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1. Introduction

To be continued.



2 Riemannian geometry

2. Basic review of Riemannian geometry

2.A. Basic settings.

De�nition 2.1 (A�ne connection). Ana�neconnection∇ on the vector bundleE → M
is a map

∇ ∶ Γ(M, TM) × Γ(M, E) → Γ(M, E), (X, s)∇∇Xs

such that for any X,Y ∈ Γ(M, TM), s, t ∈ Γ(M, E) and f ∈ C∞(M) one has

∇fX+Ys = f∇Xs + ∇Ys,

and the Leibniz rule

∇X(fs + t) = X(f)s + f∇Xs + ∇Xt.

De�nition 2.2 (Curvature). The curvature R∇ of the a�ne connection ∇ is de�ned as

(R∇s)(X, Y) = [∇X, ∇Y]s − ∇[X,Y]s

for X,Y ∈ Γ(M, TM) and s ∈ Γ(M, E).

Proposition 2.3. In local charts (U, �, xi) ofM and local coordinates (U,  , e�) of E,

∇ )
)xi
e� = Γ�i�e�,

where Γ�i� are called the Christo�el symbols of the a�ne connection ∇. Moreover,

R∇ = R�ij�dx
i ⊗ dxj ⊗ e� ⊗ e�

where

R�ij� =
)Γ�j�
)xi

−
)Γ�i�
)xj

+ Γ
j�Γ
�
i
 − Γ
i�Γ

�
j
.

Theorem 2.4 (Existence of Levi-Civita connection). Let (M, g) be a smooth Riemannian
manifold. There exists a unique a�ne connection ∇ which satis�es

X ⟨Y, Z⟩ = ⟨∇XY, Z⟩ + ⟨Y,∇XZ⟩ (metric compatible);

∇XY − ∇YX = [X,Y]. (torsion free)

This connection is called the Levi-Civita connection of (M, g).

Proof. It holds that

2 ⟨∇XY, Z⟩ = X ⟨Y, Z⟩ + Y ⟨Z, X⟩ − Z ⟨X, Y⟩ + ⟨[X, Y], Z⟩ − ⟨[X, Z], Y⟩ − ⟨[Y, Z], X⟩ .

�

De�nition 2.5 (Riemannian curvature tensor). Let (M, g) be a smooth Riemannian
manifold and ∇ be the Levi-Civita connection. The curvature tensor R ∶ Γ(M, TM) ×
Γ(M, TM) × Γ(M, TM) → Γ(M, TM) of (M, g,∇) is de�ned as

(X, Y, Z) ↦ R(X, Y)Z = [∇X, ∇Y]Z − ∇[X,Y]Z.

Proposition 2.6. In local coordinates (U, xi), for Levi-Civita connection we have

∇ )
)xi

)
)xj

= Γkij
)
)xk

where Γkij = Γkji =
1
2g

kl ()igjl + )jgil − )lgij
)
.
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Moreover, we have

Rijkl = )iΓlkj + )jΓlki − ΓlpjΓ
p
ki + ΓlpiΓ

p
kj and Rijkl = gplRijkl.

Remark 2.7. Sometimes we write Rlijk = Rijkl.

Theorem 2.8 (Properties of Riemannian curvature tensor). For Riemannian curvature
tensor we have the following properties.
(1) Symmetry and skew-symmetry:

R(X, Y, Z,W) = −R(Y,X, Z,W) = −R(X, Y,W, Z) = R(Z,W,X, Y).

(2) The �rst Bianchi identity:

R({X, Y, Z},W) = 0 where R({X, Y, Z},W) = R(X, Y, Z,W) + R(Y, Z, X,W) + R(Z, X, Y,W).

(3) The second Bianchi identity:

(∇R)({X, Y, Z},W, T) = 0 where (∇R)(X, Y, Z,W, T) = (∇XR)(Y, Z,W, T)

De�nition 2.9 (Sectional curvature). Let (M, g) be a Riemannian manifold. Given a two
dimensional subspaceΠ = span {X, Y} ⊂ TpM, we de�ne by

K(Π) = K(X, Y) =
R(X, Y, Y, X)
⟨X ∧ Y,X ∧ Y⟩

=
R(X, Y, Y, X)

|X|2|Y|2 − | ⟨X, Y⟩ |2

the sectional curvature ofΠ.

Remark 2.10. K(Π) is independent from the choice of basis.

Theorem 2.11. Let (M, g) be a Riemannian manifold. Then the knowledge of all the
sectional curvatures determines the curvature tensor. Speaking speci�cally, setting

�(X, Y) = R(X, Y, Y, X),

then we have

R (X, Y, Z,W) = �(X +W,Y + Z) − �(X, Y + Z) − �(W,Y + Z)
−�(Y +W,X + Z) + �(Y, X + Z) + �(W,X + Z)
−�(X +W,Y) + �(X, Y) + �(W,Y)
−�(X +W,Z) + �(X, Z) + �(W, Z)
+�(Y +W,X) − �(Y, X) − �(W,X)
+�(Y +W,Z) − �(Y, Z) − �(W, Z).

De�nition 2.12 (Ricci curvature and scalar curvature). TheRicci curvature of (M, g) is
de�ned by

Ric(g) = Rjkdxj ⊗ dxk where Rjk = gilRijkl.

The scalar curvature of (M, g) is

S = trgRic = gjkRjk.

Remark 2.13. Sometimes we write S = R = scal, and if we write S = R then the
Riemannian curvature tensor is denoted by Rm.
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De�nition 2.14 (Induced connection). For any vector �eld X ∈ Γ(M, TM), the Levi-
Civita connection ∇ induces a map

∇X ∶ Γ(M,⊗rT∗M ⊗⊗sTM) → Γ(M,⊗rT∗M ⊗⊗sTM), T ↦ ∇XT.

where

(∇XT)(Y1,⋯ ,Yr, !1,⋯ , !s) = X (T(Y1,⋯ ,Yr, !1,⋯ , !s))

−
r∑

i=1

T (Y1,⋯ ,∇XYi,⋯ ,Yr, !1,⋯ , !s)

−
s∑

j=1

T
(
Y1,⋯ ,Yr, !1,⋯ ,∇X!j,⋯ , !s

)
.

Proposition 2.15. In a local chart (U, xi), we have

∇ )
)xi

)
)xj

= −Γjikdx
k.

De�nition 2.16 (Covariant derivative). Let T ∈ Γ(M,⊗rT∗M⊗⊗sTM). The covariant
derivative ∇T ∈ Γ(M,⊗r+1T∗M ⊗⊗sTM) is de�ned by (∇T)(X,⋯) = (∇XT)(⋯).

Proposition 2.17. It holds that

∇iT
j1⋯js
i1⋯ir

= )iT
j1⋯js
i1⋯ir

+
s∑

m=1

Γjmip T
j1⋯jm−1pjm+1⋯js
i1⋯ir

−
r∑

l=1

ΓqiilT
j1⋯js
i1⋯il−1qil+1⋯ir

.

Remark 2.18. Sometimes we write ∇iT
j1⋯js
i1⋯ir

= Tj1⋯js
i1⋯ir ;i

.

Proposition 2.19. Let S ∈ Γ(M,⊗rT∗M⊗⊗sTM) and T ∈ Γ(M,⊗aT∗M⊗⊗bTM)with

S = Sj1⋯js
i1⋯ir

dxi1 ⊗⋯⊗ dxir ⊗ )
)xj1

⊗⋯⊗ )
)xjs

;

T = Tq1⋯qb
p1⋯padx

p1 ⊗⋯⊗ dxpa ⊗ )
)xp1

⊗⋯⊗ )
)xpa

.

Set � = S ⊗ T. Then

�j1⋯js ,q1⋯qb
i1⋯ir ,p1⋯pa

= Sj1⋯js
i1⋯ir

⋅ Tq1⋯qb
p1⋯pa ,

and we have the Leibniz rule:

∇i�
j1⋯js ,q1⋯qb
i1⋯ir ,p1⋯pa

= ∇iS
j1⋯js
i1⋯ir

⋅ Tq1⋯qb
p1⋯pa + Sj1⋯js

i1⋯ir
⋅ ∇iT

q1⋯qb
p1⋯pa .

Theorem 2.20 (Ricci identity for covariant derivatives). It holds that

∇k∇lT
j1⋯js
i1⋯ir

− ∇l∇kT
j1⋯js
i1⋯ir

=
s∑

m=1

RjmklpT
j1⋯jm−1pjm+1⋯js
i1⋯ir

−
r∑

t=1

RqklitT
j1⋯js
i1⋯il−1qil+1⋯ir

.

In particular,

∇k∇lXi − ∇l∇kXi = RiklpX
p

and

∇k∇l�i − ∇l∇k�i = −Rskli�s.
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Remark 2.21. ∇k∇lT
j1⋯js
i1⋯ir

is the component of ∇2T. Precisely, one has

∇k∇lT
j1⋯js
i1⋯ir

= (∇ )
)xk
∇ )

)xl
T − ∇∇ )

)xk

)
)xl
T) ( )

)xi1
,⋯ , )

)xir
, dxj1 ,⋯ , dxjs) .

2.B. Typical computations.

Example 2.22. See [Xiob] for some typical examples of computations.

To be continued.
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3. Pullback bundle, pullback metric and pullback connection

3.A. Pullback bundles. Let f ∶ M → N be a smooth map, and let E
�
,→ N be a smooth

vector bundle. Then

f∗E = {(p, uE) ∈ M × E ∶ f(p) = �(uE)} ⊂ M × E

with �f(p, uE) = p fomrs a smooth vector bundle over M, and f∗E is an embedded
submanifold of M × E. For more basic properties of pullback bundles such as the
universal property, one can refer to [Xioa].

3.B. Pullback metrics and pullback connections. For any (local) section e of E, its
induced (local) section of f∗E is given by

ê(x) = (f∗e) (x) ∶= (x, e (f(x))) .

Clearly, if (eA) is a local frame of E, then (êA) is a local frame of f∗E. Let (xi) and (y�) be
local coordinates ofM and N respectively.

(1) If there is a metric g on E, then the pullback metric ĝ on f∗E is ĝ = f∗g. That is,

ĝ (êA, êB) (x) = g (eA, eB) (f(x)) .

(2) If the a�ne connection ∇ on E is given by

∇eA = ΓB�Ady
� ⊗ eB,

then the pullback connection ∇̂ on f∗E is given by

(3.1) ∇̂êA = f∗(∇eA) ∶= f∗
(
ΓB�Ady

�) ⊗ f∗eB =
)f�

)xi
⋅ ΓB�A◦f ⋅ dx

i ⊗ êB.

Remark 3.1. For convenience, we also set f∗xw = (x,w) ∈ f∗E ⊂ M × E for w ∈ Ef(x).

Proposition 3.2. The pullback connection ∇̂ is an a�ne connection.

Proof. More precisely, the pullback connection ∇̂ is de�ned in the following two steps:

(1) Set ∇̂ê = f∗ (∇e) for any section e of E.
(2) Set ∇̂ (ℎê1 + ê2) = dℎ ⊗ ê1 + ∇̂ê2 for all ℎ ∈ C∞(M) and sections e1, e2 of E.

To show that ∇̂ is a well-de�ned a�ne connection, we need to show that the expression
f∗ (∇e) is globally de�ned, and that (1) and (2) are compatible.
On the one hand, note that

(f∗ (dy�) ⊗ f∗ (∇ )
)y�
e)) (x) = f∗x (dy�

||||f(x)) ⊗ (x,∇ )
)y�

||||f(x)
e) .

It follows that

f∗ (dy�) ⊗ f∗ (∇ )
)y�
e)

is independent of the choice of (yi). Hence f∗ (∇e) is globally de�ned.
On the other hand, clearly we have ℎ̂e = ℎ◦f ⋅ ê, and to show that (1) and (2) are

compatible we need to show that

f∗(∇(ℎe)) = d(ℎ◦f) ⊗ ê + ℎ◦f ⋅ ∇̂ê.
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Note that

f∗(ℎ∇e) = ℎ◦f ⋅ f∗ (∇e) = ℎ◦f ⋅ ∇̂ê

and hence

f∗ (∇(ℎe)) = f∗ (dℎ ⊗ e + ℎ∇e) = d(ℎ◦f) ⊗ ê + ℎ◦f ⋅ ∇̂ê.

We are done. �

Corollary 3.3. In general, we have

(3.2) ∇̂ )
)xi

(
ℎAêA

)
= )ℎA

)xi
⋅ êA + ℎA

)f�

)xi
⋅ ΓB�A◦f ⋅ êB.

Proof. It follows from proposition 3.2 and formula (3.1). �

Proposition 3.4. There are some basic formulas about pullback connections.
(1) (f∗e)(x) = f∗x (e(f(x))) for any (local) section e of E.
(2) f∗(ℎ ⋅ e) = ℎ◦f ⋅ f∗e, for any ℎ ∈ C∞(N) and for any (local) section e of E.
(3) f∗x(c ⋅ w) = c ⋅ f∗xw, for any w ∈ Ef(x) and for any c ∈ ℝ.
(4) For any (local) section e of E, and for any v ∈ TxM, there holds

(3.3) ∇̂vê = f∗x
(
∇f∗ve

)
.

Proof. Claims (1) (2) (3) are trivial. For (4) we note that

∇̂vê = (f∗(∇e)) (v) = (f∗ (dy� ⊗∇ )
)y�
e)) (v)

= df�(v) ⋅ f∗x (∇ )
)y�

||||f(x)
e) = f∗x (df�(v) ⋅ ∇ )

)y�
||||f(x)

e)

= f∗x (∇dy�(f∗v)
)
)y�

||||f(x)
e) = f∗x

(
∇f∗ve

)
.

where f� = y�◦f. We are done. �

Corollary 3.5. There holds

(3.4) ∇̂ )
)xi
ê =

)f�

)xi
⋅ f∗ (∇ )

)y�
e) .

Proof. It follows from proposition 3.4 that

(∇̂ )
)xi
ê) (p) = ∇̂ )

)xi
||||p
ê = f∗p (∇

f∗(
)
)xi

||||p)
e) =

)f�

)xi
(p) ⋅ f∗p (∇ )

)y�
||||f(p)

e) .

We are done. �

Remark 3.6. Formula (3.3) gives us an intuitive understanding of pullback connection.
However, since in general case, df◦X can not be regarded as some element in Γ(N, TN),
We need to build formulas like (3.4) with the help of coordinates.

3.C. Pullback curvature.

De�nition 3.7. Let f ∶ M → (N, gN, ∇) be a smooth map. The curvature tensor R̂ of
the induced connection ∇̂ on the vector bundle f∗TN → M is given by

R̂ (X, Y, s, t) = ĝ
(
∇̂X∇̂Ys − ∇̂Y∇̂Xs − ∇̂[X,Y]s, t

)
.
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Generally, let f ∶ M → N be a smooth map, and let E → N be a vector bundle equipped
with a metric g and an a�ne connection ∇. Then the curvature tensor R̂ of the induced
connection ∇̂ on the vector bundle f∗E → M is given by

R̂ (X, Y, s, t) = ĝ
(
∇̂X∇̂Ys − ∇̂Y∇̂Xs − ∇̂[X,Y]s, t

)
.

Proposition 3.8. Let f ∶ M → (N, gN) be a smooth map. Then R̂ ∈ Γ(M, T∗M⊗T∗M⊗
f∗TN ⊗ f∗TN) can be written as

R̂ = R̂ij
�dxi ⊗ dxj ⊗ ê
 ⊗ ê�

where

R̂ij
� = R��
�
)f�

)xi
)f�

)xj

and R��
� is the component of the curvature of (N,∇N, gN).

Remark 3.9. To be more precisely,

R̂ij
� = R��
�◦f ⋅
)f�

)xi
)f�

)xj
.

Proof. By corollary 3.5 we know

ĝ (∇̂ )
)xi
∇̂ )

)xj
ê
, ê�) = ĝ (∇̂ )

)xi
(
)f�

)xj
⋅ f∗ (∇ )

)y�
e
)) , ê�)

= ĝ (
)2f�

)xi)xj
⋅ f∗ (∇ )

)y�
e
) +

)f�

)xj
⋅ ∇̂ )

)xi
(f∗ (∇ )

)y�
e
)) , ê�)

=
)2f�

)xi)xj
⋅ ĝ (f∗ (∇ )

)y�
e
) , ê�) +

)f�

)xj
⋅ ĝ (∇̂ )

)xi
(f∗ (∇ )

)y�
e
)) , ê�)

=
)2f�

)xi)xj
⋅ ĝ (f∗ (∇ )

)y�
e
) , ê�) +

)f�

)xj
)f�

)xi
⋅ ĝ (f∗ (∇ )

)y�
∇ )

)y�
e
) , ê�)

It follows that

R̂ij
�(p) = ĝ (∇̂ )
)xi
∇̂ )

)xj
ê
, ê�) (p) − ĝ (∇̂ )

)xj
∇̂ )

)xi
ê
, ê�) (p) =

)2f�

)xi)xj
(p) ⋅ R��
�(f(p))

in which we use that ĝ = f∗g as we introduced in subsection 3.B. �

Remark 3.10. Similarly, the above conclusions also hold for a general vector bundle E.

Proposition 3.11. Let f ∶ M → N be a smooth map, and let E → N be a vector bundle
equipped with a metric g. Then we have

(3.5) R̂ ( )
)xi

, )
)xj

, ê) =
)f�

)xi
)f�

)xj
⋅ f∗ (R ( )

)y�
, )
)y�

, e))

Pointwisely, we have

(3.6) R̂ (u, v, !) = f∗p (R (f∗u, f∗v, �(!))) ∀u, v ∈ TpM ∀! ∈ (f∗E)p
where � ∶ f∗E → E, (p, u) ↦ u.
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Proof. It follows from remark 3.10 that

ĝ (R̂ ( )
)xi

, )
)xj

, ŝ) , t̂) =
)f�

)xi
)f�

)xj
⋅ g (R ( )

)y�
, )
)y�

, s) , t) ◦f

= ĝ (
)f�

)xi
)f�

)xj
⋅ f∗ (R ( )

)y�
, )
)y�

, s)) , t̂)

Then (3.5) follows. Since R ∈ Γ
(
M, T∗M ⊗T∗M ⊗ (f∗E)∗ ⊗ f∗E

)
, (3.6) follows. �

Corollary 3.12. There holds

∇̂ )
)xk

(R̂ ( )
)xi

, )
)xj

, ê)) = )
)xk

(
)f�

)xi
)f�

)xj
) ⋅ f∗ (R ( )

)y�
, )
)y�

, e))

+
)f�

)xi
)f�

)xj
)f


)xk
⋅ f∗ (∇ )

)y

(R ( )

)y�
, )
)y�

, e))) .

(3.7)

Proof. It follows from (3.4) and (3.5). �

3.D. Pullback metric and pullback connection for tangent bundle. Let f ∶ M →
(N, gN) be a smooth map. We apply subsection 3.B to the tangent bundle TN equipped
with the Levi-Civita connection ∇N. Then we derive the pullback metric ĝ and the
pullback connection ∇̂ on the pullback bundle f∗TN.
Speaking speci�cally, on local charts (U, xi) ofM and (V, y�) of N, setting

e� =
)
)y�

, ê� = f∗ ( )
)y�

) and ê� = f∗ (dy�) ,

then (ê�) forms a local basis of f∗TN. It follows that ĝ is given by

ĝ = ĝ�� ê� ⊗ ê�

where

ĝ��(p) = ĝ
(
ê�, ê�

)
(p) = g�� (f(p)) ,

and that ∇̂ is given by

∇̂ê� =
)f�

)xi
⋅ Γ
��◦f ⋅ dx

i ⊗ ê
.

In general, by corollary 3.5, we have

(3.8) ∇̂ )
)xi

(ℎ� ⋅ f∗ ( )
)y�

)) = )ℎ�

)xi
⋅ f∗ ( )

)y�
) + ℎ�

)f�

)xi
⋅ Γ
��◦f ⋅ f

∗ ( )
)y


) .

Moreover, the pullback connection is compact with the pullback metric.

Proposition 3.13. Let ∇N be the Levi-Civita connection on TN. The induced connection
∇̂ is compatible with ĝ; i.e. for any X ∈ Γ(M, TM), s, t ∈ Γ(M, f∗TN) one has

(3.9) X (ĝ (s, t)) = ĝ
(
∇̂Xs, t

)
+ ĝ

(
s, ∇̂Xt

)
.

Proof. Since ∇̂ is an a�ne connection (proposition 3.2), it su�ces to show that

v
(
ĝ��

)
= ĝ

(
∇̂vê�, ê�(p)

)
+ ĝ

(
ê�(p), ∇̂vê�

)
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for all �, � and v ∈ TpM. Note that by proposition 3.4 we know

ĝ
(
∇̂vê�, ê�(p)

)
= ĝ

(
f∗p

(
∇f∗ve�

)
, ê�(p)

)
= g

(
∇f∗ve�, e�

)
(f(p)).

Similarly we have

ĝ
(
ê�(p), ∇̂vê�

)
= g

(
e�, ∇f∗ve�

)
(f(p)).

Since ∇ = ∇N is the Levi-Civita connection, it follows that

ĝ
(
∇̂vê�, ê�(p)

)
+ ĝ

(
ê�(p), ∇̂vê�

)
= (f∗v) (g��) = v

(
ĝ��

)
.

We are done. �

3.E. Revisit the global di�erential; pushforward of vector �elds. Let f ∶ M → N
be a smooth map. In the next we revisit the global di�erential df.
(1) We have proved in [Xioc] that df ∶ TM → TN is smooth, and hence

d̃f ∶ TM → M × TN, Xp ↦
(
p, dfp(Xp)

)

is smooth.
(2) As we mentioned in subsection 3.A, f∗E is an embedded submanifold ofM×E, and

hence f∗TN is an embedded submanifold ofM × TN.
(3) Note that im

(
d̃f

)
⊂ f∗TN. It follows from point (2) that d̃f can be regarded as a

smooth map from TM to f∗TN.
(4) By de�nition, it’s clear that d̃f a smooth bundle homomorphism over M. In

particular, d̃f = dxi ⊗ f∗
( )

)xi

)
∈ Γ(M, T∗M ⊗ f∗TN).

Remark 3.14. If there is no misunderstanding, we sometimes identify d̃f with df.

Using the smooth bundle homomorphism d̃f ∶ TM → f∗TN, we can de�ne the
pushforward of vector �elds.

De�nition 3.15 (Pushforward of tangent vector �elds). For any X ∈ Γ(M, TM), the
pushforward of X is de�ned as f∗X ∶= d̃f◦X ∈ Γ(M, f∗TN).

Proposition 3.16. Let f ∶ M → N be a smooth map. Then

(1) f∗ (ℎ ⋅ X) = ℎ ⋅ f∗X for any X ∈ Γ(M, TM) and ℎ ∈ C∞(M);
(2) (f∗X)p = f∗p

(
dfp

(
Xp

))
for any X ∈ Γ(M, TM);

(3) On charts (U, xi) and (V, y�) with f(U) ⊂ V, we have

(3.10) f∗ (
)
)xi

) =
)f�

)xi
⋅ f∗ ( )

)y�
) .

Proof. Claim (1) is trivial. For (2) we note that

(f∗X)p =
(
p, dfp

(
Xp

))
= f∗p

(
dfp

(
Xp

))
.

Using proposition 3.4, it follows that

(f∗ (
)
)xi

))
p
= f∗p (dfp ( )

)xi
|||||p
)) = f∗p (

)f�

)xi
(p) ⋅ )

)y�
|||||f(p)

) =
)f�

)xi
(p) ⋅ (f∗ ( )

)y�
)) (p).

Then (3) follows. �
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Remark 3.17. It follows that

(3.11) d̃f =
)f�

)xi
⋅ dxi ⊗ f∗ ( )

)y�
) .

Corollary 3.18. Let f ∶ M → N be a smooth map. Then

(3.12) f∗ (Xi )
)xi

) = Xi )f
�

)xi
⋅ f∗ ( )

)y�
) .

Proof. It follows immediately from proposition 3.16. �

3.F. The second fundamental form.

De�nition 3.19. Let f ∶
(
M, gM, ∇M)

→
(
N, gN, ∇N) be a smooth map between two

Riemannianmanifolds,1 and ∇̂ be the a�ne connection onf∗TN induced by
(
TN,∇N, gN

)
.

For any X,Y ∈ Γ(M, TM), we de�ne

B(X, Y) ∶= ∇̂X (f∗Y) − f∗
(
∇M
X Y

)
∈ Γ(M, f∗TN).

It is called the second fundamental form of f ∶ (M, gM) → (N, gN).

Proposition 3.20. Let f ∶ (M, g) → (N, ℎ) be a smooth map and ∇̃ be the a�ne
connection on the vector bundle T∗M⊗f∗TN induced by Levi-Civita connections∇M and
∇N . Then

B = ∇̃d̃f

where d̃f is regarded as a smooth section in Γ(M, T∗M ⊗ f∗TN).

Proof. By formulas (3.10) and (3.11) we know that

d̃f = dxi ⊗ f∗ (
)
)xi

) ∈ Γ(M, T∗M ⊗ f∗TN).

It follows that
(
∇̃Xd̃f

)
(Y) = (dxi ⊗ ∇̂X (f∗ (

)
)xi

)) +
(
∇Xdxi

)
⊗ f∗ (

)
)xi

)) (Y)

= Yi ⋅ ∇̂X (f∗ (
)
)xi

)) + XYi ⋅ f∗ (
)
)xi

) − (∇XY) (dxi) ⋅ f∗ (
)
)xi

)

= ∇̂X (Yi ⋅ f∗ (
)
)xi

)) − f∗ (∇XY) = ∇̂X (f∗Y) − f∗ (∇XY)

where Yi = dxi(Y). We are done. �

Proposition 3.21. Let f ∶ (M, gM) → (N, gN) be a smooth map. Then B ∈ Γ(M, T∗M ⊗
T∗M ⊗ f∗TN) is symmetric, i.e.

B(X, Y) = B(Y, X),

and

(3.13) B = (
)2f�

)xi)xj
+
)f�

)xi
)f


)xj
Γ��
◦f − Γkij

)f�

)xk
) dxi ⊗ dxj ⊗ f∗ ( )

)y�
)

where Γkij and Γ


�� are Christo�el symbolds of gM and gN respectively.

1∇M and ∇N are Levi-Civita connections.
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Proof. Suppose that X = Xi )

)xi
and Y = Yj )

)xj
. By formula (3.12), we know

(3.14) f∗ (∇XY) = (Xi )Yj

)xi
+ XiYjΓkij)

)f�

)xk
⋅ f∗ ( )

)y�
) .

By formulas (3.8) and (3.12) , we know

(3.15) ∇̂X (f∗Y) = (Xi )
)xi

(Yj )f
�

)xj
) + XiYj )f

�

)xi
)f


)xj
Γ��
◦f) ⋅ f

∗ ( )
)y�

) .

Then the conclusion follows. �

Corollary 3.22. For any X,Y ∈ Γ(M, TM), we have

(3.16) ∇̂X (f∗Y) − ∇̂Y (f∗X) = f∗ (∇XY) − f∗ (∇YX) = f∗ ([X, Y]) .

Proof. The �rst equation is equivalent to that B is symmetric, and the second equation
just uses the property of Levi-Civita connection. �

Corollary 3.23. Let �(u1, u2, u3) ∶ I1 × I2 × I3 → (M, g) be a smooth map, where the Ik’s
are intervals, and let ∇̂ be the pullback connection of the Levi-Civita connection onM. Then

∇̂ )
)ui
�∗ (

)
)uj

) = ∇̂ )
)uj
�∗ (

)
)ui

) ∀i, j.

De�nition 3.24. Given a smooth map f ∶ (M, g) → (N, ℎ), the Laplacian is given by
∆g,ℎf = trgB ∈ Γ(M, f∗TN).

Proposition 3.25. If f ∶ (M, g) → (N, ℎ) is a smooth map, then

(3.17)
(
∆g,ℎf

)

= gij (

)2f�

)xi)xj
+
)f�

)xi
)f


)xj
(Γℎ)��
◦f − (Γg)kij

)f�

)xk
)

If f ∶ (M, g) → (N, ℎ) is, in addition, a di�eomorphism, then

(3.18)
(
∆g,ℎf

)

= −g̃��

[(
Γg̃

)

��
◦f − (Γℎ)



�� ◦f

]
where g̃ = (f−1)∗g.

Proof. To be continued. (Exercise.) �

3.G. Isometric immersions. Let
(
M, g,∇

)
be a Riemannian manifold, and let f ∶

M → M be an immersion. Basically, we know:

(1) By subsection 3.B,
(
TM, g,∇

)
induces

(
f∗TM, ĝ, ∇̂

)
;

(2) g induces a Riemannian metric g = f∗g, and g induces a Levi-Civita connection ∇.

Proposition 3.26. Let f ∶ M →
(
M, g

)
be an immersion. Then

(3.19) g(X, Y) = ĝ (f∗X, f∗Y), X, Y ∈ Γ(M, TM).

Moreover, under the normal convention, we have

g(X, Y) = ĝ (f∗X, f∗Y) = g��
)f�

)xi
)f�

)xj
XiYj,

and

gij(p) = g�� (f(p))
)f�

)xi
(p)

)f�

)xj
(p).
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Proof. Trivial. �

In the next we introduce some non-trivial facts, which are based on the fact that the
bundle homomorphism d̃f overM has constant rank.

Proposition 3.27. Let f ∶ M →
(
M, g

)
be an immersion. Then the smooth bundle

homomorphism d̃f ∶ TM → f∗TM over M, which is introduced in subsection 3.E, has
constant rank. It follows that

f∗(TM) ∶= im
(
d̃f

)
=

⋃

p∈M

im
(
d̃fp

)

is a subbundle of f∗TM. Moreover, there exists a subbundle T⟂M of f∗TM such that

(3.20) f∗TM = f∗(TM) ⊕ T⟂M

where the orthogonal decomposition is with respect to the Riemannian metric g onM.

Proof. Since f is an immersion, clearly d̃f has constant rank. By theorem 5.4 we know
f∗(TM) is a subbundle of f∗TN. In the next we prove the last assertion.
Set E = f∗TM and F = f∗(TM). Then we consider the map

Φ ∶ E → E, ep ↦ ProjFp(ep)

where ProjFp is the projectionmap from Ep to Fp with respect to ĝp. It’s easy to see thatΦ
is a smooth bundle homomorphism overM.2 Clearly Φ is of constant rank. By theorem
5.4 again, we know that

kerΦ =
⋃

p∈M

F⟂
p

is a subbundle of E. Clearly kerΦ = T⟂M is as required. �

Proposition 3.28. Let f ∶ M →
(
M, g

)
be an immersion. Using the function Φ in

proposition 3.27, then we have

(3.21) Φ
(
∇̂X(f∗Y)

)
= f∗∇XY, ∀X, Y ∈ Γ(M, TM).

In particular, (3.21) shows how ∇̂ induces ∇.

Proof. For convenience, �rst we set

Φ(X,Y) = Φ
(
∇̂X(f∗Y)

)
.

Since f is an immersion, f∗(∇XY) induces ∇XY. Then by the uniqueness of Levi-Civita
connection, proposition 3.16 and formula (3.19), to show (3.21) it su�ces to verify that
for all X,Y, Z ∈ Γ(M, TM) and ℎ ∈ C∞(M) we have the following points:
(1) Φ(ℎX + Y, Z) = ℎΦ(X, Z) + Φ(Y, Z) ;
(2) Φ(X, ℎY + Z) = (Xℎ) ⋅ f∗Y + ℎ ⋅ Φ(X, Y) + Φ(X, Z);
(3) X (g(Y, Z)) = ĝ (Φ(X, Y), f∗Z) + ĝ (f∗Y,Φ(X, Z));
(4) Φ(X,Y) − Φ(Y,X) = f∗ ([X, Y]).
2This easily follows from the local frame criterion for subbundles and the fact that the rank of a linear map
does not decrease under perturbation,
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Claims (1) and (2) are trivial, which follow from proposition 3.2 and proposition 3.16.
For (3), note that by proposition 3.13, formula (3.19) and proposition 3.27 we have

X (g(Y, Z)) = X (ĝ (f∗Y, f∗Z)) = ĝ
(
∇̂X(f∗Y), f∗Z

)
+ ĝ

(
f∗Y, ∇̂X(f∗Z)

)

= ĝ
(
Φ

(
∇̂X(f∗Y)

)
, f∗Z

)
+ ĝ

(
f∗Y,Φ

(
∇̂X(f∗Z)

))

= ĝ (Φ(X, Y), f∗Z) + ĝ (f∗Y,Φ(X, Z)) .

For (4), note that by corollary 3.22 and proposition 3.27 we have

Φ(X,Y) − Φ(Y,X) = Φ
(
∇̂X (f∗Y) − ∇̂Y (f∗X)

)
= Φ (f∗([X, Y])) = f∗([X, Y]).

We are done. �

Corollary 3.29. Let f ∶ (M, gM) → (N, gN) be an isometry. Then B = 0.

Proof. Since f is an isometry, dimf∗(TM) = dimf∗TN, and hence the map Φ given by
proposition 3.27 is the identity map. It follows from corollary 3.28 that B = 0. �

Corollary 3.30. Let f ∶ M →
(
M, g

)
be an immersion. For any X,Y, Z ∈ Γ(M, TM),

ĝ (B(X, Y), f∗Z) = 0.

In particular, we have

B ∈ Γ
(
M, T∗M ⊗T∗M ⊗T⟂M

)

and B is called the second fundamental form of the immersion f ∶ M →
(
M, g

)
.

Proof. It follows from proposition 3.27 and proposition 3.28 that

ĝ (B(X, Y), f∗Z) = ĝ
(
∇̂X (f∗Y) − f∗ (∇XY) , f∗Z

)

= ĝ
(
Φ

(
∇̂X (f∗Y)

)
− f∗ (∇XY) , f∗Z

)
= 0.

Then the conclusion follows from proposition 3.27. �

Corollary 3.31 (Gauss). Let f ∶ M →
(
M, g

)
be an immersion. For any X,Y, Z,W ∈

Γ(M, TM), we have

R (X, Y, Z,W) − R̂ (X, Y, f∗Z, f∗W) = ĝ (B(Y, Z), B(X,W)) − ĝ (B(X, Z), B(Y,W)) .

In particular

R (X, Y, Y, X) − R̂ (X, Y, f∗Y, f∗X) = ĝ (B(X, X), B(Y, Y)) − ĝ (B(X, Y), B(X, Y)) .

Proof. Note that

∇̂X∇̂Y(f∗Z) = ∇̂X (f∗(∇YZ) + B(Y, Z)) = f∗ (∇X∇YZ) + B (X,∇YZ) + ∇̂X (B(Y, Z))

and similar we have

∇̂Y∇̂X(f∗Z) = f∗ (∇Y∇XZ) + B (Y,∇XZ) + ∇̂Y (B(X, Z)) .

On the other hand, we have

∇̂[X,Y](f∗Z) = f∗
(
∇[X,Y]Z

)
+ B ([X, Y], Z) .
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It follows from corollary 3.30, proposition 3.13 and formula (3.19) that

R̂ (X, Y, f∗Z, f∗W)

= R (X, Y, Z,W) + ĝ
(
∇̂X (B(Y, Z)) + ∇̂Y (B(X, Z)) , f∗W

)

= R (X, Y, Z,W) − ĝ
(
B(Y, Z), ∇̂X(f∗W)

)
− ĝ

(
B(X, Z), ∇̂Y(f∗W)

)

= R (X, Y, Z,W) − ĝ (B(Y, Z), B(X,W)) − ĝ (B(X, Z), B(Y,W)) .

We are done. �

3.H. Revisit isometric immersions via extensions.

Lemma 3.32. Let f ∶ M →
(
M, g

)
be an immersion. Then for any � ∈ Γ(M, f∗TM) and

p ∈ M, there exist �̃ ∈ Γ
(
M, TM

)
and a neighborhoodU of p with

� = f∗�̃ on U.

The vector �eld �̃ is called the the extension of � onU.

Proof. One can refer to [Lee13] lemma 8.6. �

Remark 3.33. In particular, for X ∈ Γ(M, TM), f∗X has an extension X̃. The vector
�eld X̃ is also called the extension of X on U.

In the next we introduce some new properties based on lemma 3.32.

Proposition 3.34. Let f ∶ M →
(
M, g

)
be an immersion, let X ∈ Γ(M, TM) and � ∈

Γ(M, f∗TM), and let X̃, �̃ be extensions of X, � onU respectively. Then

(3.22) ∇̂X� = f∗ (∇X̃ �̃) on U.

Proof. Proposition 3.4 yields

∇̂Xp� = ∇̂Xp (f
∗�̃) = f∗p

(
∇X̃f(p) �̃

)
= f∗ (∇X̃ �̃)

||||p
Then the conclusion follows. �

Remark 3.35. If we denote the projection from Tf(p)M to dfp(TpM)with respect to gf(p)
by Φ̃, then proposition 3.28 and proposition 3.34 yield

(3.23) Φ̃ (f∗
(
∇X̃Ỹ

) ||||p) = dfp
(
∇XpY

)
.

The following proposition shows that extensions gives us a good perspective to deal
with the curvatures. (Don’t confuse it with Gauss formula 3.31.)

Proposition 3.36. Let f ∶ M →
(
M, g

)
be an immersion, let X,Y ∈ Γ(M, TM) and

� ∈ Γ(M, f∗TM), and let X̃, Ỹ, �̃ be extensions of X, Y, � onU respectively. Then

(3.24) R̂ (X, Y, �) = f∗
(
R
(
X̃, Ỹ, �̃

))
on U.

Proof. Formula (3.6) yields that

R̂ (X, Y, �) ||||p = f∗p
(
R
(
dfp(Xp), dfp(Yp), �(�p)

))

= f∗p
(
R
(
X̃f(p), Ỹf(p), �̃f(p)

))
= f∗

(
R
(
X̃, Ỹ, �̃

)) ||||p.

We are done. �
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3.I. Regular surfaces. Let S ⊂ ℝ3 be a regular surface, and let � ∶ U → D ⊂ ℝ2 be a
local trivialization of S. Then we have the immersion


 = i◦�−1 ∶ D
�−1
,,,→ S

i
,→ ℝ3.

Let g = g0 = ���dy� ⊗ dy� be the standard metric on ℝ3. Let u1 = u and u2 = v be the
coordinates on D. Then we have

d̃
 =
)
�

)ui
⋅ dui ⊗ 
∗ ( )

)y�
) ,

and the induced Riemannian metric gD = 
∗g satis�es

gD = ���
)
�

)ui
)
�

)uj
dui ⊗ duj.

The induced metric gD is also called the �rst fundamental form of the surface S.
Moreover, by proposition 3.27, there exists an orthogonal decomposition


∗Tℝ3 = 
∗(TD) ⊕ T⟂D.

By choosing su�ciently small U if necessary, we assume that T⟂D is trivial. Let n be a
unit section of T⟂D, and we set

Bn(X, Y) = ĝ (B(X, Y), n)

where ĝ is the pullbackmetric. Then Bn ∈ Γ(M, T∗M⊗T∗M) is the second fundamental
form along n of the surface S.

Proposition 3.37. There holds

(3.25) (Bn)ij ∶= Bn (
)
)ui

, )
)uj

) = ĝ (
)2
�

)ui)uj
⋅ 
∗ ( )

)y�
) , n) .

Proof. Since
(
M, g

)
=

(
ℝ3, g0

)
, it follows from proposition 3.21 that

Bn (
)
)ui

, )
)uj

) = ĝ (
)2
�

)xi)xj
⋅ 
∗ ( )

)y�
) − Γkij

)
�

)xk
⋅ 
∗ ( )

)y�
) , n)

By corollary 3.18 we know

Γkij
)
�

)xk
⋅ 
∗ ( )

)y�
) ∈ 
∗ (TD) .

Then the conclusion follows from proposition 3.27. �

Remark 3.38. That is, with the conventions in the classical di�erential geometry,

L =
⟨
r⃗uu, n⃗

⟩
, M =

⟨
r⃗uv, n⃗

⟩
, N =

⟨
r⃗vv, n⃗

⟩
.

Moreover, we have the Gauss’s Theorema Egregium.

Theorem 3.39 (Gauss’s Theorema Egregium). The Gauss curvature de�ned as

(3.26) K = det II
det I
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is the sectional curvature of (D, gD), i.e.

K =
R(X, Y, Y, X)

|X|2gD |Y|2gD −
|||gD(X, Y)|||

2

for any linear independent vectors X,Y ∈ Γ(D, TD).

Proof. It follows from Gauss formula 3.31 that

R(X, Y, Y, X) = ĝ (B(X, X), B(Y, Y)) − ĝ (B(X, Y), B(X, Y))
= ĝ (B(X, X), n) ⋅ ĝ (B(Y, Y), n) − ĝ (B(X, Y), n) ⋅ ĝ (B(X, Y), n)
= Bn(X, X) ⋅ Bn(Y, Y) − Bn(X, Y) ⋅ Bn(X, Y).

Set X = )

)u1
and Y = )

)u2
. Then the conclusion follows. �

3.J. Summary of formulas. For pullback bundle f∗E, we have

∇̂ )
)xi

(
ℎAêA

)
= )ℎA

)xi
⋅ êA + ℎA

)f�

)xi
⋅ ΓB�A◦f ⋅ êB,

∇̂vê = f∗x
(
∇f∗ve

)
,

∇̂ )
)xi
ê =

)f�

)xi
⋅ f∗ (∇ )

)y�
e)

R̂ ( )
)xi

, )
)xj

, ê) =
)f�

)xi
)f�

)xj
⋅ f∗ (R ( )

)y�
, )
)y�

, e))

R̂ (u, v, !) = f∗p (R (f∗u, f∗v, �(!))) .

In particular, for E = TN we have

∇̂ )
)xi

(ℎ� ⋅ f∗ ( )
)y�

)) = )ℎ�

)xi
⋅ f∗ ( )

)y�
) + ℎ�

)f�

)xi
⋅ Γ
��◦f ⋅ f

∗ ( )
)y


) ,

X (ĝ (s, t)) = ĝ
(
∇̂Xs, t

)
+ ĝ

(
s, ∇̂Xt

)
,

d̃f =
)f�

)xi
⋅ dxi ⊗ f∗ ( )

)y�
) ,

f∗ (Xi )
)xi

) = Xi )f
�

)xi
⋅ f∗ ( )

)y�
) ,

∇̂X (f∗Y) = (Xi )
)xi

(Yj )f
�

)xj
) + XiYj )f

�

)xi
)f


)xj
Γ��
◦f) ⋅ f

∗ ( )
)y�

) ,

f∗ (∇XY) = (Xi )Yj

)xi
+ XiYjΓkij)

)f�

)xk
⋅ f∗ ( )

)y�
) ,

B = ∇̂X (f∗Y) − f∗ (∇XY) = (
)2f�

)xi)xj
+
)f�

)xi
)f


)xj
Γ��
◦f − Γkij

)f�

)xk
) dxi ⊗ dxj ⊗ f∗ ( )

)y�
) ,

∇̂X (f∗Y) − ∇̂Y (f∗X) = f∗ (∇XY) − f∗ (∇YX) = f∗ ([X, Y]) .
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For isometric immersions, we have

g(X, Y) = ĝ (f∗X, f∗Y) ,
f∗TM = f∗(TM) ⊕ T⟂M,

Φ
(
∇̂X(f∗Y)

)
= f∗∇XY,

R (X, Y, Z,W) − R̂ (X, Y, f∗Z, f∗W) = ĝ (B(Y, Z), B(X,W)) − ĝ (B(X, Z), B(Y,W)) ,

and via extensions we have

∇̂X� = f∗ (∇X̃ �̃) on U

Φ̃ (f∗
(
∇X̃Ỹ

) ||||p) = dfp
(
∇XpY

)

R̂ (X, Y, �) = f∗
(
R
(
X̃, Ỹ, �̃

))
on U.

For regular surfaces, we have

Bn (
)
)ui

, )
)uj

) = ĝ (
)2
�

)ui)uj
⋅ 
∗ ( )

)y�
) , n) ,

K = det II
det I

.

One can look for the numbered formulas in section 3 to get their details.
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4. The exponential map of Riemannian manifolds
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5. Appendix

5.A. Subbundles. This subsection is copyed from [Xioc].

De�nition 5.1 (Bundle homomorphism). If � ∶ E → M and �′ ∶ E′ → M′ are vector
bundles, a continuous map F ∶ E → E′ is called a bundle homomorphism if there exists
a map f ∶ M → M′ satisfying �′◦F = f◦� with the property that for each p ∈ M, the
restricted map F|Ep ∶ Ep → E′f(p) is linear.
The relationship between F and f is expressed by saying that F covers f.

Remark 5.2. Usually, all maps are assumed to be smooth.

De�nition 5.3 (Bundle homomorphism overM). In the special case in which both E and
E′ are over the same base spaceM, a bundle homomorphism covering the identity map of
M is called a bundle homomorphism overM.

Theorem 5.4. Let E and E′ be smooth vector bundles over a smooth manifoldM, and let
F ∶ E → E′ be a smooth bundle homomorphism overM. De�ne subsets ker F ⊂ E and
imF ⊂ E′ by

ker F =
⋃

p∈M

ker(F|Ep), imF =
⋃

p∈M

im(F|Ep).

Then ker F and imF are smooth subbundles of E and E′, respectively, if and only if F has
constant rank.3

Proof. Clearly we only need to show the su�ciency. Then the conclusion easily follows
from the local frame criterion for subbundles ([Lee13] lemma 10.32) and the fact that
the rank of a linear map does not decrease under perturbation. One can refer to [Lee13]
theorem 10.34 for details. �

5.B. Linear algebra.

Proposition 5.5. For A ∈ Mn×n and " su�ciently small, there holds

(I + "A)−1 = I − "A + O("2).

Proof. Just use the Taylor expansion of B ↦ B−1 near the point B = I. �

Lemma 5.6. For a complex matrix A ∈ Mn×n, we have

det(�I − A) = (� − �1)⋯ (� − �n) = �n − s1(A) ⋅ �n−1 +⋯+ (−1)nsn(A).

where s1(A) = tr(A) and sn(A) = detA. Moreover,

sk(cA) = cksk(A), ∀c ∈ ℂ.

Proof. Trivial. �

Proposition 5.7. For A ∈ GL(n,ℝ) and " su�ciently small, there holds

det(A + "B) = det(A) ⋅
(
1 + tr

(
A−1B

)
" + O("2)

)
.

3For each p ∈ M, the rank of the linear map F|Ep is called the rank of F at p. We say that F has constant
rank is its rank is the same for all p ∈ M.
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Proof. Note that

det(A + "B) = det(A) ⋅ det
(
I + "A−1B

)
= det(A) ⋅ "n ⋅ det (1" I −

(
−A−1B

)
)

Then the conclusion follows from lemma 5.6. �
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