.4. The evolution equation for the k-th iterated covariant derivative of the
Riemannian curvature tensor under the Ricci �ow is

(4.2) )
)t∇

kRm = ∆∇kRm +
k∑

j=0
∇jRm ∗ ∇k−jRm

and the square of the norm of k-th iterated covariant derivative of the Riemannian
curvature tensor satis�es the heat-type equation

(4.3) )
)t |∇

kRm|2 = ∆|∇kRm|2 − 2|∇k+1Rm|2 +
k∑

j=0
∇jRm ∗ ∇k−jRm ∗ ∇kRm.

Proof. One can compute that

(4.4) )
)tRm = ∆Rm+ Rm∗2.

Thus (4.2) holds for k = 0. If (4.2) holds for k = m, then applying lemma 4.3 to

A = ∇mRm and F =
m∑

j=0
∇jRm ∗ ∇m−jRm

we know
)
)t∇∇

mRm = ∆∇∇mRm +∇F + Rm ∗ ∇∇mRm +∇Ric ∗ ∇mRm

= ∆∇m+1Rm +
m+1∑

j=0
∇jRm ∗ ∇m+1−jRm.

Hence we get (4.2) by induction. Now for each k we can truly apply lemma 4.3 to

A = ∇kRm and F =
k∑

j=0
∇jRm ∗ ∇k−jRm,

which derives that
)
)t |∇

kRm|2 = ∆|∇kRm|2 − 2|∇∇kRm|2 + F ∗ ∇kRm + Ric ∗ (∇kRm)∗2

= ∆|∇kRm|2 − 2|∇k+1Rm|2 +
k∑

j=0
∇jRm ∗ ∇k−jRm ∗ ∇kRm.

We are done. �

4.C. Derivative estimates for Riemannian curvature tensor.

Theorem 4.5 (Bernstein-Bando-Shi). If g(t) solves Ricci �ow on a closed manifold Mn,
then for each � > 0 and m ∈ ℕ, there exists a constant Cm = Cm(m, n,max{�, 1}) such
that if

|Rmg(t)| ≤ � ∀t ∈ [0, �� ] ,

then

|∇mRmg(t)| ≤
Cm�
tm∕2

∀t ∈ (0, �� ] .



Zhiyao Xiong 11

Proof. We prove by induction. For m = 0 the result is just the hypothesis. Assume the
result is true for allm ≤ k − 1. Note that

k∑

j=0
∇jRm ∗ ∇k−jRm ∗ ∇kRm ≤

k∑

j=0
ckj|∇jRm||∇k−jRm||∇kRm|

≤ C′
k�|∇kRm|2 +

C′′
k

tk∕2
�2|∇kRm|

≤ Ck�|∇kRm|2 + �3
tk .

Therefore by formula (4.3) we know3

(4.5) )
)t |∇

kRm|2 ≤ ∆|∇kRm|2 + Ck�|∇kRm|2 + �3
tk .

Namely, setting um(t) = tm|∇mRm|2 for eachm, we have

(4.6)
)uk
)t ≤ ∆uk + (Ck� +

k
t ) uk + �3.

The associated ODE of (4.6) can not be solved near 0 since we have the bad term k
t
uk, and

hence we can not derive an estimate of uk directly. We turn to evaluate the new quantity4

u = uk +
k−1∑

m=0
�kmum.

In hope that the summation will bring a nice associated ODE, form < k we compute

)um
)t = ∆um +

m
t um −

2
t um+1+ t

m
m∑

j=0
∇jRm ∗ ∇m−jRm ∗ ∇mRm

≤ ∆um +
m
t um −

2
t um+1+Cm�3.

Clearly we can choose �km = �km
(
m, �k,k−1

)
(0 ≤ m ≤ k − 2) appropriately such that

)u
)t ≤ ∆u + (Ck� +

k
t −

2
t �k,k−1) uk + C̃(�k,k−1, k, n)�3.

Now choose

�k,k−1 ≥
Ck� + k

2 ⟹ Ck� +
k
t −

2
t �k,k−1 ≤ 0 ∀t ∈ (0, �� ] .

Then clearly5

)u
)t ≤ ∆u + C̃k�3 ∀t ∈ [0, �� ] , where C̃k = C̃k(k, n,max{�, 1}).

3We discard the non-positive term −2|∇k+1Rm|2 in (4.3), since this term of highest degree does not �t
theorem 8.1 whenever we apply theorem 8.1 to |∇kRm|2 or any natural quantity related to it.
4In order to evaluate uk, it’s equivalent to estimating u since we alredy know a bound on each uj (j < k).
However, the new quantity may satisfy a new parabolic inequality which enjoys a nice associated ODE.
5If one replaces um∕t by tm−1|∇mR|2 form ≥ 1, and identi�es

(m
t
um

) ||||m=0 with 0, then one knows clearly
the inequality at t = 0.
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Since u(0) = �k0|Rm|2g(0) ≤ �k0�2, theorem 8.1 yields that

sup
x∈M

u(x, t) ≤ �k0�2 + C̃k�3t.

Since �k0 and C̃k only depend on k, n,max{�, 1}, we know

sup
x∈M

u(x, t) ≤ Ĉk�2 ∀t ∈ [0, �� ] , where Ĉk = Ĉk(k, n,max{�, 1}).

Therefore,

|∇kRm| ≤
√

u
tm

≤
Ĉ1∕2
k K
tm∕2

∀t ∈ (0, �� ] .

Setting Ck(k, n,max{�, 1}) = Ĉ1∕2
k , we get the conclusion. �

Clearly, BBS estimates are completely useless at t = 0, since bounds on an arbitrary
curvature tensor will not tell us anything about its derivatives. It is only after a period of
Ricci �owing that the derivatives start to be brought under control.
For the sake of convenience, we write down the following trivial corollary.

Corollary 4.6. Let g(t), t ∈ [0, �], be a solution to the Ricci �ow on a closed manifoldMn

satisfying

(4.7) sup
M

|Rmg(t)| ≤ �−1, ∀t ∈ [0, �].

Given any integerm ≥ 1, there exists a positive constant C = C(m, n) such that

sup
M

|∇mRmg(t)|2 ≤ C�−m−2, ∀t ∈ [�∕2, �].

Remark 4.7. Condition (4.7) is easy to meet by choosing the initial time appropriately.

4.D. Cuvature explodes at �nite-time singularities.

Theorem 4.8. If g0 is a metric on a closed manifoldM, the Ricci �ow with g(0) = g0 has a
unique solution g(t) on a maximal time interval t ∈ [0, T) where T ≤ ∞. If T < ∞ then

(4.8) lim
t→T

(sup
M

|Rm(x, t)|) = ∞.

Remark 4.9. It su�ces to show that if |Rm|g is bounded above near T, then g(t) will
converge smoothly to a smooth metric g(T), and we can use the short-time existence
result (corollary 3.13), with initial metric g(T), to extend the solution past T.
So the key point is to show the convergence of g(t). Our idea is to apply theorem 8.4

based on corollary 4.6.

Proof. Suppose for contradiction that (4.8) is false. Then corollary 4.6 yields that

sup
t∈[0,T)

sup
M

|∇mRmg(t)| < ∞ ∀m ∈ ℕ.

Thenby theRicci �owequation (2.1) and theorem8.4, we know themetrics g(t) converge
in C∞ to some limit metric g onM. Then corollary 3.13 implies that we can extend the
solution beyond T; a contradiction. �
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4.E. Derivative estimates for tensors. In analoguewithBBS estimates, one can easily
derive the following results based on the scalar maximum principle 8.1.

Theorem4.10. LetM be a closedmanifold of dimensionn, let g(t), 0 ≤ t ≤ �, be a solution
to the Ricci �ow onM satisfying

(4.9) sup
M

|Rmg(t)| ≤ �−1 ∀t ∈ [0, �],

and letH be a smooth tensor �eld satisfying
)
)tH = ∆H + R ∗ H

and

sup
M

|H| ≤ Λ ∀t ∈ [0, �].

Then we can �nd a positive constant C = C(n) such that

sup
M

|∇H|2 ≤ CΛ2�−1 ∀t ∈ [�∕2, �].

Remark 4.11. Condition (4.9) is easy to meet by choosing the initial time appropriately.

Proof. Note that
)
)t |Rm|2 = ∆|Rm|2 − 2|∇Rm|2 + Rm ∗ Rm ∗ Rm

≤ ∆|Rm|2 − 2|∇Rm|2 + C1�−3,
where C1 = C1(n), and that

)
)t |∇Rm|2 = ∆|∇Rm|2 − 2|∇2Rm|2 + Rm ∗ ∇Rm ∗ ∇Rm

≤ ∆|∇Rm|2 + C2�−1 ⋅ |∇Rm|2,
where C2 = C2(n). Setting v(t) = t|∇Rm|2g(t), then

)
)tv(t) ≤ ∆v(t) +

(
1 + C2�−1t

)
|∇Rm|2 ≤ ∆v(t) + (1 + C2) |∇Rm|2

Setting

u(t) = v(t) + C3|Rm|2g(t), where C3(n) =
C2(n) + 1

2 ,

then
)
)tu(t) ≤ ∆u(t) + C1C3�−3,

and hence by scalar maximum principle 8.1 we know

u(p, t) ≤ C1C3�−3t + sup
p∈M

u(p, 0) ≤ (C1C3 + C3)�−2.

Therefore, setting C4(n) = C1(n)C3(n) + C3(n), we have
|∇Rm|2g(t) ≤ C4�−2t−1, t ∈ [0, �].
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On the other hand, note that
)
)t |H|2 = ∆|H|2 − 2|∇H|2 + Rm ∗ H ∗ H

≤ ∆|H|2 − 2|∇H|2 + C5�−1Λ2,
where C5 = C5(n), and that

)
)t |∇H|2 = ∆|∇H|2 − 2|∇2H|2 + Rm ∗ ∇H ∗ ∇H + ∇Rm ∗ H ∗ ∇H

≤ ∆|∇H|2 + C6�−1|∇H|2 + 2C7C
1∕2
4 �−1t−1∕2Λ|∇H|

≤ ∆|∇H|2 +
(
C6�−1+�−1

)
|∇H|2 + C2

7C4�−1t−1Λ2,
where C6 = C6(n), and C7 = C7(n). Setting ṽ(t) = t|∇H|2g(t), then

)
)t ṽ(t) ≤ ∆ṽ(t) +

(
1 + C6�−1t + �−1t

)
|∇H|2 + C2

7C4�−1Λ2

≤ ∆ṽ(t) + (2 + C6) |∇H|2 + C2
7C4�−1Λ2.

Setting

ũ(t) = ṽ(t) + C8|H|2g(t) where C8(n) =
2 + C6(n)

2 ,

then
)
)t ũ(t) ≤ ∆ũ(t) + C9�−1Λ2 where C9(n) = C2

7(n)C4(n) + C5(n)C8(n),

and hence by scalar maximum principle 8.1 we know

ũ(p, t) ≤ C9�−1Λ2t + sup
p∈M

ũ(p, 0) ≤ (C8 + C9)Λ2.

Therefore, setting C10(n) = C8(n) + C9(n), we have
|∇H|2g(t) ≤ C10Λ2t−1, t ∈ [0, �].

Then the assertion follows. �
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5. Hamilton’s maximum principle

5.A. Setting the scene for the maximal principle — the Uhlenbeck trick. By a
standard computation, under the Ricci �ow one has

(5.1)
)
)tRijkl = (∆R)ijkl + 2

(
Bijkl − Bijlk + Bikjl − Biljk

)

−
(
Rpi Rpjkl + Rpj Ripkl + RpkRijpl + Rpl Rijkp

)

where

(5.2) Bijkl = −RpijqRqlkp.
However, we can not regard Rm(t) as a section of some �xed bundle with some �xed
metric for each t, which is a basic requirement for applying the maximum principle.
To avoid this, we turn to regarding Rm as a section of⊗4E∗, where

E = �∗(TM), � ∶ M × [0, T) → M is the projection.
and E is equipped with the metric ℎ induced by g(t), 0 ≤ t < T; namely,

X(p,t) ∈ E(p,t) ⟹ X(p,t) ∈ TpM and ℎ
(
X(p,t), Y(p,t)

)
= gt

(
X(p,t), Y(p,t)

)
.

Moreover, since each X ∈ Γ(E) induces X(t) ∈ Γ(TM) by X(t)(p) = X(t,p), we can equip
E with a natural connection6

D ∶ Γ(TM) × Γ(E) → Γ(E)
(X, Y) ↦ ∇XY where (∇XY)(p,t) = ∇g(t)

Xp Y(t)

( ))t , X) ↦ )
)tX −

n∑

k=1
Ric(X, ek)ek.

where (ek) is an orthonormal basis for some TpM.
Therefore, for a Ricci �ow g(t), we can regard the family of Riemannian cuvature as a

sectionRm ∈ Γ(⊗4E∗), where⊗4E∗ is equippedwith themetric and connection induced
by ℎ and D.
Proposition 5.1. The connection D is compatible with the metric ℎ.
Proof. By de�nition, clearly it su�ces to show that

(
D)tℎ

)
(X, Y) = 0, ∀X, Y ∈ Γ(E).

Note that
(
D)tℎ

)
(X, Y) = )

)t (ℎ(X, Y)) − ℎ
(
D)tX,Y

)
− ℎ

(
X,D)tY

)

= )gt
)t (X, Y) + g ( ))tX, Y) + g (X, ))tY)

−g ( ))tX −
n∑

k=1
Ric(X, ek)ek, Y) − g (X, ))tY −

n∑

k=1
Ric(Y, ek)ek)

= ()gt)t + 2Ric) (X, Y) = 0.

6HereM = M × [0, T) and we use the canonical isomorphism TM ≅ TM ⊕ spanℝ{)t}.
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We are done. �

Proposition 5.2 (Uhlenbeck’s trick). For Rm ∈ Γ(⊗4E∗) we have
(5.3) D)tRm = ∆Rm+ Q(Rm)
where ∆Rm = (D2Rm)(ei, ei),

Q(Rm)(X, Y, Z,W) = Rm(X,Y, ei, ej)Rm(Z,W, ei, ej)
+2Rm(X, ei, Z, ej)Rm(Y, ei,W, ej)
−2Rm(X, ei,W, ej)Rm(Y, ei, Z, ej)

and (ek) is an orthonormal basis for some TpM.

Proof. One can refer to [2, proposition 2.14]. �

5.B. ODE-invariant set. In this subsection we will give a necessary and su�cient
condition for a set to be invariant under an ODE, which is a key part of the maximum
principle.

Theorem 5.3. Let X be a �nite-dimensional inner product space, let Φ ∶ X → X be a
smoothmap, and letF be a closed subset ofX. Then the following statements are equivalent:
(1) The set F is invariant under the ODE7

(5.4) d
dtx(t) = Φ(x(t)).

(2) It holds that8

(5.5) ⟨Φ(y), y − z⟩ ≥ 0 ∀z ∈ X, ∀y ∈ ProjF(z).

Remark 5.4. It easy to see (1) ⟹ (2).
To see (2) ⟹ (1), the key point is to show that if there exists a solution x(t) that

destroys the ODE-invariance of F, then there exist two bounded sequence (xk)k∈ℕ and
(yk)k∈ℕ such that

|Φ(xk) − Φ(yk)| ≥ k|xk − yk|,
which destroys the Lipschitz continuity of Φ.
The idea is as follows. It is the Lipschitz continuity ofΦ that ensures the local-in-time

existence of x(t), so instead of analyzing the invariant property of solution x(t) via ODE
(5.4), which is hard, we turn to showing that a solution without the invariant property
doesn’t exist, or equivalently, showing that such a solution will destroy the key point of
local-in-time existence, the Lipschitz continuity of Φ.

Proof. (1) ⟹ (2): Fix y and z with y ∈ ProjF(z). Let x(t), 0 ≤ t < T, solves ODE (5.4)
with x(0) = y. By hypothesis, x(t) ∈ F, for all 0 ≤ t < T. Therefore,

x(0) = y ∈ ProjF(z) ⟹ |x(t) − z| ≥ |x(0) − z|, ∀0 ≤ t < T

⟹ d
dt

|||||t=0|x(t) − z|2 ≥ 0 ⟹ ⟨x′(0), x(0) − z⟩ ≥ 0

⟹ ⟨Φ(y), y − z⟩ ≥ 0.
7That is, whenever x(t), 0 ≤ t < T, solves ODE (5.4) with x(0) ∈ F, we have x(t) ∈ F for all 0 ≤ t < T.
8ProjF(z) = {y ∈ F ∶ d(z, F) = |y − z|}. Since F is closed, this set is never empty.
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(2) ⟹ (1): Suppose that x(t), 0 ≤ t < T, solves ODE (5.4) with x(0) = y and
x(�) ∉ F for some � ∈ (0, T).

Claim 5.5. If xk = x(tk) ∉ F and yk ∈ ProjF(xk), and if
e−kt|x(t) − yk| ≥ e−ktk |x(tk) − yk|, tk ≤ t ≤ �,

then

|Φ(xk) − Φ(yk)| ≥ k|xk − yk|.

Proof of Claim 5.5. By hypothesis we know

e−2kt|x(t) − yk|2 ≥ e−2ktk |x(tk) − yk|2 tk ≤ t ≤ �

⟹ d
dt

|||||t=tk
e−2kt|x(t) − yk|2 ≥ 0 ⟹ ⟨x′(tk), x(tk) − yk⟩ ≥ k|xk − yk|2

⟹ ⟨Φ(xk) − Φ(yk), xk − yk⟩ ≥ k|xk − yk|2 ⟹ |Φ(xk) − Φ(yk)| ≥ k|xk − yk|.
We are done. �

Now we de�ne tk by
tk = sup

{
t ∈ [0, �] ∶ d(x(t), F) ≤ ekt−k2

}
.

Set xk = x(tk) and choose yk ∈ ProjF(xk). Then for k su�ciently large, we have tk ∈
(0, �), d(x(tk), F) = ektk−k2 > 0, and
ek(tk−t)|x(t) − yk| ≥ ek(tk−t)d(x(t), F) ≥ ektk−ktekt−k2 = |x(tk) − yk|, tk ≤ t ≤ �

By claim 5.5 we know

|Φ(xk) − Φ(yk)| ≥ k|xk − yk|.
Moreover, by the choice of (xk) and (yk), we know they are bounded.9 This contradicts
the Lipschitz continuity of Φ. �

5.C. Hamilton’smaximumprinciple. Hamilton’s maximumprinciple is in analogue
with the PDE-ODE principle. We have analyzed the ODE-invariance, and now we show
the PDE-invariance.
First we clarify the associated ODE.

De�nition 5.6. LetV be a �nite-dimensional vector space equippedwith an inner product.
We denote by CB(V) the space of algebraic curvature tensors on V, i.e. the space of
multilinear forms R ∶ V × V × V × V → ℝ such that

R(X, Y, Z,W) = −R(Y,X, Z,W) = R(Z,W,X, Y) ∀X, Y, Z,W ∈ V
and

R(X, Y, Z,W) + R(Y, Z, X,W) + R(Z, X, Y,W) = 0 ∀X,Y, Z,W ∈ V.

9Since x is continuous, x([0, �]) is compact and hence bounded. By the de�nition of tk and yk we know
(yk) is bounded.
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Proposition 5.7. If A ∈ CB(V), then Q(A) ∈ CB(V), where
Q(A)(X, Y, Z,W) = A(X, Y, ei, ej)A(Z,W, ei, ej)

+ 2A(X, ei, Z, ej)A(Y, ei,W, ej)
− 2A(X, ei,W, ej)A(Y, ei, Z, ej)

and (ek) is an orthonormal basis for some TpM.

Proof. Trivial. One can refer to [2, proposition 5.7]. �

De�nition 5.8 (Hamilton’s ODE). We call the ODE

(5.6) d
dsA(s) = Q(A(s)) on CB(V)

theHamilton’s ODE.

Then we derive an appropriate ODE-invariant subset F ⊂ CB(E) ⊂ ⊗4E∗, and prove
Hamilton’s maximum principle via F(p,t).

Lemma 5.9. Suppose that F ⊂ CB(ℝn) is O(n)-invariant and invariant under the
Hamilton ODE. For each (p, t), we �nd a linear isometry from ℝn to Ep,t, which induces
a linear isometry form CB(ℝn) to CB(E(p,t)). Let F(p,t) be the image of F under this linear
isometry. Then
(1) F(p,t) is well-de�ned; i.e. F(p,t) is independent of the choice of the linear isometry from

ℝn to E(p,t);
(2) F(p,t) is invariant under the Hamilton ODE.

Proof. (1): Since ℝn is equipped with the canonical inner product, for any linear
isometries �1, �2 from CB(ℝn) to CB(E(p,t)), the linear isometry

�−12 ◦�1 ∶ CB(ℝn) → CB(ℝn)
is an action induced by some g ∈ O(n). Then by the O(n)-invariance, we know F(p,t) is
well-de�ned.
(2): Let � be a linear isometry from ℝn to E(p,t), let (ei) be the canonical orthonormal

basis of ℝn, and let êi = �(ei). Note that
d
ds

(
A(s)(êi, êj, êk, êl)

)
= Q

(
A(s)(êi, êj, êk, êl)

)
where A(s) ∈ CB(E(p,t))

is equivalent to
d
ds

(
(�∗A)(s)(ei, ej, ek, el)

)
= Q

(
(�∗A)(s)(ei, ej, ek, el)

)
where �∗A(s) ∈ CB(ℝn),

which implies that
d
dsA(s) = Q(A(s)) on CB(E(p,t))⟺

d
ds(�

∗A)(s) = Q((�∗A)(s)) on CB(ℝn).

Therefore, if A(s) solves ODE (5.4) on CB(E(p,t)), then (�∗A)(s) solves ODE (5.4) on
CB(ℝn), and hence (�∗A)(s) ∈ F for each s, which impliesA(s) ∈ �(F) for each s, where
we regard the linear isometry from CB(ℝn) to CB(E(p,t)) still by �. We are done. �

Theorem 5.10 (Hamilton). Assume that F ⊂ CB(ℝn) is closed, convex, O(n)-invariant,
and invariant under the Hamilton ODE. Suppose that g(t), t ∈ [0, T) solves the Ricci �ow
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on some closed manifoldMn. Then,

(5.7) R(x,0) ∈ F(x,0) ∀x ∈ M ⟹ R(x,t) ∈ F(x,t) ∀x ∈ M ∀t ∈ [0, T).

Remark 5.11. In analogue with theorem 5.3, the idea is to show that any Rm that
violates (5.7) will destroy the Lipschitz continuity of Q.

Proof. We de�ne

u(t) = sup
p∈M

d
(
R(p,t), F(p,t)

)
, 0 ≤ t < T.

Then u(0) = 0. Suppose for contradiction that u(�) > 0 for some � ∈ (0, T).

Claim 5.12. If Rk = R(pk ,tk) ∉ F(pk ,tk) and Sk ∈ ProjF(pk ,tk)(R(pk ,tk)), and if

(5.8) ⟨−Q(Rk), Sk − Rk⟩ ≥ k|Sk − Rk|2,
then

|Q(Sk) − Q(Rk)| ≥ k|Sk − Rk|.

Proof of claim 5.12. By lemma 5.9, we know F(pk ,tk) is invariant under Hamilton’s ODE.
Then by theorem 5.3, we know

⟨Q(Sk), Sk − Rk⟩ ≥ 0.
By hypothesis, we have

⟨Q(Sk) − Q(Rk), Sk − Rk⟩ ≥ k|Sk − Rk|2,
and then the conclusion follows by Cauchy inequality. �

Now we de�ne tk by 10

tk = inf
{
t ∈ [0, T) ∶ u(t) ≥ ekt−k2

}

for k su�ciently large. It is easy to see tk ∈ (0, �) and u(tk) = ektk−k2 > 0. Since M is
compact, we can choose pk ∈ M such that

u(tk) = d
(
R(pk ,tk), F(pk ,tk)

)
.

Therefore,

(5.9) ek(tk−t)d
(
R(p,t), F(p,t)

)
≤ ek(tk−t)u(t) ≤ ektk−ktekt−k2 = u(tk), 0 ≤ t ≤ tk, p ∈ M.

Set Rk = R(pk ,tk) and choose Sk ∈ ProjF(pk,tk)(R(pk ,tk)). Then by the subsequent proposition
5.13, we know

{
⟨
(D)tR)(pk ,tk), Sk − Rk

⟩
≤ −k|Sk − Rk|2,⟨

(D2
v,vR)(pk ,tk), Sk − Rk

⟩
≥ 0.

By Uhlenbeck’s trick 5.2, we then get (5.8), and hence by claim 5.12 we know

|Q(Sk) − Q(Rk)| ≥ k|Sk − Rk|.
Moreover, by the choice of (Rk) and (Sk), we know they are bounded. This contradicts
the Lipschitz continuity of Φ. �

10We need to re-de�ne tk, since the red inequality in (5.9) reverses the direction of inequality.
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Proposition 5.13. Assume that F ⊂ CB(ℝn) is closed, convex, and O(n)-invariant.
Moreover, let M be a compact manifold of dimension n, and let g(t), 0 ≤ t < T, sloves
the Ricci �ow onM. Suppse that (p0, t0) is a point inM × (0, T) with the property that

e�(t0−t)d
(
R(p,t), F(p,t)

)
≤ d

(
R(p0,t0), F(p0,t0)

)
, 0 ≤ t ≤ tk, p ∈ M.

Then for any S ∈ ProjF(p0,t0)(R(p0,t0)), we have
(1)

⟨
(D)tR)(p0,t0), S − R(p0,t0)

⟩
≤ −�|S − R(p0,t0)|2;

(2)
⟨
(D2

v,vR)(p0,t0), S − R(p0,t0)
⟩
≥ 0 for all v ∈ Tp0M.

Remark 5.14. Since we re-de�ne tk and reverse the deriction of inequality, these two
similar conclusions need convexity essentially.

Proof. (1): For all s ∈ [0, t0), letP(s) ∶ CB(E(p0,t0)) → CB(E(p0,t0−s)) be the parallel transport
with respect to D, and setH(s) = P(s)−1R(p0,t0−s) ∈ CB(E(p0,t0)). Then

H(0) = R(p0,t0) and H′(0) = −(D)tR)(p0,t0).
Moreover, since F is O(n)-invariant, by proposition 5.1, we have P(s)F(p0,t0) = F(p0,t0−s)
for all s ∈ [0, t0), and hence11

e�sd(H(s), F(p0,t0)) = e�sd(R(p0,t0−s), F(p0,t0−s)) ≤ d
(
R(p0,t0), F(p0,t0)

)
= |S − H(0)|, 0 ≤ s < t0.

By lemma 8.5, we have

0 ≤ d(H(s), F(p0,t0))|S − H(0)| + ⟨H(s) − S, S − H(0)⟩ , 0 ≤ s < t0.
Therefore,

0 ≤ e−�s|S − H(0)|2 + ⟨H(s) − S, S − H(0)⟩ , 0 ≤ s < t0.
Then the assertion follows by taking right derivative at 0.
(2): For all s ∈ ℝ, set 
(s) = expp0(sv), let P(s) ∶ CB(E(p0,t0)) → CB(E(
(s),t0)) be the

parallel transport along 
, and setH(s) = P(s)−1R(
(s),t0) ∈ CB(E(p0,t0)). Then
H(0) = R(p0,t0) and H′′(0) = (D2

v,vR)p0,t0 .
Moreover, since F is O(n)-invariant, by proposition 5.1, we have P(s)F(p0,t0) = F(
(s),t0) for
all s ∈ ℝ, and hence

d(H(s), F(p0,t0)) = d
(
R(
(s),t0), F(
(s),t0)

)
≤ d

(
R(p0,t0), F(p0,t0)

)
= |S − H(0)|, s ∈ ℝ.

By lemma 8.5, we have

0 ≤ d(H(s), F(p0,t0))|S − H(0)| + ⟨H(s) − S, S − H(0)⟩ , s ∈ ℝ.
Therefore,

0 ≤ |S − H(0)|2 + ⟨H(s) − S, S − H(0)⟩ , s ∈ ℝ
with equality for s = 0. Since 0 is a global minimum, we know

⟨H′′(0), S − H(0)⟩ = d2
ds2

|||||s=0
(
|S − H(0)|2 + ⟨H(s) − S, S − H(0)⟩

)
≥ 0.

Then the assertion follows. �

11Since we reverse the deriction of inequality, we can not derive e�s|S − H(s)| ≤ |S − H(0)|.
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6. Hamilton’s convergence criterion

In this subsection, we describe a general method for proving convergence results for
the Ricci �ow.
As we said in the introduction, we now add the initial pinching condition, and use the

scalar maximum principle 8.1 to get a pricise pinching result.

6.A. Pinching set, the hypothesis in the remainder of this section. First we clarify
the initial pinching condition.

De�nition 6.1. Suppose that R ∈ CB(ℝn) and � ∈ (0, 1). We say that R is strictly [resp.
weakly] �-pinched if 0 < �K(�1) < K(�2) [resp. 0 ≤ �K(�1) ≤ K(�2)] for all two-
dimensional planes �1, �2 ⊂ ℝn.

De�nition 6.2. A set F ⊂ CB(ℝn) is called a pinching set if
(1) F is closed, convex, O(n)-invariant, and invariant under the Hamilton ODE;
(2) for each � ∈ (0, 1), the set {R ∈ F ∶ R is not weakly �-pinched} is bounded in the sense

of sectional curvatures.

Example 6.3. To be continued.

In the remainder of this section, letM be a closed manifold of dimension n ≥ 3, let g0
be ametric onMwith positive scalar curvature, let g(t), 0 ≤ t < T be the uniquemaximal
solution to the Ricci �owwith initialmetric g0, and letF ⊂ CB(ℝn) be a pinching set such
that R(p,0) ∈ F(p,0) for all p ∈ M. For abbreviation, we de�ne

Kmax(t) = sup
p∈M

Kmax(p, t) and Kmin(t) = inf
p∈M

Kmin(p, t).

6.B. Pinching of sectional curvatures.

Proposition 6.4 (Pointwise pinching). Given any � ∈ (0, 1), we can �nd a positive
constant C = C(�) such that

(6.1) Kmin(p, t) ≥ �Kmax(p, t) − C, ∀p ∈ M, ∀t ∈ [0, T).
Moreover, we have

lim sup
t→T

Kmax(t) = ∞.

Proof. By Hamilton’s maximum principle 5.10, we have R(p,t) ∈ F(p,t) for all p ∈ M and
all t ∈ [0, T). Since F is a pinching set, the �rst assertion follows.
Suppose lim supt→T Kmax(t) < ∞. Then supt∈[0,T)Kmax(t) < ∞. Since Kmax(t) > 0,12

by (6.1) we know inf t∈[0,T)Kmax(t) > −∞, and hence supt∈[0,T) |Rmg(t)| < ∞;13 a
contradiction. Thus we get the second assertion. �

Theorem 6.5 (Global pinching). We have
Kmin(t)
Kmax(t)

→ 1 as t → T.

12Using the scalar maximum principle, one can easily show that the minimum of the scalar curvature is
increasing in time, and hence Kmax(t) ≥

infM scal(t)
n(n−1)

> 0.
13See [10, problem 3.9].
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The above theorem can be easily reduced to the following lemma, which can be proved
via the scalar maximum principle and the result of global geometry. (From the result of
pointwise pinching, it is natural to attempt to show the global pinching via the tools of
global geometry.)14

Lemma 6.6. Let tk be a sequence of times such that

lim
k→∞

tk = T and Kmax(tk) ≥
1
2 sup
t∈[0,tk]

Kmax(t) ∀k.

Then

lim inf
k→∞

Kmin(tk)
Kmax(tk)

≥ 1.

Proof. Fix some " > 0. Note that
proposition 6.4 ⟹ sup

M
|Ric◦g(t)| ≤ "Kmax(t) + C1(") t ∈ [0, T) (corollary 8.9)

⟹ sup
M

|Ric◦g(t)| ≤ 2"Kmax(tk) + C1(") t ∈ [0, tk]

⟹ sup
M

|DRic◦g(tk)|
2 ≤ C2(n)Kmax(tk)(2"Kmax(tk) + C1("))2 (theorem 4.10) (lemma 8.7)

⟹ sup
M

|dscalg(tk)|2 ≤ C3(n)Kmax(tk)(2"Kmax(tk) + C1("))2 (⋆)

where C1("), C2(n), C3(n) are positive constants. For each k, choose pk ∈ M with
Kmax(pk, tk) = Kmax(tk) , and set

Ωk ∶= Brk(pk) where rk = 2�Kmax(tk)−1∕2.
Then

(⋆) ⟹ inf
x∈Ωk

scalg(tk)(x) ≥ scalg(tk)(pk) − 2�C3(n)1∕2(2"Kmax(tk) + C1("))

⟹ inf
x∈Ωk

Kmax(x, tk) ≥ Kmin(pk, tk) −
2�

n(n − 1)
C3(n)1∕2(2"Kmax(tk) + C1(")).

By proposition 6.4 again, there exists a positive constant C4(") > 0 with
Kmin(p, tk) ≥ (1 − ")Kmax(p, tk) − C4(") ∀p ∈ M.

It follows from the above facts that

inf
x∈Ωk

Kmin(x, tk) ≥ (1 − ")2Kmax(tk) − (2 − ")C4(")

− 2�
n(n − 1)

C3(n)1∕2(1 − ")(2"Kmax(tk) + C1(")).

Note that

lim
k→∞

Kmax(tk) ≥
1
2 sup
t∈[0,T)

Kmax(t) = ∞,

and hence

lim inf
k→∞

inf x∈Ωk Kmin(x, tk)
Kmax(tk)

≥ (1 − ")2 − 4�
n(n − 1)

C3(n)1∕2(1 − ")".

14In other words, lemma 6.6 is proposed by trying to use the maximum principle and global geometry.
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By the arbitrariness of " we know

lim inf
k→∞

inf x∈Ωk Kmin(x, tk)
Kmax(tk)

≥ 1.

We claim thatΩk = M for k su�ciently large; otherwise, for k su�ciently large choosing
xk ∈ M with dg(tk)(pk, xk) = rk, then by the diameter theorem 8.6 we have

inf
x∈Ωk

Kmin(x, tk) ≤
�2

diam(Ωk)2
≤ �2
r2k

= 1
4Kmax(tk) for k su�ciently large,

a contradiction. Hence we get the conclusion. �

Proof of theorem 6.5. Suppose for contraction that there exists a sequence (�k) such that

lim
k→∞

�k = T and lim inf
k→∞

Kmin(�k)
Kmax(�k)

< 1.

For each k, there exists tk ∈ [0, �k] such that Kmax(tk) = supt∈[0,�k]Kmax(t). Then by
limt→T Kmax(t) = ∞, we know limk→∞Kmax(tk) = ∞ and limk→∞ tk = T. Then by lemma
6.6, we obtain

lim inf
k→∞

Kmin(tk)
Kmax(tk)

≥ 1.

Using the scalar maximum principle, it is easy to show that the minimum of the scalar
curvature is increasing in time. Then

inf
x∈M

scalg(�k)(x) ≥ inf
x∈M

scalg(tk)(x) ⟹ inf
x∈M

Kmax(x, �k) ≥ inf
x∈M

Kmin(x, tk)

⟹ Kmax(�k) ≥ Kmin(tk) ≥
1
2Kmax(tk) =

1
2 sup
t∈[0,�k]

Kmax(t) for k su�ciently large

⟹ lim inf
k→∞

Kmin(�k)
Kmax(�k)

≥ 1 (lemma 6.6).

This yields a contraction. �

Corollary 6.7. We have

(T − t) sup
M
scalg(t) →

n
2 as t → T,

and

(T − t) inf
M
scalg(t) →

n
2 as t → T.

Proof. Assume " > 0. Then

theorem 6.5 ⟹ |Ric◦|2 ≤ "
nscal

2 on M × [T − �, T) (corollary 8.10)

⟹ )
)tscal = ∆scal + 2|Ric|2 ≤ ∆scal + 2(1 + ")

n scal2 on M × [T − �, T).

By theorem 6.5 we know lim supt→T scalg(t) = ∞. Then it follows from scalar maximum
principle 8.1 that

(T − t) sup
M
scalg(t) ≥

n
2(1 + ")

t ∈ [T − �, T).
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By the arbitrariness of ", we know

lim inf
t→T

(T − t) sup
M
scalg(t) ≥

n
2 ,

and hence by theorem 6.5 we know

lim inf
t→T

(T − t) inf
M
scalg(t) ≥

n
2 .

On the other hand,
)
)t scal = ∆scal + 2|Ric|2 ≥ ∆R + 2

nR
2

⟹ (T − t) inf
M
scalg(t) ≤

n
2 t ∈ [0, T) (scalar maximum principle 8.1)

⟹ limsup
t→T

(T − t) inf
M
scalg(t) ≤

n
2

⟹ lim sup
t→T

(T − t) sup
M
scalg(t) ≤

n
2 (theorem 6.5).

We are done. �

6.C. Bounds on!(t). Now, based on the global pinching result 6.5 and via applying the
scalar maximum principle, we get the following bounds.

Lemma 6.8. Fix � ∈ (0, 1
n−1

). There exists a positive constant C with

sup
M

|Ric◦g(t)|2 ≤ C(T − t)2�−2 ∀t ∈ [0, T),

and for eachm ∈ ℤ+, there exists a positive constant Cm with

sup
M

|∇mRic◦g(t)|2 ≤ Cm(T − t)2�−m−2 ∀t ∈ [0, T).

Moreover, there exists a positive constant C̃ with

sup
M

|||||||
Ricg(t) −

1
2(T − t)

g(t)
|||||||

2
≤ C̃(T − t)2�−2 ∀t ∈ [0, T),

and for eachm ∈ ℤ+, there exists a positive constant C̃m with

sup
M

|∇mRicg(t)|2 ≤ C̃m(T − t)2�−m−2 ∀t ∈ [0, T).

Remark 6.9. For g̃(t) = 1
2(n−1)(T−t)

g(t), we have

!(t) = )
)t g̃t = − 1

(n − 1)(T − t)
(Ricg(t) −

1
2(T − t)

g(t)) .

6.D. Hamilton’s convergence criterion.

Theorem 6.10 (Hamilton). let M be a closed manifold of dimension n ≥ 3, let g0 be a
metric on M with positive scalar curvature, let g(t), 0 ≤ t < T be the unique maximal
solution to the Ricci �ow with initial metric g0, and let F ⊂ CB(ℝn) be a pinching set such
that R(p,0) ∈ F(p,0) for all p ∈ M. Then, as t → T, the metrics g̃(t) ∶= 1

2(n−1)(T−t)
g(t)

converges uniformly in every Ck norm to a smooth metric g̃(T) with constant sectional
curvature 1.
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Proof. Set !(t) = )
)t
g̃t. By lemma 6.8 and theorem 8.4 we know g̃(t) converges uniformly

in every Ck norm to a smooth metric g̃(T). By theorem 6.5, we know g̃(T) has constant
sectional curvature. By corollary 6.7, the scalar curvature of g̃(T) is euqal to n(n − 1).
This completes the proof. �
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7. ODE-invariant cones, pinching criterions and the sphere theorem

7.A. Introduction and conventions. In this section, we aim to establish the 1∕4-
pinched di�erentiable sphere theorem.

Theorem 7.1 (S. Brendle, R. Schoen). Let M be a closed manifold of dimension n ≥ 4,
and let g0 be a Riemannian metric onM. Assume that (M, g0) is strictly 1∕4-pinched in the
pointwise sense. Let g(t), t ∈ [0, T), be the unique maximal solution to the Ricci �ow with
initial metric g0. Then, as t → T, the metrics 1

2(n−1)(T−t)
g(t) converges inC∞ to ametric with

constant curvature 1.

Our tool is Hamilton’s convergence theorem 6.10. So our aim is to �nd the appropriate
pinching set. The framework is as follows:
(1) We �rst give several ODE-invariant cones.
(2) We then give a method to derive pinching sets based on the given cones.
(3) Finally we show g0 lies in a pinching set.
Conventions through this section:

(1) “ODE-invariance” means the invariance under Hamilton ODE unless we make a
clari�cation.

(2) Given R ∈ CB(B) and some frame (ei) of V, we write
Iso(R)ijkl = Rikik + Rilil + Rjkjk + Rjljl − 2Rijkl

and

Iso�,�(R)ijkl = Rikik + �2Rilil + �2Rjkjk + �2�2Rjljl − 2��Rijkl.
(3) Let X be an inner product space, and let F be a closed and convex subset of X. For

each y ∈ F we de�ne

NyF = {z ∈ X ∶ ⟨x − y, z⟩ ≥ 0 ∀x ∈ F}
and

TyF =
{
x ∈ X ∶ ⟨x, z⟩ ≥ 0 ∀z ∈ NyF

}
.

Remark 7.2. (1) If y lies in the interior of F then NyF = {0} and TyF = X.
(2) The property that

⟨Φ(y), y − z⟩ ≥ 0 ∀z ∈ X ∀y ∈ ProjF(z)
is equivalent to that Φ(y) ∈ TyF for all points y ∈ )F (or y ∈ F).

7.B. TheconeC. In this subsectionwe aim to give a specialODE-invariant coneC based
on lemma 8.11.

Theorem 7.3. The cone

C = {R ∈ CB(ℝn) ∶ R has non-negative isotropic curvature}
is closed, convex, O(n)-invariant, and ODE-invariant.15

15An algebraic curvature tensor R ∈ CB(V) is said to have non-negative isotropic curvature if

Iso(R)1234 ≥ 0 for all orthonormal four-frames {e1, e2, e3, e4} ⊂ V.
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We will use the vital lemma 8.11, for which one can refer to subsection 8.F.

Proof. By de�nition it is clear that C is closed, convex andO(n)-invariant. In the next we
show the ODE-invariance.
The idea is to consider the perturbations and then apply lemma 8.11. Let R(t), t ∈

[0, T), be a solution to Hamilton ODE with R(0) ∈ C.
(1) The perturbations is given as follows.

Fix " > 0, and let R"(t), t ∈ [0, T"), be the maximal solution to

(7.1) d
dtR"(t) = Q(R"(t)) + "I and R"(0) = R(0) + "I

where Iijkl = �ik�jl − �il�jk is the curvature tensor of the standard sphere.
(2) Claim: R"(t) has positive isotropic curvature tensor for t ∈ [0, T").

Suppose for contradiction that the claim is false. Setting

� = inf {t ∈ [0, T") ∶ R"(t) does not have positive isotropic curvature} ,
then � ∈ (0, T"). Moreover, there exists an orthonormal four-frame {e1, e2, e3, e4}with

Iso(R"(�))1234 = 0,
and hence by lemma 8.11 we know

Iso (Q(R"(�)))1234 ≥ 0.
Howover, note that

Iso(R"(t))1234 > 0 ∀t ∈ (0, �),
and then by the ODE (7.1) we know

Iso (Q(R"(�)) + "I)1234 = Iso (Q(R"(�)))1234 + 4" ≤ 0.
Contradiction.

(3) We obtain R(t) ∈ C �nally.
The conclusion follows from the standard ODE theory. (One should note that T ≤
lim inf "→0 T" and R(t) = lim"→0 R"(t).)

We are done. �

7.C. The cone Ĉ. Since C is far away from having non-negative sectional curvature, we
need to modify it.

De�nition 7.4. (1) Let V be a vector space of dimension n ≥ 4 equipped with an inner
product. Given any R ∈ CB(V), we de�ne R̂ ∈ CB(V × ℝ2) by

R̂(v̂1, v̂2, v̂3, v̂4) = R(v1, v2, v3, v4)
for all vectors v̂j = (vj, yj) ∈ V × ℝ2.

(2) The modi�ed cone Ĉ is then given by

Ĉ =
{
R ∈ CB(ℝn) ∶ R̂ has non-negative isotropic curvature

}
.

Theorem7.5. The cone Ĉ is closed, convex,O(n)-invariant, andODE-invariant. Moreover,
(1) If R ∈ Ĉ, then R has non-negative sectional curvature.
(2) If R has non-negative curvature operator, then R̂ has non-negative isotropic curvature.
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Proof. Let R(t), t ∈ [0, T), be a solution to Hamilton ODE with R̂(0) ∈ Ĉ. Then the
induced curvature tensors R̂(t) ∈ CB(ℝn × ℝ2) satify d

dt
R̂(t) = Q(R̂(t)), the Hamilton

ODE on CB(ℝn × ℝ2). Then we know Ĉ is ODE-invariant by theorem 7.3.
(1): Let R ∈ Ĉ, and let {e1, e2} be an orthonormal two-frame in ℝn. We de�ne an

orthonormal four-frame {ê1, ê2, ê3, ê4} in ℝn × ℝ2 by

ê1 = (e1, 0, 0), ê2 = (0, 0, 1), ê3 = (e2, 0, 0), ê4 = (0, 1, 0).
Since R̂ has non-negative isotropic curvature, we have

R1212 = Iso(R̂)1̂2̂3̂4̂ ≥ 0.
(2): Let R be a non-negative algebraic curvature operator onV. Given an orthonormal

four-frame {ê1, ê2, ê3, ê4} in V × ℝ2, write êj = (vj, yj), and de�ne

� = v1 ∧ v3 − v2 ∧ v4 and  = v1 ∧ v4 + v2 ∧ v3.
It follows that

Iso(R̂)1̂2̂3̂4̂ = R(�, �) + R( ,  ) ≥ 0.
Thus we conclude that R ∈ Ĉ. �

More precisely, we have the following result.

Proposition 7.6. Let R ∈ CB(V). TFAE:
(1) R̂ has non-negative isotropic curvature.
(2) Iso�,�(R)1234 ≥ 0, ∀�, � ∈ [0, 1] and for all orthonormal four-frames {e1, e2, e3, e4} ⊂ V.
(3) R(�, �, �, �) ≥ 0 for all �, � ∈ Vℂ.

Proof. (1) ⟹ (2): Suppose R̂ has non-negative isotropic curvature. Given �, � ∈ [0, 1]
and an orthonormal four-frame {e1, e2, e3, e4}, de�ne

ê1 = (e1, (0, 0)) , ê2 = (�e2, (0, 0)) ,
ê3 =

(
e3,

(
0,

√
1 − �2

))
, ê4 =

(
�e4,

(√
1 − �2, 0

))
,

and then {ê1, ê2, ê3, ê4} forms an orthonormal frame. By direct computation we get

Iso(R̂)1̂2̂3̂4̂ ≥ 0 ⟹ Iso�,�(R)1234 ≥ 0.
(2) ⟹ (3): Suppose (2) holds. Given �, � ∈ Vℂ, set � = spanℂ{�, �}. By proposition

8.12 we �nd an orthonormal four-frame {e1, e2, e3, e4} ⊂ V and �, � ∈ [0, 1] such that

z =∶ e1 + i�e2 ∈ � and w =∶ e3 + i�e4 ∈ �.
Then � = spanℂ{z, w} and hence

R(�, �, �, �) = cR(z, w, z, w) for some c > 0.
By the �rst Bianchi identity we know

R(z, w, z, w) = Iso�,�(R)1234.

Then R(�, �, �, �) = c ⋅ Iso�,�(R)1234 ≥ 0.
(3) ⟹ (1): Suppose (3) holds. Given an orthonormal four-frame {ê1, ê2, ê3, ê4} in

V × ℝ2, write êj = (vj, yj), and de�ne � = v1 + iv2 and � = v3 + iv4. It follows from the
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�rst Bianchi identity that

0 ≤ R(�, �, �, �) = Iso(R)1234,
and hence Iso(R̂)1̂2̂3̂4̂ = Iso(R)1234 ≥ 0. �

Based on this proposition we can also give a new proof of theorem 7.5.

Another proof of theorem 7.5 (1)(2). Property (1) follows from proposition 7.6 directly.
Given an orthonormal four-frame {e1, e2, e3, e4} ⊂ V and �, � ∈ [0, 1], de�ne

� = e1 ∧ e3 − ��e2 ∧ e4 and  = �e1 ∧ e4 + �e2 ∧ e3,
and then

R(�, �) + R( ,  ) ≥ 0 ⟹ Iso�,�(R)1234 ≥ 0.
Hence we get property (2) by proposition 7.6. �

The following result is an important application of proposition 7.6, which explains
why we focus on the cone Ĉ when we consider the di�erentiable sphere theorem.

Theorem 7.7. Let (M, g) be a Riemannian manifold of dimension n ≥ 4. Then:
(1) If (M, g) is weakly 1∕4-pinched in the pointwise sense, then the curvature tensor of

(M, g) lies in the cone Ĉ for all points p ∈ M.
(2) If (M, g) is strictly 1∕4-pinched in the pointwise sense, then the curvature tensor of (M, g)

lies in the interior of the cone Ĉ for all points p ∈ M.

Proof. (1): Given any orthonormal four-frame {e1, e2, e3, e4} ⊂ TpM, corollary 8.8 yields

R1234 ≤
2
3(Kmax(p) − Kmin(p)) ≤ 2Kmin(p).

Then for all �, � ∈ [0, 1] we have
Iso�,�(R)1234 ≥ (1 + �2 + �2 + �2�2 − 4��)Kmin(p) ≥ 0.

Therefore we get the �rst assertion by proposition 7.6.
(2): The second assertion follows similarly. �

7.D. The cone Ĉ(s). We �rst introduce a technique discovered by C. Böhm and B.
Wilking [1], which inspires the idea of �nding a pinching set.

De�nition 7.8. (1) If A, B are two symmetric bilinear form on ℝn, then their Kulkarni-
Nomizu product A? B ∈ CB(ℝn) is given by

(A? B)ijkl = AikBjl − AilBjk − AjlBil + AjlBik.
(2) For a, b ≥ 0, we de�ne a linear map la,b ∶ CB(ℝn) → CB(ℝn) by

la,b(R) = R + bRic◦ ? id + a
nscal ⋅ id? id.

Proposition 7.9. For each s ≥ 0, we de�ne a cone Ĉ(s) ⊂ CB(ℝn) by

Ĉ(s) = {la(s),b(s)(R) ∶ R ∈ Ĉ and Ric ≥ �(s)
n scal ⋅ id}
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where

(2a(s), 2b(s), �(s)) =

⎧
⎪
⎨
⎪
⎩

(2s + (n − 2)s2
1 + (n − 2)s2

, 2s, 1 − 1
1 + (n − 2)s2)

0 < s ≤ 1∕2,

(2s, 1, 1 − 4
n − 2 + 8s) s > 1∕2.

Then Ĉ(0) = Ĉ, and the cones Ĉ(s), s > 0, have the following properties:
(1) For each R ∈ )Ĉ(s) ⧵ {0}, Q(R) lies in the interior of TRĈ(s).16
(2) I lies in the interior of Ĉ(s).
(3) If R ∈ Ĉ(s) for some s > 1∕2, then R is weakly 2s−1

2s+n−1
-pinched.

Proof. One can refer to [2]. �

Corollary 7.10. Let F be a closed, convex, O(n)-invariant and ODE-invariant set. Set

ℐF =
{
s > 0 ∶ ∃ℎ > 0 s.t. ∀R ∈ F R + ℎI ∈ Ĉ(s)

}
.

(1) We have s ∈ ℐĈ(s) for each s > 0.
(2) If ℐF ≠ ∅ and sup ℐF = ∞, then F is a pinching set.

7.E. Some criterions of �nding pinching sets.

Proposition 7.11. Let K be a compact subset of CB(ℝn), and let F be the smallest set
containing K which is closed, convex, O(n)-invariant and ODE-invariant. If ℐF ≠ ∅, then
F is a pinching set.

By corollary 7.10, it su�ces to show sup ℐF = ∞. Then the proposition can be easily
reduced to the following lemma.

Lemma 7.12. Fix a compact interval [�, �] ⊂ (0,∞). Then there exists a real number
" = "(�, �, n) > 0 with the following property.
For any closed and ODE-invariant subset F ⊂ CB(ℝn) satifying

R + ℎI ∈ Ĉ(s) ∀R ∈ F for some s ∈ [�, �] and some ℎ > 0,
the corresponding set

F̂ =
{
R ∈ F ∶ R + 2ℎI ∈ Ĉ(s + ")

}

is also ODE-invariant, and sati�es

(7.2) {R ∈ F ∶ scal(R) ≤ ℎ} ⊂ F̂.

Proof. It is easy to �nd " such that (7.2) holds. To ensure that F̂ is ODE-invariant, the
idea is to apply lemma 8.13.
(1) Find N = N(�, �, n) such that for any R ∈ Ĉ(s) with scal(R) ≥ N and s ∈ [�, � + 1],

we have Q(R − 2I) lies in the interior of the tangent cone TRĈ(s).17

16This implies that Ĉ(s) is ODE-invariant.
17If we set A = {R ∈ Ĉ(s) ∶ scal(R) = 1}, then d(A, )Ĉ(s)) > 0 by compactness (using the pinching
property of Ĉ(s) to show the compactness ofA). By continuity, R

N
− 2I

N
∈ Ĉ(s) ⧵ {0} for su�ciently largeN,

and then the existence of N follows from proposition 7.9 (1).
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(2) Since Ĉ(s) vary continuously in s, we can �nd " = "(�, �, n) ∈ (0, 1] such that

(7.3)

{
R ∈ CB(ℝn) ∶ R + I ∈ Ĉ(s), scal(R) ≤ N

}

⊂
{
R ∈ CB(ℝn) ∶ R + 2I ∈ Ĉ(s + ")

}

for all s ∈ [�, �].
We claim that " is as desired. By scaling it su�ces to consider ℎ = 1. Clearly (7.3) ensures
(7.2). It remains to show the ODE-invariance.
Let R(t), t ∈ [0, T), solves Hamilton’s ODE with R(0) ∈ F̂. It su�ces to show R(t) +

2I ∈ Ĉ(s + "). Suppose not; we then de�ne

t0 = inf
{
t ∈ [0, T) ∶ R(t) + 2I ∉ Ĉ(s + ")

}
.

Clearly R(t0) + 2I ∈ Ĉ(s + ").
(1) Suppose scal(R(t0)) ≥ N. By the de�nition of N, Q(R(t0)) lies in the interior of

TR(t0)+2IĈ(s + "). Then lemma 8.13 clearly yields a contradiction.
(2) Suppose scal(R(t0)) < N. Then by continuity �nd t1 ∈ (t0, T)with scal(R(t)) ≤ N for

all t ∈ [t0, t1]. By formula (7.2) we conclude R(t) + 2I ∈ Ĉ(s + ") for all t ∈ [t0, t1],
which contradicts the de�nition of t0.

We are done. �

Now we can easily prove proposition 7.11.

Proof of proposition 7.11. Choose sj ∈ ℐF with limj→∞ sj = sup ℐF. For each j there exists
a real number ℎj > 0 such that

R + ℎjI ∈ Ĉ(sj) ∀R ∈ F.
By proposition 7.9 (2) we can increase ℎj. So WLOG we assume that

ℎj ≥ sup {scal(R) ∶ R ∈ K} .
Clearly, sup ℐF = ∞; otherwise lemma 7.12 gives a contradiction. Then the conclusion
follows from corollary 7.10. �

Furthermore, we have the following result.

Theorem 7.13. Suppose that K is a compact set which is contained in the interior of Ĉ.
Then there exists a pinching set F such that K ⊂ F.

Proof. Let F be the smallest pinching set containing K which is closed, convex, O(n)-
invariant and ODE-invariant. Since Ĉ(t) vary continuously and Ĉ(0) = Ĉ, there exists
s0 > 0 such that K ⊂ Ĉ(s0). By proposition 7.9 (1), we know Ĉ(s0) is closed, convex,
O(n)-invariant and ODE-invariant, and hence F ⊂ Ĉ(s0). By corollary 7.10 (1) we know
s0 ∈ ℐF.18 Then by proposition 7.11 we know F is a pinching set. �

7.F. The sphere theorem. Now the di�erentiable sphere theorem follows from the
preceding results.

18If s ∈ ℐG and F ⊂ G, then s ∈ ℐF .
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Theorem7.14. LetM be a closedmanifold of dimensionn ≥ 4, and let g0 be aRiemannian
metric onM. Assume that (M, g0) is strictly 1∕4-pinched in the pointwise sense. Let g(t),
t ∈ [0, T), be the unique maximal solution to the Ricci �ow with initial metric g0. Then, as
t → T, the metrics 1

2(n−1)(T−t)
g(t) converges in C∞ to a metric with constant curvature 1.

Proof. It follows from theorem 7.7, theorem 7.13, and theorem 6.10. �
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8. Appendix

8.A. Maximum principles.

Theorem 8.1 (The scalar maximum principle). Let g(t) be a smooth family of metrics on
a closed manifoldM. Suppose that u ∶ M × [0, T) → ℝ satis�es

)u
)t ≤ ∆g(t)u + ⟨X(t), ∇u⟩g(t) + F(u)

u(x, 0) ≤ C ∀x ∈ M,
for some constantC, whereX(t) is a smooth family of vector �elds and F ∶ ℝ → R is locally
Lipschitz. Suppose that � ∶ ℝ → ℝ is the solution to the associated ODE

d�
dt = F(�) and �(0) = C.

Then

u(x, t) ≤ �(t)
for all x ∈ M and t ∈ [0, T) such that �(t) exists.

Proof. Setting v = u − �, then
)v
)t ≤ ∆v + ⟨X,∇v⟩ + (F(u) − F(�)) .

Fixing � ∈ (0, T), there exist C1 = C1(�) and C = C(�) such that

sup
M×[0,�]

|u(x, t)| ≤ C1, sup
[0,�]

|�(t)| ≤ C1,

|F(x) − F(y)| ≤ C|x − y| ∀x, y ∈ [−C1, C1].
Then

(8.1) )v
)t ≤ ∆v + ⟨X,∇v⟩ + C|v| ∀t ∈ [0, �] and v(0) ≤ 0.

For any " > 0, we set
w" = e−Ctv − "(1 + t).

Clearly it su�ces to prove that

w" < 0 on M × [0, �] ∀" > 0.
Suppose for contradiction that {w" = 0} ≠ ∅.19 Note that {w" = 0} is a closed subset
of M × [0, �], and hence is a compact set (since M is compact). Since the continuous
projection �2 ∶ M × [0, �] → [0, �] maps the compact set {w" = 0} to a compact set, we
can �nd (x0, t0) such that20

w"(x0, t0) = 0, w"(x, t) = 0 ∀t < t0, and w"(x, t0) ≤ 0.
Clearly t0 > 0; therefore,

)w"
)t (x0, t0) ≥ 0, ∇w"(x0, t0) = 0, and ∆w"(x0, t0) ≤ 0.

19Note that w"(x, 0) ≤ −".
20t0 is the �rst time that w" hits 0.
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Then one can easily derive a contradiction at point (x0, t0) by (8.1). We are done. �

Theorem 8.2 (Tensor maximum principle). We assume that
(1) � ∶ E → M is a vector bundle with a �xed bundle metric ℎ;
(2) ∇(t) is a smooth family of connections on E compatible with ℎ;
(3) g(t) is a smooth family of metrics onM;
(4) K is a subset of E that is closed and convex in each �ber, and K is invariant under

parallel translation;
(5) F ∶ E × [0, T) → E is a continuous map that is �ber preserving, and F is Lipschitz in

each �ber.
Let �(t) be a time-dependent section of E that satis�es21

(8.2) )
)t� = ∆̂� + F(�), �(0) ∈ Γ(M,K).

If every solution to the ODE

(8.3) da
dt = F(a), a(0) ∈ Kx

remains inKx whereKx = Ex ∩K, then the solution �(t) to the PDE remains in Γ(M,K).
Proof. See [3, theorem 4.8]. �

8.B. Convergence of metrics.

Theorem 8.3. Let g(t) be a smooth family of metrics on a closed manifoldM, de�ned for
t ∈ [0, T). If there exists a constant C < ∞ such that

(8.4) ∫
T

0

|||||||
)
)tg(x, t)

|||||||g(t)
dt ≤ C ∀x ∈ M,

then the metrics g(t) converges uniformly as t → T to a continuous metric g(T) such that

(8.5) e−Cg(x, 0) ≤ g(x, T) ≤ eCg(x, 0).
Note that this means g(T) is uniformly equivalent to g(0).
Proof. Clearly (8.4) implies

(8.6) e−Cg(x, 0) ≤ g(x, t) ≤ eCg(x, 0) ∀t ∈ [0, T).
We set

g(x, T) = g(x, 0) + ∫
T

0

)
)tg(x, t) dt.

With respect to the norm induced by the �xed metric g(0), using (8.6) one can easily
show that g(t) converges to g(T) uniformly onM, and hence g(T) is continuous. Then
by taking the limit of (8.6) we get (8.5). �

Theorem 8.4. Let g(t), 0 ≤ t < T, be a smooth family of metrics on a closed manifoldM,
and let ∇(t) be the Levi-Civita connection of g(t). Set

!(t) = )
)tg(t) and um(t) = sup

M
|∇m!(t)|g(t).

21We de�ne ∇̂X(! ⊗ s) = (∇X!) ⊗ s + ! ⊗∇Xs, and ∆̂� = trg∇̂∇�.
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If

(8.7) ∫
T

0
um(t) dt < ∞ ∀m = 0, 1, 2,⋯ ,

then g(t) converges uniformly in every Ck norm to a smooth metric g(T) as t → T.

Proof. One can refer to [2, proposition A.5] �

8.C. Closed and convex subsets of a �nite-dimensional inner product space.

Lemma 8.5. Let X be a �nite-dimensional inner product space, and let F be a closed,
convex subset of X. Suppose z ∈ X and y ∈ ProjF(z). Then

0 ≤ d(z̃, F)|y − z| + ⟨z̃ − y, y − z⟩ ∀z̃ ∈ X.

Proof. One can refer to [2, lemma 5.3]. �

8.D. Global geomtry.

Theorem 8.6 (Diameter theorem). Suppose that (Mn, g) is a Riemannian n-manifold. If

Ric ≥ (n − 1)Kg on B(p, r)
for some constant K > 0, then

diam(B(p, r)) ≤ �
√
K
.

8.E. Curvature estimates.

Lemma 8.7. Let (M, g) be aRiemannianmanifold. Then the knowledge of all the sectional
curvatures determines the curvature tensor. Speaking speci�cally, setting

�(X, Y) = R(X, Y, Y, X),
then we have

R (X, Y, Z,W) = �(X +W,Y + Z) − �(X, Y + Z) − �(W,Y + Z)
−�(Y +W,X + Z) + �(Y, X + Z) + �(W,X + Z)
−�(X +W,Y) + �(X, Y) + �(W,Y)
−�(X +W,Z) + �(X, Z) + �(W, Z)
+�(Y +W,X) − �(Y, X) − �(W,X)
+�(Y +W,Z) − �(Y, Z) − �(W, Z)

Proof. See [6, theorem 6.5]. �

Corollary 8.8. Given R ∈ CB(ℝn), then

R(e1, e2, e3, e4) ≤
2
3(Kmax − Kmin)

for all orthonormal four-frames {e1, e2, e3, e4} in Rn.

Proof. It directly follows from lemma 8.7. �
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Corollary 8.9. If given any � ∈ (0, 1), we can �nd a positive constant C = C(�) such that

Kmin(p, t) ≥ �Kmax(p, t) − C, ∀p ∈ M, ∀t ∈ [0, T),
then for each " > 0 we can �nd a positive constant C1 = C1(") such that

sup
M

|Ric◦g(t)| ≤ "Kmax(t) + C1 t ∈ [0, T)

Proof. Fix � ∈ (0, 1). Since Kmin|X ∧ Y|2 ≤ �(X, Y) ≤ Kmax|X ∧ Y|2, we know
�Kmax(p, t)|X ∧ Y|2 − C(�)|X ∧ Y|2 ≤ �(p,t)(X, Y) ≤ Kmax(p, t)|X ∧ Y|2

for all p ∈ M and t ∈ [0, T). Then the conclusion easily follows from lemma 8.7. �

Corollary 8.10. If we have

lim
t↑T

Kmin(t)
Kmax(t)

= 1

then for each " > 0, there exists � = �(") > 0 such that

|Ric◦|2 ≤ "
nscal

2 on M × [T − �, T)

Proof. Fix � ∈ (0, 1). Then there exists � = �(�) > 0 such that

Kmin(t) ≥ (1 − �)Kmax(t) ∀t ∈ [T − �, T)
which implies

(1 − �)Kmax(t)|X ∧ Y|2 ≤ �(p,t)(X, Y) ≤ Kmax(t)|X ∧ Y|2 ∀p ∈ M ∀t ∈ [T − �, T).
Then by lemma 8.7 one easily know that for each � ∈ (0, 1), there exists � = �(�) > 0
such that

Kmin(t) ≥ (1 − �)Kmax(t) ∀t ∈ [T − �, T),
and that

|Ric◦g(t)(p)| ≤ �Kmax(t) ∀p ∈ M ∀t ∈ [T − �, T).
Since

scalg(t)(p) ≥ n(n − 1)Kmin(t)
the conclusion follows. �

8.F. Isotropic curvature.

Lemma 8.11. Let R be an algebraic curvature tensor on V with non-negative isotropic
curvature, and let {e1, e2, e3, e4} be an orthonormal four-frame in V. Then

Iso(R)1234 = 0 ⟹ Iso(Q(R))1234 ≥ 0.

8.G. Results from complex linear algebra.

Proposition 8.12. Assume that dimℝV ≥ 4. Moreover, suppose that � is a complex two-
plane in Vℂ. Then there exists an orthonormal four-frame {e1, e2, e3, e4} ⊂ V and real
numbers �, � ∈ [0, 1] such that e1 + i�e2 ∈ � and e3 + i�e4 ∈ �.
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8.H. Tangent cone.

Lemma 8.13. Let X be an inner product space, let F be a closed, convex subset of X, and
let x(t), t ∈ [0, T), be a smooth path in X with x(0) ∈ F. Then
(1) If x(t) ∈ F for all t ∈ [0, T), then x′(0) ∈ Tx(0)F.
(2) If x′(0) lies in the interior of the tangent cone Tx(0)F, then there exists " ∈ (0, T) such

that x(t) ∈ F for all t ∈ [0, "].
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9. Appendix — Another approach of Hamilton’s maximum principle

9.A. Setting the scene for the maximal principle — the Uhlenbeck trick. By a
standard computation, under the Ricci �ow one has

(9.1)
)
)tRijkl = (∆R)ijkl + 2

(
Bijkl − Bijlk + Bikjl − Biljk

)

−
(
Rpi Rpjkl + Rpj Ripkl + RpkRijpl + Rpl Rijkp

)

where

(9.2) Bijkl = −RpijqRqlkp.

Naively we might try to apply theorem 8.2 to Rijkl. However, we can not treat ∆ as ∆̂,
since there is no obvious metric compatible with each ∇(t). Furthermore, the reaction
term are so hideous that the associated ODE is useless.
In the next we introduce theUhlenbeck trick. The idea is as follows.

(1) If we can �nd a smooth family of bundle isometries

�(t) ∶ (TM, g0) → (TM, g(t)),

then each new connection ∇(t) on TM which is given by

∇j(X) ∶= �−1∇j(�◦X)
is compatible with g0.

(2) We should �nd good �(t) such that the evolution equation of �∗Rm is good, which
ensures that the associated ODE is easy, and hence we can apply theorem 8.2.

Speci�cally, one should give �(t) by

(9.3) )
)t � = Ric◦�, �(0) = id,

where we regard the Ricci tensor as a (1, 1)-tensor.

Proposition 9.1. Formula (9.3) gives a smooth family of bundle isometries.

Proof. Note that

(9.4) )
)t � = Ric◦� ⟺ )

)t �
i
a = Ril �

l
a.

It follows that
)
)t (�(t)

∗g(t))ab =
)
)t �

i
a�
j
bgij = Ril �

l
a�
j
bgij + �iaRil �

l
bgij + �ia�

j
b(−2Rij) = 0.

We are done. �

Proposition 9.2. Each new connection ∇(t) on TM which is given by

∇j(X) ∶= �−1∇j(�◦X)
is compatible with g0.
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Proof. Note that

)j ⟨X, Y⟩g0 = )j ⟨�(t)◦X, �(t)◦Y⟩g(t)
=

⟨
∇j(�◦X), �◦Y

⟩
g(t) +

⟨
�◦X,∇j(�◦Y)

⟩
g(t)

=
⟨
�◦∇jX, �◦Y

⟩
g(t)

+
⟨
�◦X, �◦∇jY

⟩
g(t)

=
⟨
∇jX,Y

⟩
g0
+

⟨
X,∇jY

⟩
g0
.

We are done. �

Proposition 9.3. The evolution equation of �∗Rm is

(9.5) )
)tRabcd = (∆̂R)abcd + 2 (Babcd − Babdc + Bacbd − Badbc)

where Babcd is given by (9.2). Equivalently, suppose that {ek} is an orthonormal local frame;
then the evolution equation can be written as

(9.6) )
)tRabcd = ∆̂Rabcd + R2abcd + R♯abcd

where

R2abcd = RabefRcdef and R♯abcd = 2RaecfRbedf − 2RaedfRbecf.

Proof. By formula (9.1) and formula (9.4) one easily computes
)
)tRabcd = �ia�

j
b�
k
c �ld

[
∆Rijkl + 2

(
Bijkl − Bijlk + Bikjl − Biljk

)]
.

One can also easily show that [�∗(∆Rm)]abcd = (∆̂R)abcd and Babcd = (�∗B)()a, )b, )c, )d).
Then (9.5) follows. Clearly (�∗Rm)abcd = Rabcd satis�es the �rst Bianchi identity

Rabcd + Racdb + Radbc = 0.
Then (9.6) easily follows. �

Remark 9.4. Formula (9.6) simpli�es the reaction term, and hence the associated ODE
is also simpli�ed.

Up to now we have set the scene for the tensor maximum principle 8.2: We aim to
apply it to �∗Rm with respect to (⊗4T∗M, g0). The associated ODE of PDE (9.6) is

(9.7) d
dtQabcd = Q2

abcd + Q♯
abcd.

where

(9.8) Q2
abcd = QabefQcdef and Q♯

abcd = 2QaecfQbedf − 2QaedfQbecf.

De�nition 9.5. We call the ODE (9.7) theHamilton ODE.

9.B. Hamilton’s maximum principle for the Ricci �ow. In the next we give a basic
principle how we apply the tensor maximum principle to the Ricci �ow. The key point
is to derive an appropriate setK that is invariant under the Hamilton ODE.

De�nition 9.6. LetV be a �nite-dimensional vector space equippedwith an inner product.
We denote by CB(V) the space of algebraic curvature tensors on V, i.e. the space of
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multilinear forms R ∶ V × V × V × V → ℝ such that

R(X, Y, Z,W) = −R(Y,X, Z,W) = R(Z,W,X, Y) ∀X, Y, Z,W ∈ V
and

R(X, Y, Z,W) + R(Y, Z, X,W) + R(Z, X, Y,W) = 0 ∀X,Y, Z,W ∈ V.

Proposition 9.7. IfQ ∈ CB(V), thenQ2+Q♯ ∈ CB(V), whereQ2 andQ♯ are given by (9.8).

De�nition 9.8. We call a set F ⊂ CB(ℝn) is invariant under the Hamilton ODE, if for
any Q(t) solving the Hamilton ODE (9.7) on CB(ℝn) with Q(0) ∈ F we have Q(t) ∈ F, ∀t.

Lemma 9.9. Assume that F ⊂ CB(ℝn) is closed, convex, O(n)-invariant and invariant
under the Hamilton ODE. For each x ∈ M, we �nd a linear isometry22

Φx ∶ CB(ℝn) → CB(T∗xM)
and we de�ne

Kx ∶= Φx(F) ⊂ CB(T∗xM) ⊂ ⊗4T∗xM.
SettingK = ∪xKx, then
(1) K is independent from the choice of Φx;
(2) K is a subset of⊗4T∗M that is closed and convex in each �ber;
(3) K is invariant under parallel translation;
(4) Kx is invariant under the Hamilton ODE.

Proof. Since ℝn is equipped with the canonical inner product, the linear isometry
(
Φ̃x

)−1
◦Φx ∶ CB(ℝn) → CB(ℝn)

is an action induced by some g ∈ O(n). Then point (1) follows from theO(n)-invariance.
Point (2) is trivial. Since parallel translation keeps the inner product, then point (3)
follows from the O(n)-invariance. Point (4) holds since Φx is a linear isometry. �

Lemma 9.10. Assume that F ⊂ CB(ℝn) is O(n)-invariant. Suppose that g(t), t ∈ [0, T)
solves the Ricci �ow on some closed manifoldMn. For each (x, t) ∈ M × [0, T), we �nd a
linear isometry

Ψ(x,t) ∶ CB(ℝn) → CB(T∗xM, g(t))
and we de�ne

F(x,t) = Ψ(x,t)(F) ⊂ CB(T∗xM, g(t)) ⊂ ⊗4(TxM, g(t)).
Then F(x,t) is independent from the choice of Ψ(x,t).

Proof. Similar to lemma 9.9. �

Theorem 9.11 (Hamilton). Assume that F ⊂ CB(ℝn) is closed, convex, O(n)-invariant,
and invariant under the Hamilton ODE. Suppose that g(t), t ∈ [0, T) solves the Ricci �ow
on some closed manifoldMn. Then,

R(x,0) ∈ F(x,0) ∀x ∈ M ⟹ R(x,t) ∈ F(x,t) ∀x ∈ M ∀t ∈ [0, T).
22ℝn is equipped with the canonical inner product.
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Proof. By lemma 9.9 and the tensor maximum principle 8.2,

�(t)∗Rmx ∈ Kx ∀x ∈ M ∀t ∈ [0, T)
where �(t) is given by (9.3). Since �(t) is a bundle isometry, by lemmas 9.9 and 9.10,WLOG
we assume that the following diagram commutes

F ⊂ CB(ℝn)

F(x,t) ⊂ CB(TxM, gx(t)) Kx ⊂ CB(TxM, g0)

ΦxΨ(x,t)

�(t)∗

where each arrow is an isometry. Then we get the conclusion. �
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