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1. INTRODUCTION

To be continued.



2 Riemannian geometry

2. BASIC REVIEW OF RIEMANNIAN GEOMETRY
2.A. Basic settings.

Definition 2.1 (Affine connection). An affine connection V on thevector bundleE — M
is a map

V : T(M,TM) X T(M,E) - T(M,E), (X,s)VVys
such that forany X,Y € T(M,TM), s,t € '(M,E) and f € C®(M) one has
VixiyS = fVxs+ Vys,

and the Leibniz rule

Vx(fs+1t)=X(f)s+ fVxs+ Vgt.
Definition 2.2 (Curvature). The curvature RY of the affine connection V is defined as

(RVs)(X,Y) = [Vy, Vyls — Vix,y$
forX,Y e T(M,TM) and s € T'(M, E).
Proposition 2.3. In local charts (U, ¢, x') of M and local coordinates (U, %, e,) of E,

Vse, = Ffaeﬁ,

axt

B . .
where T are called the Christoffel symbols of the affine connection V. Moreover,
R' =R’ _dx' ® dx’ ® e* ® ¢;

ija
where

p g

I"
R A
ijo axi axj Jja =iy ia™ jy*

Theorem 2.4 (Existence of Levi-Civita connection). Let (M, g) be a smooth Riemannian
manifold. There exists a unique affine connection V which satisfies

X(Y,Z)=(VxY,Z)+(Y,VxZ) (metric compatible);

VyY -V, X =[X,Y]. (torsion free)
This connection is called the Levi-Civita connection of (M, g).
Proof. 1t holds that
2(VyY,Z)y =X (Y, Z)+ Y{(Z,X) - Z(X,Y)+ (X, Y], Z) — (X, Z],Y) = ([Y, Z], X).
O

Definition 2.5 (Riemannian curvature tensor). Let (M, g) be a smooth Riemannian
manifold and V be the Levi-Civita connection. The curvature tensor R : T'(M,TM) X
M, TM)XT'(M,TM) - T'(M,TM) of (M, g, V) is defined as

X,Y,Z)» R(X,Y)Z = [VX, VY]Z - V[X,Y]Z-

Proposition 2.6. In local coordinates (U, xV), for Levi-Civita connection we have

0 0 1
LR Ffjﬁ where Ffj = F’]?l. = Eg"l (8ig + 0,81 — 318;)) -
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Moreover, we have

I _ Al ! I [P I P _ !
Rij = aiij +0,I', — ijI‘ki + Fpiij and  Rijq = gpRiji'-

Remark 2.7. Sometimes we write Rfjk =R, jk’.
Theorem 2.8 (Properties of Riemannian curvature tensor). For Riemannian curvature
tensor we have the following properties.

(1) Symmetry and skew-symmetry:
RX,Y,Z,W)=—-R(Y,X,Z,W)=—-R(X,Y,W,Z) =R(Z,W,X,Y).

(2) The first Bianchi identity:
REX,Y,Z}L,W)=0 where R(X,Y,Z},W)=RX,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W).
(3) The second Bianchi identity:

(VR)(X,Y,Z}L,W,T)=0 where (VR)X,Y,Z,W,T)=(V4R)Y,Z,W,T)
Definition 2.9 (Sectional curvature). Let (M, g) be a Riemannian manifold. Given a two
dimensional subspace Il = span{X, Y} C T,M, we define by

RX,Y,Y,X) = RX,Y,Y,X)
XAY,XAY) [XPIY|]2—|{X,Y)?

K(I) =K(X,Y) =
the sectional curvature of T1.
Remark 2.10. K(IT) is independent from the choice of basis.

Theorem 2.11. Let (M, g) be a Riemannian manifold. Then the knowledge of all the
sectional curvatures determines the curvature tensor. Speaking specifically, setting

x(X,Y)=R(X,Y,Y,X),
then we have
RX,Y,Z,W) = xX+W,Y+2)—-xX,Y+2Z)—x(W,Y +2Z)

—x(Y+W,X+2)+x(Y,. X+ 2)+x(W,X + Z)
k(X +W,Y)+x(X,Y)+x(W,Y)

kX +W,Z2)+x(X,Z2)+x(W,Z)

+x(Y + W, X) —x(Y,X) — x(W,X)
+x(Y+W,2Z2)—x(Y,Z) —x(W, 2Z).

Definition 2.12 (Ricci curvature and scalar curvature). The Ricci curvature of (M, g) is
defined by

RIC(g) = R]kdxj ® dxk W]’lel’e R]k = g”Rijkl-
The scalar curvature of (M, g) is
S = tr Ric = g/*R)y.

Remark 2.13. Sometimes we write S = R = scal, and if we write S = R then the
Riemannian curvature tensor is denoted by Rm.
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Definition 2.14 (Induced connection). For any vector field X € T'(M,TM), the Levi-
Civita connection V induces a map

« :TM,®T"M @ @TM) - I'(M, ' T*M @ @TM), T+ V,T.
where

(VXT)(YI’ ’Yr’wla aws) = X(T(Yla ’Yrawls aws))

r

_ZT(YD“"VXYis"'aYr)wla“'aws)
S

_ZT(Yl,...’Yr,wl’...’waj’...,a)s)_

Proposition 2.15. In a local chart (U, x"), we have

a .
Vs — =T dxk.
ail oxJ ik

Definition 2.16 (Covariant derivative). LetT € T(M,® T*M ® QSTM). The covariant
derivative VT € T(M, @ "'T*M ® Q°TM) is defined by (VT)(X, ---) = (VxT)(---).

Proposition 2.17. It holds that

V T]l -Js — a TJl ]s Z F]m J1° " Jm=1Pim+1°""Js _ Fq TJl.]s

L=l Byl = iyl Gl iy
=1

Jie+Js
iq ey

Remark 2.18. Sometimes we write Vl-Tl.jll_'.'.'l.jS =T

v

Proposition 2.19. LetS e (M, Q' T*"M ® ®STM) andT € T(M, @*T*M @ @ T M) with

S = Sh Jsdxll ® ® dxlr ® - ® ® a
8st
0
] q1°+9b 1 a —
T = TP Pdxh @ @ dxPe @ 6xP1 ® @5

Set0 =S QT. Then

JiJssq1qp Jie+Js q1---qp
f1-4,p1" Pa 511 Iy Ty pys

and we have the Leibniz rule:

jl"'jqul"'Qb_ Ji++Js ‘h Qb Ji+Js 91 qp
Vlehlr,lhp V Sll l T Slllr V T **Pa”

Theorem 2.20 (Ricci identity for covariant derivatives). It holds that

r

JreeJs Ji- Js h “Jm=1PJm1-Js q gis
VleTi1~~.i, ViVi T ZRklp iq -y Rkli,Til-ni,_lqimmi,'
t=1

In particular,
Vklei - Vlkai = RlideP
and

ViVim, = V,\Viy; = —R;Sdiﬂs-
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Remark 2.21. V,V llelll’ is the component of V2T. Precisely, one has

axk axl = axl
axk

Vi VTl = (ViViT -V, iT) ( 4

2.B. Typical computations.

d

dxi’ Oxir

,dle,...,dxjs)_

Example 2.22. See [Xiob] for some typical examples of computations.

To be continued.
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3. PULLBACK BUNDLE, PULLBACK METRIC AND PULLBACK CONNECTION

3.A. Pullback bundles. Let f : M — N be a smooth map, and let E ~, N be a smooth
vector bundle. Then

JE={(p,up) e M XE : f(p) =7(up)} CM XE

with 7 ;(p,u;) = p fomrs a smooth vector bundle over M, and f*E is an embedded
submanifold of M X E. For more basic properties of pullback bundles such as the
universal property, one can refer to [Xioa].

3.B. Pullback metrics and pullback connections. For any (local) section e of E, its
induced (local) section of f*E is given by

e(x) = (fe)(x) 1= (x,e(f(x))).

Clearly, if (e,) is a local frame of E, then (€,,) is a local frame of f*E. Let (x') and (y*) be
local coordinates of M and N respectively.

(1) If there is a metric g on E, then the pullback metric gon f*E is @ = f*g. That is,
g (€4, 2p) (x) = g (e, ep) (f(X)).
(2) If the affine connection V on E is given by
Ve, =T7 dy* @ ez,
then the pullback connection V on f7E is given by

af*
oxi
Remark 3.1. For convenience, we also set ffw = (x,w) € f*E C M X E for w € Ey,.

(3.1) Ve, = f*(Vey) 1= f* (I, dy*) ® fres =

-Tg of - dx' ® ég.

Proposition 3.2. The pullback connection Visan affine connection.

Proof. More precisely, the pullback connection V is defined in the following two steps:
(1) Set Ve = f*(Ve) for any section e of E.
(2) SetV (he, +&,) =dh ® e, + Ve, for all h € C*(M) and sections e, e, of E.
To show that V is a well-defined affine connection, we need to show that the expression
f*(Ve) is globally defined, and that (1) and (2) are compatible.
On the one hand, note that
fx)

Q%@ﬂ@fﬂvﬁaym=fﬂ@ﬂm)®<mvi

ay«

It follows that
£y £ (Vce)
ay«

is independent of the choice of (y'). Hence f* (Ve) is globally defined.
On the other hand, clearly we have he = hof - e, and to show that (1) and (2) are
compatible we need to show that

f*(V(he)) = d(hof) ® €+ hof - Ve.
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Note that
f*(hVe) = hof - f*(Ve) = hof - V&
and hence
f*(V(he)) = f*(dh @ e + hVe) = d(hof) ® &+ hof - V&
We are done. O

Corollary 3.3. In general, we have

~ R oh4 af“
(3.2) Vi (hAeA) - W N eA + hA axi

oxt
Proof. 1t follows from proposition 3.2 and formula (3.1). OJ

* Fngf * é\B'

Proposition 3.4. There are some basic formulas about pullback connections.
(D (fre)(x) = fx (e(f(x))) for any (local) section e of E.
(2) f*(h-e)=hof - f¥e, forany h € C*(N) and for any (local) section e of E.
(3) filc-w)=c- fiw, forany w € Ey, and forany c € R.
(4) For any (local) section e of E, and for any v € T, M, there holds
(3.3) V&= fi(Vy.e)
Proof. Claims (1) (2) (3) are trivial. For (4) we note that
(PN = (f (@ V2 e))©
yUt

a4

V.,e

gy«

df()- f (vi

e) =13 (df"‘(v) V.
oy* | f(x)
= Jx (de“(f*v)i

]

£
e) = fi(Vs.e).

OV f(x)

where f* = y*of. We are done. U
Corollary 3.5. There holds

(3.4) \Y alé\=

Proof. 1t follows from proposition 3.4 that

e=1r (Vf*<i

(ﬁia) =9

dxt axi

axt

f* ]
axl—(p)'fp<vi

)6) = 0 e) .
P % 1f(p)

We are done. O

p

Remark 3.6. Formula (3.3) gives us an intuitive understanding of pullback connection.
However, since in general case, d foX can not be regarded as some element in I'(N, TN),
We need to build formulas like (3.4) with the help of coordinates.

3.C. Pullback curvature.

Definition 3.7. Let f : M — (N, gy, V) be a smooth map. The curvature tensor R of
the induced connection V on the vector bundle f*TN — M is given by

é\(X, Y, S, t) - g\(@Xﬁys - §Y§XS - @[X)Y]S, t) .
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Generally, let f : M — N be a smooth map, and let E — N be a vector bundle equipped
with a metric g and an affine connection V. Then the curvature tensor R of the induced
connection V on the vector bundle f*E — M is given by

R\(X, Y, S, t) = g\(@Xﬁys - ﬁyﬁxs - @[X,Y]S, t) .

Proposition 3.8. Let f : M — (N, gy) be a smooth map. Then R € T(M, T*M @ T*M ®
f*TN ® f*TN) can be written as

R=R,dx' ®@dx' @& ®@¢°
where

R afdfP
Rurs = Ragro g3 57

and R, is the component of the curvature of (N, VN, gy).

Remark 3.9. To be more precisely,

of of*

Rijy6 = Rocﬁy5of ’ Waxj'

Proof. By corollary 3.5 we know

Oxioxi
92 fF
axidxi
It follows that

_ §< i e Vay%ey>+7ﬁ£ (f*
)
)

(
_ oF 8 (vae
(

Rys0) =8 (92 9:2.) (0) - 8(9 2 9:6,8) () = 22— (p) Ry (0)

axt axJ oxJ oxt
in which we use that g = f*g as we introduced in subsection 3.B. OJ

Remark 3.10. Similarly, the above conclusions also hold for a general vector bundle E.

Proposition 3.11. Let f : M — N be a smooth map, and let E — N be a vector bundle
equipped with a metric g. Then we have

~(d 08 )\ _of*aff . g 0
(3.5) R(aa>— o <R<ay“’ayﬁ’e>>

Pointwisely, we have
36)  Ruwwvw)=fiR(fufoa@)) YuveT,M VYoe(f'E),
wheren . f*E — E, (p,u) — u.
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Proof. 1t follows from remark 3.10 that

(K d)) = L el

_[of*afF g 0 ~
= —~_.f*(R -
f(LL 1 (o2 29) )

Then (3.5) follows. Since R € T' (M, T*M ® T*M ® (f*E)" ® f*E), (3.6) follows. O

Corollary 3.12. There holds

Vi (f (G = an(Fesw) 7 (5 (5 )
e\ \axi’axi> )] T axk \ axi axi dy«’ a ays’

T (v (k)
A Y R
Toaxaan ! Ve \R\Ge a8

Proof. 1t follows from (3.4) and (3.5). O

(3.7)

3.D. Pullback metric and pullback connection for tangent bundle. Let f : M —
(N, gy) be a smooth map. We apply subsection 3.B to the tangent bundle TN equipped
with the Levi-Civita connection VV. Then we derive the pullback metric g and the
pullback connection V on the pullback bundle f*TN.

Speaking specifically, on local charts (U, x;) of M and (V, y*) of N, setting

— a > — % i 2 f* a
e“_ay“’ e,=f (dy“) and e* = f*(dy%),

then (e,,) forms a local basis of f*TN. It follows that g'is given by
§=8,4"Q®¢
where
8.5(p) =8(€,,23) (p) = 8. (f (D)),
and that V is given by
o aff

Vea ==
ox!
In general, by corollary 3.5, we have
o (ra eof O\ _ ORT . off -
B8 Vg (h f <6y°‘>> =) <ay°‘> thiae Tl 1 (6y7>
Moreover, the pullback connection is compact with the pullback metric.

Fzﬁof CdxX'® é\},

Proposition 3.13. Let V¥ be the Levi-Civita connection on TN. The induced connection
V is compatible with g; i.e. forany X € T(M,TM), s,t € T(M, f*TN) one has

(3.9) X(g(s,t)) = (VXS t) +g<s Vit )

Proof. Since V is an affine connection (proposition 3.2), it suffices to show that

0 (@up) = 8(V.80. (D)) + & (2(). 9.85)
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for all a, 8 and v € T, M. Note that by proposition 3.4 we know

g\(@ué\zx’ é\,(%(p)) = g\(f;; (Vf*veoc) s é\ﬁ(p)) =8 (Vf*veow eﬁ) (f(p))

Similarly we have

g\(é\a(p)a 6vé\ﬁ) =8 (ea’ Vf*veﬁ) (f(p))
Since V = V¥ is the Levi-Civita connection, it follows that

(V.80 8(p)) + 8(8u(p), V.8s) = (£.0) (Bap) = 0 (8g) -

We are done. OJ

3.E. Revisit the global differential; pushforward of vector fields. Let f : M - N
be a smooth map. In the next we revisit the global differential d f.

(1) We have proved in [Xioc] thatdf : TM — TN is smooth, and hence
df : TM - MXTN, X, (p,df,(X,))

is smooth.

(2) As we mentioned in subsection 3.A, f*E is an embedded submanifold of M X E, and
hence f*TN is an embedded submanifold of M X TN.

(3) Note that im (df) c f*TN. It follows from point (2) that df can be regarded as a
smooth map from TM to f*TN.

(4) By definition, it’s clear that df a smooth bundle homomorphism over M. In
particular, df = dx' ® f, (%) eI'(M, T*M ® f*TN).

Remark 3.14. If there is no misunderstanding, we sometimes identify df with df.

Using the smooth bundle homomorphism df : TM — f*TN, we can define the
pushforward of vector fields.

Definition 3.15 (Pushforward of tangent vector fields). For any X € T'(M,TM), the
pushforward of X is defined as f . X :=dfoX € (M, f*TN).

Proposition 3.16. Let f : M — N be a smooth map. Then

(D f.(h-X)=h- fXforanyX € T(M,TM) and h € C*(M);

@ (f.X), = [ (df,(X,)) forany X € T(M,TM);
(3) On charts (U, x") and (V, y*) with f(U) C V, we have

(2L ()

Proof. Claim (1) is trivial. For (2) we note that
(f*X)p = (pa dfp (Xp)) = f; (dfp (Xp)) .
Using proposition 3.4, it follows that
0 e 9 _*df“_a _5f°‘.*a
(), =540 (5l ) = 5 (G 5l ) = 3@ (1 (55)) @

Then (3) follows. O
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Remark 3.17. It follows that
T afa i * d
(3.11) df = 5 -dx'Q® f <aya>'

Corollary 3.18. Let f : M — N be a smooth map. Then

a1 (o) -xil ().

Proof. 1t follows immediately from proposition 3.16. 0J

3.F. The second fundamental form.

Definition 3.19. Let f : (M,gM, VM) — (N, gV, V¥) be a smooth map between two

Riemannian manifolds,' and V be the affine connection on f*TN induced by (TN, VN, gM).
Forany X,Y € T(M,TM), we define

BX,Y) := Vi (f.Y) = f.(VMY) € I(M, f*TN).
It is called the second fundamental form of f : (M, g") — (N, g").

Proposition 3.20. Let f : (M,g) — (N,h) be a smooth map and V be the affine
connection on the vector bundle T*M ® f*TN induced by Levi-Civita connections VM and
VN. Then

B =Vdf
where df is regarded as a smooth section in (M, T*M ® f*TN).

Proof. By formulas (3.10) and (3.11) we know that
df = dx! ®f*< ) el'M, T"M @ f*TN).
It follows that

TN = (ax @9 (r. () + () @ . (=)) 0

= v () Hxr s () - @) 1 ()

= U (v () - £ O =T - £.0)

where Y = dx!(Y). We are done. O

Proposition 3.21. Let f : (M,gM) — (N, g") be a smooth map. Then B € T(M,T*M ®
T*M @ f*TN) is symmetric, i.e.

B(X,Y) = B(Y, X),
and

(3.13) B= ( o o Of e

Oxidx) = dxi dxJ 51’

fOC

of =TI}

i j * d
3k )dx@dxf@)f( )

dy«
where Fﬁ.‘j and I“’; gare Christoffel symbolds of g™ and gN respectively.

LyM and VN are Levi-Civita connections.
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Proof. Suppose that X = X i and Y = Yf— By formula (3.12), we know

(e xrs) Lo ().

(314) f4< (VXY) = axk aya

By formulas (3.8) and (3.12) , we know

(3.15) ﬁx(f*Y)=( axi < afj) X! J?{jafj Ly f) fﬁ(@yd)

Then the conclusion follows. O

Corollary 3.22. Forany X,Y € I'(M,TM), we have

(3.16) Vi (£ ) = Vy (£.X) = £, (V) = . (VyX) = £, (X, YD).
Proof. The first equation is equivalent to that B is symmetric, and the second equation
just uses the property of Levi-Civita connection. U

Corollary 3.23. Let a(u',u®,u®) : I, X I, x I, —» (M, g) be a smooth map, where the I,’s
are intervals, and let V be the pullback connection of the Levi-Civita connection on M. Then

)= R
Vaa. (auf) V%“*(W‘) L

Definition 3.24. Given a smooth map f : (M,g) — (N, h), the Laplacian is given by
Agnf = tr,B € T(M, f*TN).

Proposition 3.25. If f : (M, g) — (N, h) is a smooth map, then

y 32 f afﬁaf}’ " af
(3.17) (Agahf)y =g’ (5xiaxf T Xt ox nlg,of = (Fg)?j axk>

Iff : (M,g) — (N, h) is, in addition, a diffeomorphism, then
(318)  (Agaf) == [(T), of = (Tlof | where g=(f"g.

Proof. To be continued. (Exercise.) O

3.G. Isometric immersions. Let (M, g, 6) be a Riemannian manifold, and let f :
M — M be an immersion. Basically, we know:
(1) By subsection 3.B, (TM, g, §> induces (f*TM,gr\, ?),

(2) g induces a Riemannian metric g = f*g, and g induces a Levi-Civita connection V.

Proposition 3.26. Let f : M — (M, §) be an immersion. Then

(3.19) gX,Y)=8(f.X,£.Y), X,Y € (M, TM).
Moreover, under the normal convention, we have
A __ af“of* .
and
- f f g
8ij(P) =8, 3 P
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Proof. Trivial. U

In the next we introduce some non-trivial facts, which are based on the fact that the
bundle homomorphism d f over M has constant rank.
Proposition 3.27. Let f : M — (M, §) be an immersion. Then the smooth bundle

homomorphism d, f : TM — f*TM over M, which is introduced in subsection 3.E, has
constant rank. It follows that

f.(TM) :=im (df) = | ] im (df,)

PEM
is a subbundle of f*TM. Moreover, there exists a subbundle T*M of f*TM such that
(3.20) f*TM = f.(TM) ® T*M
where the orthogonal decomposition is with respect to the Riemannian metric g on M.

Proof. Since f is an immersion, clearly df has constant rank. By theorem 5.4 we know
f+(TM) is a subbundle of f*TN. In the next we prove the last assertion.
SetE = f*TM and F = f,(TM). Then we consider the map

®:E—-E, e, ProjFp(ep)

where Proj .. isthe projection map from E, to F, with respect to @... It’s easy to see that ®
.]Fp proj p p p P 8p Yy

is a smooth bundle homomorphism over M.” Clearly @ is of constant rank. By theorem
5.4 again, we know that

ker® = U Fy
PEM
is a subbundle of E. Clearly ker ® = T M is as required. OJ

Proposition 3.28. Let f : M — (M, §) be an immersion. Using the function ® in
proposition 3.27, then we have

(3.21) cp(@x( f*Y)) = f,.VyY, VX,Y € (M, TM).
In particular, (3.21) shows how V induces V.

Proof. For convenience, first we set

O(X,Y) = @ (@X( f*Y)> :

Since f is an immersion, f,.(VxY)induces VY. Then by the uniqueness of Levi-Civita
connection, proposition 3.16 and formula (3.19), to show (3.21) it suffices to verify that
forallX,Y,Z € I'(M,TM) and h € C*(M) we have the following points:

(1) ®hX +Y,2) = hd(X,Z) + (Y, Z);

2) X, hY +Z)=Xh)- f.Y + h-®(X,Y) + (X, 2);

(3) X (g(Y,2)) = g(2(X,Y), f,.2) + (.Y, P(X, 2));

4) 2X,Y) - (Y, X) = f. (X, YD]).

2This easily follows from the local frame criterion for subbundles and the fact that the rank of a linear map
does not decrease under perturbation,
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Claims (1) and (2) are trivial, which follow from proposition 3.2 and proposition 3.16.
For (3), note that by proposition 3.13, formula (3.19) and proposition 3.27 we have

X@Y,2) = X@U.Y£.2) =8(Vx(1.V). £.2) + &(1.Y. Vx(£.2)
= g(o(Vx(.1). 1.2) +&(1.Y,2(Vx(1.2))
= §(@X.Y), f.2) + 8(f.Y,2(X,2)).
For (4), note that by corollary 3.22 and proposition 3.27 we have
BX, V) — 0¥, X) = @ (Vy (£.1) = ¥y (£.20) = @ (£.(X, YD) = £.(X, Y.
We are done. O

Corollary 3.29. Let f : (M, g,) — (N,gy) be an isometry. Then B = 0.

Proof. Since f is an isometry, dim f,(TM) = dim f*TN, and hence the map ® given by
proposition 3.27 is the identity map. It follows from corollary 3.28 that B = 0. U

Corollary 3.30. Let f : M — (M, g) be an immersion. Forany X,Y,Z € T(M,TM),
g\(B(X, Y), f.Z) =0.
In particular, we have
Belr(M,T*"M @ T*"M ® T*M)

and B is called the second fundamental form of the immersion [ : M — (1\_/[ , §>.

Proof. 1t follows from proposition 3.27 and proposition 3.28 that

EBXY),£.2) = E(Vx(f.Y) = f.(VxY), f.2)

= g(e(Vx(f.) - £.(VxY), f.Z) = 0.

Then the conclusion follows from proposition 3.27. O
Corollary 3.31 (Gauss). Let f : M — (M, §> be an immersion. For any X,Y,Z,W €
I'(M,TM), we have
RX,Y,Z,W)—R(X.,Y, f.Z, f.W) = 8(B(Y, Z),B(X,W)) — 8§(B(X, Z), B(Y,W)).
In particular

RX,Y,Y,X)-R(X,Y,f.Y,f.X)=8(BX,X),B(Y,Y)) - 8§(B(X,Y),BX,Y)).

Proof. Note that
ViVy(f.2) = Vi (fu(VyZ) + B(Y, 2)) = f.(VxVyZ) + B(X, VyZ) + Vx (B(Y, 2))
and similar we have
VyVx(f.2) = f. (VyVx2) + B(Y, VxZ) + Vy (B(X, 2)).
On the other hand, we have

Vieri(f2) = f. (VixniZ) + B(IX, Y], 2).
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It follows from corollary 3.30, proposition 3.13 and formula (3.19) that
RX.Y,f.Z,f.W)

= RIX,Y,Z,W)+§(Vx (B(Y,2) + ¥y (BKX,2)), f.W)

= R(X,Y,Z,W)-§(B(Y,2),9x(f.W)) - &(BX, 2), Uy (f.W))

= RIX,Y,Z,W)—-g(B(Y,Z),B(X,W))—-g(BX,Z2),B(Y,W)).
We are done. O
3.H. Revisit isometric immersions via extensions.
Lemma 3.32. Let f : M — (M, g) be an immersion. Then forany T € T(M, f*TM) and
P € M, thereexistT € T (M, TM) and a neighborhood U of p with

T=f*T on U.

The vector field T is called the the extension of T on U.
Proof. One can refer to [Leel3] lemma 8.6. O

Remark 3.33. In particular, for X € I'(M,TM), f,X has an extension X. The vector
field X is also called the extension of X on U.

In the next we introduce some new properties based on lemma 3.32.
Proposition 3.34. Let f : M — (M, §) be an immersion, let X € I'(M,TM) and t €
I'(M, f*TM), and let X, T be extensions of X, T on U respectively. Then
(3.22) @XT = f*(VzT) on U.
Proof. Proposition 3.4 yields
Vi, = Yy, (1D = 3 (Vx,,7) = /" (VD) |
Then the conclusion follows. OJ

Remark 3.35. If we denote the projection from T f(p)M todf,(T,M) with respect to g o)
by @, then proposition 3.28 and proposition 3.34 yield

(3.23) <T><f* (V£Y) L,) = df, (VXPY).

The following proposition shows that extensions gives us a good perspective to deal
with the curvatures. (Don’t confuse it with Gauss formula 3.31.)

Proposition 3.36. Let f : M — <M, §> be an immersion, let X,Y € T'(M,TM) and
T € (M, f*TM), and let X, Y, T be extensions of X, Y, T on U respectively. Then
(3.24) RX,Y,r)=f*(R(X,Y,7)) on U.
Proof. Formula (3.6) yields that
ﬁ(Xa Y9 T) |p = f;; (R (dfP(XP)’ dfP(YP)’ F(TP)))

= [ R0 Yioy Trp)) = £ (R(X,Y,7)) | .

We are done. O
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3.I. Regular surfaces. Let S C R?* be a regular surface, andlet¢ : U - D C R*be a
local trivialization of S. Then we have the immersion

y=iog™ : D5 s LR,
Let g = g, = 8,3dy* ® dy” be the standard metric on R*. Let u' = u and u*> = v be the
coordinates on D. Then we have

aya i * a
G ®Y (ay“)’

and the induced Riemannian metric g, = y*g satisfies

dy* ayf .
= _— t J
gp = Oqg 30 3 du' @ du’.
The induced metric g, is also called the first fundamental form of the surface S.

Moreover, by proposition 3.27, there exists an orthogonal decomposition

d =

y*TR3 =y,(TD) @ T'D.

By choosing sufficiently small U if necessary, we assume that T1D is trivial. Let n be a
unit section of 71D, and we set

B,(X,Y) =g(B(X,Y),n)
where g'is the pullback metric. Then B, € T'(M, T*M ® T*M) is the second fundamental

form along n of the surface S.

Proposition 3.37. There holds
o 0 [ 0
.2 B s s :: B — — = . * .
(3 5) ( n)l] n(aui’ auj) g(aulauj 7/ (aya)’n>

Proof. Since (M, §) = (R3,g,), it follows from proposition 3.21 that

o 0 a2y~ 5] dy“ &)
m (2 2V a2 (2) - ().
”<6ul 6u1> g(axldxl ¥ <6y“> gk Y Ay« n

By corollary 3.18 we know

ay“ 0
k *
Fif_axk -y <_ay“> ey, (TD).

Then the conclusion follows from proposition 3.27. OJ

Remark 3.38. That is, with the conventions in the classical differential geometry,

L=(Fuil), M={Fu i), N=(Rpi).
Moreover, we have the Gauss’s Theorema Egregium.

Theorem 3.39 (Gauss’s Theorema Egregium). The Gauss curvature defined as

_detIl

(3.26) = ol
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is the sectional curvature of (D, gp), i.e.
R(X,Y,Y,X)

2
X1z, 1Yz, — |gp(X, V)|
for any linear independent vectors X,Y € I'(D, TD).

K =

Proof. 1t follows from Gauss formula 3.31 that
= B,(X,X)-B,(Y,Y)-B,X,Y):B,(X,Y).

Set X = aa—l andY = 65—2 Then the conclusion follows. O
u u

3.J. Summary of formulas. For pullback bundle f*E, we have

o o of A
Ve (W8) = G @t higg Tawef &,
ﬁvé\ = fx (Vf*ve) ,
A a @
Vb = S (Vay%e>

e R - R U
Rw,v,0) = f3R(fu [0, 7).

In particular, for E = TN we have

6ai (ha'f*<6i“>) - adil: f*<5y“> “ﬁ °f f*(ayy)
X(@E(s,t) = g(VXs t) +g<s Vit
a = aj: l®f*(

Ve (fY) = (x (v af“) xiys 2 of).f*< °),

dxi dxJ dxi dxJ Loy dy«

Xt Oxk

fo(VxY) = (X %Y XlYJFk>afa f*(aia),

. ooy affaf K i o d @ £ (2
B VU= = <3xi6xi+ oxt o &0 T Tgr [ @AV @] <5y°‘>’

Vs (FN) = Ve (£.X) = f.(VxY) = £ (VyX) = £, (IX, Y]).
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For isometric immersions, we have

gX,Y) = g(f.X,f.Y),
f*TM = f(TM)®T*M,

®(Vi(f.V)) = f.VxY,
RX,Y,Z,W)-R(X,Y,f.Z,f W) = gB(Y,Z),BX,W))—g(BX,Z),B(Y,W)),
and via extensions we have
Vit = f*(V5T) on U
& ( £+ (V£7) Qp) = df,(Vx,Y)
RX,v,7) = f*(R(X,Y,7)) on U.

For regular surfaces, we have

Jd 0 [ %" . 0
B"(ﬁ’ﬁ) = g(@uiauj.y (ByOC)’n)’

detIl
detl”
One can look for the numbered formulas in section 3 to get their details.
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4. THE EXPONENTIAL MAP OF RIEMANNIAN MANIFOLDS
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5. APPENDIX

5.A. Subbundles. This subsection is copyed from [Xioc].

Definition 5.1 (Bundle homomorphism). If 7 : E - M and ' : E' — M’ are vector
bundles, a continuous map F : E — E’ is called a bundle homomorphism if there exists
amap f : M — M’ satisfying 7'oF = fox with the property that for each p € M, the
restricted map F | g, P Ep— E}(p) is linear.

The relationship between F and f is expressed by saying that F covers f.

Remark 5.2. Usually, all maps are assumed to be smooth.

Definition 5.3 (Bundle homomorphism over M). In the special case in which both E and
E’ are over the same base space M, a bundle homomorphism covering the identity map of
M is called a bundle homomorphism over M.

Theorem 5.4. Let E and E’ be smooth vector bundles over a smooth manifold M, and let
F : E — E' be a smooth bundle homomorphism over M. Define subsets ker F C E and
imF C E’ by

ker F = U ker(F|Ep), imF = U im(F|Ep).

PEM pPEM

Then ker F and imF are smooth subbundles of E and E’, respectively, if and only if F has
constant rank.’

Proof. Clearly we only need to show the sufficiency. Then the conclusion easily follows
from the local frame criterion for subbundles ([Leel3] lemma 10.32) and the fact that
the rank of a linear map does not decrease under perturbation. One can refer to [Leel3]
theorem 10.34 for details. OJ

5.B. Linear algebra.
Proposition 5.5. For A € M™" and ¢ sufficiently small, there holds
(I+cA) P =1—cA+ 0(e?).
Proof. Just use the Taylor expansion of B — B~! near the point B = I. U

Lemma 5.6. For a complex matrix A € M™", we have
detl —A) =LA —=21) (A —=21,) =1"=5,(A) - A" 1+ - + (—=1)"s,(A).
where s,(A) = tr(A) and s,(A) = det A. Moreover,
s(cA) = cks,(A), Ve eC.
Proof. Trivial. OJ

Proposition 5.7. For A € GL(n,R) and ¢ sufficiently small, there holds
det(A + eB) = det(A) - (1 + tr (A7'B) e + O(£?))..

3For each p € M, the rank of the linear map F| E, is called the rank of F at p. We say that F has constant
rank is its rank is the same for all p € M.
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Proof. Note that
det(A + eB) = det(A) - det (I + eA™'B) = det(A) - &" - det (%I — (—A—lB)>

Then the conclusion follows from lemma 5.6.
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